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Readings:
Section 6.11, Mitchell
Chapter 15, Russell and Norvig
“Bayesian Networks Without Tears”, Charniak Ks“
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Lecture QOutline

 Readings: 6.11, Mitchell; Chapter 15, Russell and Norvig; Charniak Tutorial
« Suggested Exercises: 6.6, Mitchell; 15.2 Russell and Norvig
« This Week’s Review: “A Theory of Inferred Causation”, Pearl and Verma
- Graphical Models of Probability
— Bayesian networks: introduction

« Definition and basic principles
« Conditional independence and causal Markovity

— Inference and learning using Bayesian networks
« Acquiring and applying distributions (conditional probability tables)
» Learning tree dependent distributions and polytrees
- Learning Distributions for Networks with Specified Structure

— Gradient learning
— Maximum weight spanning tree (MWST) algorithm for tree-structured networks

 Reasoning under Uncertainty: Applications and Augmented Models
* Next Lecture: (More on) Learning Bayesian Network Structure KS“
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Graphical Models

of Probability Distributions

* Idea
— Want: model that can be used to perform inference
— Desired properties
« Ability to represent functional, logical, stochastic relationships
« EXxpress uncertainty
» Observe the laws of probability
« Tractable inference when possible
» Can be learned from data
- Additional Desiderata
— Ability to incorporate knowledge
- Knowledge acquisition and elicitation: in format familiar to domain experts
« Language of subjective probabilities and relative probabilities
— Support decision making
* Represent utilities (cost or value of information, state)
« Probability theory + utility theory = decision theory
— Ability to reason over time (temporal models) KS“
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Using Graphical Models

. A Graphical View of Simple (Naive) Bayes e f(;)‘ﬂ*' Ny A%y
— Xx;e {0,1} foreachie {1,2,...,n}; ye {0,1} P(x,|y)2
— Given: P(x;| y) foreach ie {1, 2, ..., n}; P(y)
— Assume conditional independence X; Xp X3 Xp
« Vie{1,2,....,n}= P(X;| X.j, ¥) = P(X; | X4y X0 vuvs Xj1s Xip15 Xjy23 =2e5 Xy ¥) = P(X; |
y)
+ NB: this BBsumption entails-thE RiaivbBayes-dsBinption
. Why? ' '
— Can co te P thig y
PP PO NG iy ) PO

- Can ARRLYTPHLG G ?ffﬁ‘ i,,y?"?’?f)ﬂP x,1y)

« Inference Problem for a (Simple) Bayesian Network
— Use the above model to compute the probability of any conditional event KS“

— EXBICISe: P(X7, X5, V | X3 X2) — .
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In-Class Exercise:

Probabilistic Inference

« Inference Problem for a (Simple) Bayesian Network

— Model: Naive Bayes

— Obijective: compute the probability of any conditional event

« EXxercise
— Given
« P(x;|y),ie{1,2,3,4}
* Py)
— Want: P(X;, X5, VY [ X3, X,)

P(X3, X, [ XX, Y)P(X;5 X5, V)
P(x;,x,)

_ P(x,,xz,xs,x“ _V)

P(x,,x,)

P TP(x 1)

S Plx, 1 )Plx, 1Y) KS“
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Unsupervised Learning

and Conditional Independence

- Given: (n + 1)-Tuples (Xg5 X veny Xy X,,1)
— No notion of instance variable or label
— After seeing some examples, want to know something about the domain
» Correlations among variables
« Probability of certain events
» Other properties

« Want to Learn: Most Likely Model that Generates Observed Data
— In general, a very hard problem
— Under certain assumptions, have shown that we can do it

« Assumption: Causal Markovity
— Conditional independence among “effects”, given “cause” Pxsly) ), Py
— When is the assumption appropriate? Pxz| ¥)

P(x,| y)
— Can it be relaxed? 1 S

« Structure Learning
— Can we learn more general probability distributions?
— Examples: automatic speech recognition (ASR), natural language, etc. KS“

X; X X3 X
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Bayesian Belief Networks (BBNS):

Definition

- Conditional Independence

— Xis conditionally independent (Cl) from Y given Z (sometimes written X L Y| 2) iff
P(X|Y, 2 =P(X| 2 for all values of X, Y,and Z

— Example: P(Thunder | Rain, Lightning) = P(Thunder | Lightning) < TL R| L
« Bayesian Network

— Directed graph model of conditional dependence assertions (or Cl assumptions)
— Vertices (nodes): denote events (each a random variable)
— Edges (arcs, links): denote conditional dependencies

- General Product (Chain) Rule for BBNs P(X,,X,,..., X,)=[P(X, | parents(X,))

. Example (“Sprinkler” BBN) -
Sprinkler: On, Off

Season: Ground:

Sprmg /@Net Dry

L ® O—®
Fall \ /

Winter @ Ground:

Slippery, Not-Slippery

Rain: None, Drizzle, Steady, Downpour
P(Summer, Off, Drizzle, Wet, Not-Slippery) = P(S) - P(O| S)- P(D| S)- P(W| O, D) - P(N| W) KS“
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Bayesian Belief Networks:

