Lecture 10 of 41 Lecture Outline
|ntroduction to Directx & Direct3D ® Reading for Last Class: §2.5,2.6.1 —2.6.2, 4.3.2, 20.2, Eberly 2¢
Lab 2a: Direct3D Basics ® Reading for Today: §2.7, Eberly 2¢; Direct3D handout
® Reading for Next Class: §2.6.3, 20.3 —20.4, Eberly 2¢
® Last Time: Intro to lllumination and Shading
William H. Hsu * Local vs. global models
Department of Computing and Information Sciences, KSU * Illumination (vertex shaders) vs. shading (fragment/pixel shaders)
i i i * Phong illumination equation: introduction to shading
IfSOII. course pz.{geS: htto://bit ynGuXIH / hitec/ibit lyleVizrE ® Previously: Projections, Modelview, Viewing, Clipping & Culling
Public mirror web site: http://www.kddresearch.org/Courses/CIS636 ’ ’ ’
Instructor home page: http://www.cis.ksu.edu/~bhsu ® Today: Direct3D Design Overview, Programming Intro
® Hardware Rendering: Application Programmer Interfaces (APls)
Today: Section 2.7, Eberly 2 Rea:titnpg;;'t ly/ieUq45; Direct3D handout © Shaders in Modern Pipeline
Haoﬂdaoyu.t beacsle?jnon. n’1ate:ra)\/"t ogjef 2010 KI an::]bum Yhtllpr?/‘/:bi(.lylinMgoxLIIVII * Vertex shaders: vertex attributes to illumination at vertices
Next class: Sections 2.6.3, 20.3 — 20.4, Eberly 20 * el shaders: lit vertices to pixel colors, transparency
Wikipedia article: http://en.wikipedia.org/wiki/Shader ©® Next: Texture Mapping Explained; Shading in OpenGL

Computing ————— Computing

Computer Graphics

[

Vertex Shaders vs. +

Pixel Shadevrs Where We Are

ecture [Topic Primary Source(s)

® Classical Fixed-Function Pipeline (FEP): Per-Vertex nghtmg, MVT + VT Course OVerview hapter 1, Eerly 2
| bl " CG Basics: Tr Matrices; Lab 0 | Sections (§) 2.1, 2.2
* Largely superseded on d p by progr Pl Viewing 1: Overview, Projections 223-224.28
* i Viewing 2. Viewing Transformation 23 esp. 234, FVFH S
Stl” used n mObIIe Compl‘tlng Lab 1a: Flash & OpenGL Basics e 16‘, Angel Primer
® Modern Programmable Pipeline: Per-Pixel Lighting Viewing 3: GraphicsPipeline______ | §2.3esp.23.7:2
Scan Conversion 1: Lines, Midpoint Algerthm 1.31.FVFHSI
® Vertex Shaders (FFP and Programmable) Viewing 4: Clipping & Culling; Lab 1b 3.5, 2.4, 3.1.3
Scan Conversion 2: Ps Clipping Intro

* Input: per-vertex attributes (e.g., object space position, normal)
* Output: lighting model terms (e.g., diffuse, specular, etc.)
® Pixel Shaders (Programmable Only)

" Textures, Open ng 63, 205
Surlaoe DEL‘III 3 Magglngs OpenGL Texmre5 05-2013
Surface Detail 4: Pixel/Vertex Shad.; Lab 2b

* Input: output of vertex shaders (lighting aka illumination) a%m%ﬁ S
* Output: pixel color, transparency (R, G, B, A) :T;%%%m -5.20.1, Primer

© Brief Digression 1| Scens Craphs: Rendésing: LatsGo: Soaer hopters 4.2
* Not:vricns o pisel e shae e it

> “Pixel shader”: well-defined (iff “pixel” is)
> “Vertex shader”: misnomer (somewhat) S
* Most people refer to both as “shaders” T

Lightly-shaded entries denote the due date of a written problem set. heavily-shaded enfries, that of a
machine problem (programming assignment); bilie-shaded enfries. that of a paper review; and the green-
shaded entry, that of the term project

Green, blue and red letters denote exam review, exam, and exam solution review dates.

