ODLARNUII OIRALLUILOD TUN AL TRNUUUGULIUIN DO 1M

2.4. HEURISTIC GRAPH-SEARCH PROCEDURES

The uninformed search methods, whether breadth-first or depth-first,
are exhaustive methods for finding paths to a goal node. In principle,
these methods provide a solution to the path-finding problem, but they
are often infeasible to use to control Al production systems because the
search expands too many nodes before a path is found. Since there are
always practical limits on the amount of time and storage available to
expend on the search, more efficient alternatives to uninformed search
must be found.

For many tasks it is possible to use task-dependent information to help
reduce search. Information of this sort is usually called heuristic informa-
tion, and search procedures using it are called heuristic search methods. It
is often possible to specify heuristics that reduce search effort (below that
expended by, say, breadth-first search) without sacrificing the guarantee
of finding a minimal length path. Some heuristics greatly reduce search
effort but do not guarantee finding minimal cost paths. In most practical
problems, we are interested in minimizing some combination of the cost
of the path and the cost of the search required to obtain the path.
Furthermore, we are usually interested in search methods that minimize
this combination averaged over all problems likely to be encountered. If
the averaged combination cost of search method 1 is lower than the
averaged combination cost of search method 2, then search method 1 is
said to have more heuristic power than search method 2. Note that
according to our definition, it is not necessary (though it is a common
misconception) that a search method with more heuristic power give up
any guarantee for finding a minimal cost path.

Averaged combination costs are never actually computed, both be-
cause it is difficult to decide on the way to combine path cost and search
effort cost and because it would be difficult to define a probability
distribution over the set of problems to be encountered. Therefore, the
matter of deciding whether one search method has more heuristic power
than another is usually left to informed intuition, gained from actual
experience with the methods.

24.1. USE OF EVALUATION FUNCTIONS

Heuristic information can be used to order the nodes on OPEN in step
8 of GRAPHSEARCH so that search expands along those sectors of the

72

HEURISTIC GRAPH-SEARCH PROCEDURES

frontier thought to be most promising. In order to apply such an ordering
procedure, we need a method for computing the “promise” of a node.
One important method uses a real-valued function over the nodes ca!led
an evaluation function. Evaluation functions have been based on a variety
of ideas: Attempts have been made to define the probability that a node
is on the best path; distance or difference metrics between an arbitrary
node and the goal set have been suggested; or in board games or puzzle§,
a configuration is often scored points on the basis of those features that it
possesses that are thought to be related to its promise as a step toward the
goal.

Suppose we denote the evaluation function by the symbol /. Then f(n)
gives the value of the function at node n. For the moment we let f be any
arbitrary function; later, we propose that it be an estimate of the cost of a
minimal cost path from the start node to a goal node constrained to go
through node n.

We use the function f to order the nodes on OPEN in step 8 of
GRAPHSEARCH. By convention, the nodes on OPEN are ordered in
increasing order of their f values. Ties among f values are ordered
arbitrarily, but always in favor of goal nodes. Supposedly, a node having
a low evaluation is more likely to be on an optimal path.

The way in which GRAPHSEARCH uses an evaluation function to
order nodes can be illustrated by considering again our 8-puzzle
example. We use the simple evaluation function:

f(n)=d(n) + W(n)

where d(n) is the depth of node n in the search tree and W (n ) counts the
number of misplaced tiles in that database associated with node n. Thus
the start node configuration

283
164
7 5

has an f value equal to 0 + 4 = 4.

The results of applying GRAPHSEARCH to the 8-puzzle using this
evaluation function are summarized in Figure 2.8. The value of f for each
node is circled; the uncircled numbers show the order in which nodes are

73