Computin

Lecture 10 of 41 Computing

Computer Graphics

Acknowledgements Direct3D

Nathan H. Bean ® Popular 3-D Graphics Library of DirectX (Sometimes Called “DirectX”)
'(;‘:::::z:’c“mmmr . GI 5 #* Top market share due to Windows & Xbox platforms

D of Computing and ion Sciences * Many developers (has overtaken OpenGL except on smartphones)
e St amversity ® Can Implement Many Effects We Have Studied/Will Study Such As:

* Cube map (Lecture 12)

* Particle system (Lecture 28)

* Instancing (Lecture 20 & Advanced CG)

* Shadow volume (Lecture 12)
* Displacement Mapping (Lecture 12)

Direct3D material from slides © 2006 — 2010 N. Bean, Kansas State University
http://bit.ly/gC3vwH

Andy van Dam
Exocutive Direct T. J. Watson University Professor of

xecutive Director Technology and Education & Professor of
Mindful Schools Computer Science
http://www.randima.com Brown University

http://www.cs.brown.edu/~avd/

Randy Fernando

Mark Kilgard

Principal System Software Engineer
Nvidia

http://bit.ly/gdjLzR

Cg material from figures © 2003 R. Fernando & M. Kilgard, Nvidia, from The Cg Tutorial — ©2006 D. Blythe, “The Direct3D® 10 System”.
http://bit.ly/59fSR € & http://bit.ly/i33uMyv

Computing

Computer Graphics

Preview:
Shader Languages

:lm.,,.m {P;;; }.lﬁm Buner Remember this
from Lecture 047
¥
.I ¥

OpenGL State Machine (Simplified) from Wikipedia: Shader
http://bit \y/fiBBP.

+ HLSL: Shader language and API developed by Microsoft, only usable from within a
DirectX application.

+ Cg: Shader language and API developed by Nvidia, usable from within a DirectX and
OpenGL application. Cg has a stark resemblance to HLSL.

« GLSL: Shader language and AP developed by the OpenGL consortium and usable
from within an OpenGL application.

© 2009 Koen Samyn
http://knol.google.com/k/hisl-shaders

Computing

Abstraction

® The primary purpose of Direct3D is to provide a uniform interface
for working directly with the graphics hardware without having to
go through windows.

® Direct3D applications actually render to a display surface within
the confines of a window — they don’t use the Window API

® For best performance, you want to use full-screen, exclusive
mode. In this mode, Windows does no rendering whatsoever,
allowing you to leverage the full resources of the computer

Direct3D material from slides © 2006 — 2010 N. Bean, Kansas State University
http://bit.ly/gC3vwH

Computing &

Direct3D Device

® Direct 3D places most of its rendering control in a Direct3D
Device object.

® Essentially, the Direct3D Device is a wrapper around the graphics
hardware, and exposes most of its functionality to the
programmer through a common interface.

® You can poll the Direct3D Device to learn of the graphics
hardware’s capabilities

Direct3D material from slides © 2006 — 2010 N. Bean, Kansas State University
http://bit.ly/gC3vwH

Computer

DirectX

® DirectX is a collection of APIs developed by Microsoft for
multimedia and game applications

® They utilize the Component Object Model (COM), allowing you to
use them across a wide variety of languages

® The entire DirectX APl is available freely from Microsoft, and
works with any current Visual Studio compiler (and many others)

® Today we'll be focusing on the API for 3D rendering, Direct3D

Direct3D material from slides © 2006 — 2010 N. Bean, Kansas State University
http://bit.ly/gC3vwH

Lecture 10 of 41 Computin

Computer Graphics

Rendering Basics

® | ike OpenGL, Direct3D uses vertex-based polygon mesh data to
render 3D Data

® All 3D graphics are composed of triangles, usually these triangles
share sides in what we refer to as a triangle mesh, or mesh.

® Each triangle is defined by its three corners, which we refer to as
vertices

® We can store more data on vertices than just their position in 3D
space — texture coordinates, normal vectors, and ambient colors
for example

Direct3D material from slides © 2006 — 2010 N. Bean, Kansas State University
http://bit.ly/gC3vwH

Lecture 10 of 41 Computing & I

Computer Graphics

Direct3D Rendering Pipeline

gt
inpist Assembier
® The process of -
transforming model 1
geometry into on-screen
images is called the

Vertex Shader «

a;

H

<

2

rendering pipeline i g

. . . Geometry §

® |n DirectX, the pipeline Shader F -
runs entirely on the e
graphics hardware — there Rastecizar g

is no software fallback 5

® Other than that difference, . ;%
it shares many 1 =

characteristics with other

. . . Output Mer
3D rendering libraries g el

Direct3D material from slides © 2006 — 2010 N. Bean, Kansas State University
http://bit.ly/gC3vwH

Lecture 10 of 41 Contpiilg

to Computer Graphics

% Input Assembly

input

. Al
® |nput is sent from the

DirectX application in the g
form of Vertex data (both et S s
buffered and unbuffered), z
shader code and variables, 4 <
Geometry 8

and textures Shadsr 4

® When possible, these H
sources are stored in the Rasterizor g
on-board graphics card ‘ H
memory Pixel Shader s

2

Output Merger

Direct3D material from slides © 2006 — 2010 N. Bean, Kansas State University
http://bit.ly/gC3vwH

Computing

to Computer Graphics

Vertex Formats [2]:
Using FVF

#define POSITION NORMAL TEXTURE_FVF (D3DFVF_XYZ
D3DFVF_NORMAL | D3DFVF_TEX1)

struct PositionNormalTextureVertex

{
float x,y,z;
float nx, ny, nz;
float tu, tv;

}i

Direct3D material from slides © 2006 — 2010 N. Bean, Kansas State University
http://bit.ly/gC3vwH

Computing

Lecture 10 of 41

to Computer Graphics

%&:}’ FVF Graphically Expressed

y of H I ial.com

Direct3D material from slides © 2006 — 2010 N. Bean, Kansas State University
http://bit.ly/gC3vwH

Vertex Formats [1]:
Elexible Vertex Format (FVF)

® You also will define the format of vertices that you will send to the
graphics card.

® We use the Flexible Vertex Format (FVF) to do this

® FVF is a two part process — we define a struct representing our
vertex format, and define a constant describing the structure of
the format.

Direct3D material from slides © 2006 — 2010 N. Bean, Kansas State University
http://bit.ly/gC3vwH

_ Lecture 10 of 41
Computer Graphics

Vertex Formats [3]:
For More Details on FVF

® Flexible Vertex Formats allow us to send the bare minimum of
vertex data for our needs to the graphics card.

® Since the pipeline from our CPU to the graphics hardware tends
to be a bottleneck, this is a must when speed is a concern.

® More detail on what flags exist for the Direct3D FVF can be found
in the DirectX APl documentation

Direct3D material from slides © 2006 — 2010 N. Bean, Kansas State University
http://bit.ly/gC3vwH

_ Lecture 10 of 41
Computer Graphics

%@:f Vertex Buffers

® Vertex Buffers are used to hold vertex data and to stream this
data to the graphics card

©® Buffers may be located in Video memory or in RAM, depending
on your device setup

® Buffers are a shared resource — both the CPU and the GPU will
be accessing them at times. Because of this, we will need to lock
the buffer before we place our data into it.

® To minimize overhead, it is common practice to create your vertex
data in CPU-only memory, then do a fast copy (memcpy) into a
locked Vertex buffer

Direct3D material from slides © 2006 — 2010 N. Bean, Kansas State University
http://bit.ly/gC3vwH

Lecture 10 of 41

Computer Graphics

Rendering Vertex Buffers

® First, you need to set it as a stream source on your Direct3D
Device

® Then you can call DrawPrimitive on your device, indicating
what portion of the Vertex Buffer should be drawn, along with
what kind of primitive you are rendering

® This starts the vertex data on the Rendering Pipeline

Direct3D material from slides © 2006 — 2010 N. Bean, Kansas State University
http://bit.ly/gC3vwH

Lecture 10 of 41 Computing

21

Rasterization
® Rasterization 5l Input
* process by which geometry is
converted into pixels for Input Assembler
rendering
* much the same with any 1 5
rendering process © Vertex Shader §
® |n general, refers to all vector- ; 3
to-raster stages -} §
* transformations Geometry g
* clipping T s
* L :
° Som;ld with scan g
conversion (final step) i §
® Direct3D maintains useful ' Pixel Shader o
buffers for it s i
* depth buffers 4
* stencil buffers Oulput Merger |

Direct3D material from slides © 2006 — 2010 N. Bean, Kansas State University
http://bit.ly/gC3vwH

Vertex Shaders [2]

® There are a number of reasons we want to manipulate our vertex
data on the GPU rather than the CPU:
* The GPU is highly optimized for Vector- and Matrix-based
operations. The CPU is not.
#* Because these operations operate independently from the CPU, our
CPU is now free for other operations
® Vertex Shaders are essentially little programs that run against
every vertex in the data we've sent down the rendering pipleline
® We write vertex shaders using Microsoft’s High-Level Shader
Language

Direct3D material from slides © 2006 — 2010 N. Bean, Kansas State University
http://bit.ly/gC3vwH

Lecture 10 of 41 Computing

Index Buffers

® |ndex Buffers are an array of indices which reference an
associated Vertex Buffer

® |ndex Buffers allow us to re-use Vertex data elements when
creating meshes — this is especially useful because triangles in
most meshes are sharing their vertices with adjacent triangles.

® By using an index buffer, we only have to define a vertex once,
then we can define the triangle by indices; and since an index is
usually quite a bit smaller than a vertex ’s data, we send less data
into our pipeline.

Direct3D material from slides © 2006 — 2010 N. Bean, Kansas State University
http://bit.ly/gC3vwH

6 Lecture 20 of 42 @iy

to Computer Graphics

Vertex Shaders [1]

st
input Assembler
® The next step down the 2

pipeline are the Vertex Z
® Vertex shaders allow us to §
¥ 2
manipulate our vertex data i g
on the graphics card Shader %
z
® This is important, because g
it means we'll be using the s g
GPU 3
Pixet Shader a
g

Output Merger

Direct3D material from slides © 2006 — 2010 N. Bean, Kansas State University
http://bit.ly/gC3vwH ([

Lecture 30 of 43 Camputing &

to Computer Graphics

High-Level Shader Language [1]

® HLSL was originally developed as part of a joint partnership
between Nvidia and Microsoft, which also was responsible for Cg
® |t sports a very C-like syntax, but also supports arbitrary sized
vectors and matrices
* e.g., 4x4 matrix of floats can be defined by float4x4
3-element vector of floats can be defined by float3

® \We can also pass variables into our shaders from DirectX as
externs

Direct3D material from slides © 2006 — 2010 N. Bean, Kansas State University
http://bit.ly/gC3vwH ([

o Lecture 20 of 42 @iy

to Computer Graphics

High-Level Shader Language [2]

® HLSL also sports two vector component namespaces, which
provide helpful a helpful shorthand when dealing with postitions
and colors: xyzw and rgba
* e.g., color.ris equivalent to color[0]
* position.y is equivalent to position[1]
® \We can also swizzle our vectors — access more than one
component in a single call
* e.g., color.gb += 0.5f; adds 0.5 to both the green and blue
components of the vector color
® Finally, HLSL provides a lot of useful functions — you can read the
API| documentation for more

Direct3D material from slides © 2006 — 2010 N. Bean, Kansas State University
http://bit.ly/gC3vwH

Lecture 10 of 41 Computing

Geometry Shaders [1] :
Implementation
inpat
Input Assembler
® Geometry Shaders are a
new feature for DirectX 10 ki F
® They aren’t supported by Vertex Shader 3
the Xbox 360, and most 1 g
computers at the moment ey §
® But they offer some Shade é
exciting possibilities for the " ’
near future il g
; ! g
Pixel Shader %
1 <
Output Merger

Direct3D material from slides © 2006 — 2010 N. Bean, Kansas State University
http://bit.ly/gC3vwH

Lecture 10 of 41 Computing

Rasterization Revisited:
Per-Pixel Operations

® Recall: Definition - gt
* Conversion of geometry into 1
pixels for rendering
* Common/similar step across ‘
rendering pipelines
® Input Assembler Takes Care of

Input Assembler

Vertex Shader

Viewing Transformation (VT) 1
® Per-Vertex Operations s
ader

* Clipping

* Lighting (for flat or Gouraud
shading; not Phong shading)

® Per-Pixel Operations
* Scan conversion of primitives 4 l
* Pixel shading

* Culling
i

! Pixel Shader

{01 ‘saunxay, ‘seyng) seain0sey Alowayy

Output Merger

Direct3D material from slides © 2006 — 2010 N. Bean, Kansas State University
http://bit.ly/gC3vwH

Lecture 10 of 41 Computing

Uses for Vertex Shaders

® Vertex shaders are primarily used to transform our vertices.
Some Examples:
Dynamic deformation of models
Displacement Mapping
* Billboards
#* Fluid modeling
* Particles
® Vertex shaders can be further combined with other shader types
for a wide variety of possible effects

Direct3D material from slides © 2006 — 2010 N. Bean, Kansas State University
http://bit.ly/gC3vwH

Lecture 20 of 42 @iy

to Computer Graphics

Geometry Shaders [2]:
Uses

® The primary purpose of a Geometry Shader is to create new
geometry using the vector data supplied from the Vector Shader

® This means they can be used for

#* Generating point sprites

#* Extruding shadow volumes (to use in the pixel shader)

#* Further tessellation operations — i.e. increasing the level of

tessellation in models (more triangles == smother models)
#* Subdivision surfaces (e.g., terrain)
#* Single-pass cube map generation

Direct3D material from slides © 2006 — 2010 N. Bean, Kansas State University
http://bit.ly/gC3vwH ([

© Lecture 10 of 41

Computing &

to Computer Graphics

Pixel Shaders [1]:

variables set by Direct3D

Implementation
gy
® Pixel Shaders allow further A e

transformation on the 1 =
rasterized pixel data 2
Vertex Shader - <
® |ike Vertex Shaders, Pixel 4
Shaders are written in i g
HLSL, use the same Sty k4
@
syntax and function H
libraries, and can have Rasterizer o

Direct3D material from slides © 2006 — 2010 N. Bean, Kansas State University
http://bit.ly/gC3vwH ([

Lecture 20 of 42 @iy

to Computer Graphics

o
s

Pixel Shaders [2]:
Uses

® Pixel Shaders can be used in a number of ways:

#* To control how multiple textures are blended when texturing a
surface

* To alter the color of a material
#* For customized lighting
#* To apply specular highlights

Direct3D material from slides © 2006 — 2010 N. Bean, Kansas State University
http://bit.ly/gC3vwH

Computing

w
o

Drawing in Direct3D [1]:
Defining Elexible Vertex Formats

® Position & Normal Only vs. Position & Color Only

struce MYVERTEX

REEK, (BODIVI.XYS. | RIOIVE:HORKAL} #dofine MYVERTEX_FVF (DIDFVE_XY2 | D3DEVE.

sastine

® Components

D3DEVF_XYZ - position in 3-D space
D3DEVF_XYZRHW - already transformed co-ordinate (2-D space)
D3DEVF_NORMAL - normal

D3DFVF_DIFFUSE - diffuse colour
D3DFVF_SPECULAR - specular colour
D3DFVF_TEX1 - one texture co-ordinate
D3DFVF_TEX2 - two texture co-ordinates

Toymaker © 2004 — 2010 K. Ditchburn, Teesside University b # Teesside
http://bit.ly/hMaxMi / Unlversity

Computing &

Direct3D vs. OpengGlL

Most people find OpenGL easier to learn to start with
OpenGL uses standard C interfaces.
Direct3D has a steeper initial learning curve and is based on C++ interfaces (COM).

It is more difficult using OpenGL to do lower level operations than Direct3D, however
this does mean you are less likely to crash an OpenGL app than a Direct3D one.

® The vast majority of PC games are written using Direct3D.
® OpenGL can run on multiple platforms where as Direct3D is Windows based.

@ Direct3D is updated frequently (every 2 months), allowing a standard interface to new
features sooner than they appear in core OpenGL. However, OpenGL has an
extension mechanism allowing immediate access to new features as graphics
manufacturers create them, rather than having to wait for a new API version to appear.

® Direct3D has a lot of helper functions for common game coding issues (the D3DX set
of functions)

® In terms of performance there is little difference between the two.

University

http://bit.ly/hMaxMi

Toymaker © 2004 - 2010 K. Ditchburn, Teesside University b ’i Teesside

of 41
ComEtter

“Managed” Direct3D

® Direct3D offers the programmer a lot of control, but careful
attention must be paid to memory and resource management

® Microsoft piloted a “Managed” DirectX effort at one point. This,
combined with the library they developed for the original X-Box,
developed into XNA, a shared library, framework, and IDE for
building game applications in C#

Direct3D material from slides © 2006 — 2010 N. Bean, Kansas State University
http://bit.ly/gC3vwH

Lecture 10 of 41 Computin

Computer Graphics

= Drawing in Direct3D [2]:
Steps & Example
Specify the material we wish to use for the following triangles
Specify the texture we wish to use (if we want one or NULL if not)
Set the stream source to our vertex buffer
Set the FVF we will be using
Set the index buffer we will be using V1 V2

Call the required DrawPrimitive function

Vo V3
void CGExEntityCube::Render ()

gD3dDevice->SetMaterial (&m material);
gD3dDevice->SetTexture (0,NULL) ;
gD3dDevice->SetStreamSource (0, m_vb,0, sizeof (CUBEVERTEX));
gD3dDevice->SetFVF (D3DEVF_CUBEVERTEX) ;
gD3dDevice->SetIndices(m_ib);

// draw a triangle list using 24 vertices and 12 triangles
gD3dDevice->DrawIndexedPrimitive (D3DPT_TRIANGLELIST,O0,0,24,0,12);

Toymaker © 2004 - 2010 K. Ditchburn, Teesside University b # Teesside |
http://bit.ly/hMgxMi / Unlversity

Lecture 10 of 41 Computing & I

Computer Graphics

Preview:
Vertex Shaders

Niap Input Values:
Swizde,Negate, o,

Purtors nsruction
MathOpsation

Tomporary
Registors

=)

© 2003 R. Fernando & M. Kilgard. The Cg Tutorial.
http://bit ly/59ffSR

10 of 41

to Computer Graphics

Preview:
Pixel & Fragment Shaders

Summary

® Last Time: Intro to lllumination and Shading
* Local vs. global models
* lllumination (vertex shaders) vs. shading (fragment/pixel shaders)
* Phong illumination equation: introduction to shading
® Previously: Classical Fixed-Function Pipeline
® Today: Shaders in Modern Pipeline
* Vertex shaders
> Input: per-vertex attributes (e.g., object space position, normal)
> Output: lighting model terms (e.g., diffuse, specular, etc.)
* Pixel shaders
> Input: output of vertex shaders (lighting aka illumination)
> Output: pixel color, transparency (R, G, B, A)
® Hardware Rendering: Application Programmer Interfaces (APIs)
® Drawing in Direct3D: See Toymaker Site — http://bit.ly/hMgxMI

® Next: Shader Languages — (O)GLSL, HLSL / Direct3D, Renderman | =258

Lecture 10 of 41

Next Time:
Texture Mapping!

B |dea: enhance visual appearance of plain
surfaces by applying fine structured details

Eduard Groller, Stefan Jeschke

Adapted from slides
© 2002 Gréller, E. & Jeschke, S. Vienna Institute of Technology

Terminology

® Direct3D: Graphics Component of Microsoft DirectX Library
* Similarities to OpenGL: C/C++, 3-D polygons-to-pixels pipeline
* Differences vs. OpenGL: Windows, COM, some lower-level ops
® (Classical Fixed-Function Pipeline (FFP): Per-Vertex Lighting, MVT + VT
® Modern Progr ble Pipeline: Per-Pixel Lighti
® Vertex Shaders (FFP and Programmable)
* Input: per-vertex attributes (e.g., object space position, normal)
* Output: lighting model terms (e.g., diffuse, specular, etc.)
® Pixel Shaders (Programmable Only)
* Input: output of vertex shaders (lighting aka illumination)
* Output: pixel color, transparency (R, G, B, A)
® Shader Languages
* Domain-specific programming languages
* Geared towards hardware rendering
* (O)GLSL, HLSL / Direct3D, Renderman

Lecture 10 of 41

Computer Graphics