Properties

« Conditional Independence

— Variable (node): conditionally independent of hon-descendants given parents

— Example Exposure-To-Toxics Serum Calcium

Age e @\;er @

Gender @ @ @

Smoking Lung Tumor
. J

. J . J

Non-Descendants Parents Descendants

— Result: chain rule for probabilistic inference
P(X,,X,,...,X,)=]]P(X, |Pa,)

i=1

Pa, = parents(X,)
- Bayesian Network: Probabilistic Semantics

— Node: variable
— Edge: one axis of a conditional probability table (CPT) KS“
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Bayesian Belief Networks:

Inference

* Problem Definition
— Given
- Bayesian network with specified CPTs
« Observed values for some nodes in network

— Return: inferred (probabilities of) values for guery node(s)

* Implementation
— Bayesian network contains all information needed for this inference
 If only one variable with unknown value, easy to infer it
* In general case, problem is intractable (A/-hard: reduction to 3-CNF-SAT)
— In practice, can succeed in many cases using different methods
- Exact inference: work well for some network structures
« Monte Carlo: “simulate” network to randomly calculate approximate solutions
— Key machine learning issues

« Feasible to elicit this information or learn it from data?
« How to learn structure that makes inference more tractable? KS“
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Tree Dependent Distributions

- Polytrees
— aka singly-connected Bayesian networks
— Definition: a Bayesian network with no undirected loops
— ldea: restrict distributions (CPTs) to single nodes

— Theorem: inference in singly-connected BBN requires linear time
« Linear in network size, including CPT sizes
* Much better than for unrestricted (multiply-connected) BBNs

« Tree Dependent Distributions
— Further restriction of polytrees: every node has at one parent

— Now only need to keep 1 prior, P(roof), and n-1 CPTs (1 per node) root
— All CPTs are 2-dimensional: P(child | parent) %
* Independence Assumptions X

— As for general BBN: x is independent of non-descendants given (single) parent z

KSU

— Very strong assumption (applies in some domains but not most)
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Inference in Trees

* Inference in Tree-Structured BBNs (“Trees”)
— Generalization of Naive Bayes to model of tree dependent distribution
— Given: tree T with all associated probabilities (CPTs)
— Evaluate: probability of a specified event, P(x)
« Inference Procedure for Polytrees Leaves
— Recursively traverse tree
- Breadth-first, source(s) to sink(s)

» Stop when query value P(x) is known
— Perform inference at each node
P(x)=P(X = x)
= > P(x|y;y,) Py, y.)

Y1.Y2

= ZP(X/y1Jy2)P(y1)P(y2) parents(y1):parents(yz):X

Yi:¥Y2

— NB: for trees, proceed root to leaves (e.g., breadth-first or depth-first)
— Simple application of Bayes’s rule (more efficient algorithms exist)
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Learning Tree Distributions:

Example

- Candidate Models: Tree-Structured BBNs Plx;) T,
« Learning Problem
Gi . le D -~ distributi P(x;| x,) X,| X7)
— Given: sample D ~ distribution D P, | x,)
— Return: most likely tree T that generated D P(x;)
— i.e., search for MAP hypothesis
« MAP Estimation over BBNs

— Assuming uniform priors on trees, hyp= hy, = Ty, P(x,] x5)

P(x,| x;) X3| X;)

T, =argmaxP(D|T)

TeH

— Maximization program

T,, = arg max P.(x, x,,...,xX,)
TEH A A
(X;.X5....X, €D

=arg n;_leal_'X H PT(Xi /parents(x,.))

(x,,x;:..‘.,‘x,,)eD i

— Try this for Naive Bayes... KS“

CIS 732: Machine Learning and Pattern Recognition Kansas State University

Department of Computing and Information Sciences



In-Class Exercise:

Learning Distributions [1]

. Input: D= {1011, 1001, 0100} ~ D Px,) .
« CPT for P,
P(x,| x;) X,| X,)
0000 0.1 0100 0.1 1000 0.0 1100 0.05
0001 0.1 0101 0.1 1001 0.0 1101 0.05 x| x)
0010 0.1 0110 0.1 1010 0.0 1110 0.05
0011 0.1 0111 0.1 1011 0.0 1111 0.05
. CPT for P,
P(x;=1)=1/2
P(X2=1|X1=0)=1/2 P(X2=1|X1=1)=1/2
P(X3=1|X1=0)=1/3 P(X3=1|X1=1)=1/3
P(x;=1|x,=0)=1/6 P(x;=1|x;,=1)=5/6
- CPT for P,
P(x;=1)=2/3
P(X2=1|X1=0)=1 P(X2=1|X1=1)=0
P(X3=1|X1=0)=0 P(X3=1|X1=1)=1/2
P(x;=1|x;,=0)=0 P(x;=1|x,=1)=1
- Candidate Models (Trees): h,= P,, h,= T(P,), h;= T(P,)
 Tree-Structured BBN Learning KS“
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In-Class Exercise:

Learning Tree Distributions [2]

* |Input Data: D= {1011, 1001, 0100}

- Candidate Models: CPTs for Table (T,), T,, T,

* Results: Likelihood Estimation
- PD| T,)=P(1011| T,)- P(1011| T,) - P(1011 | T,)= 0.0 - 0.0 - 0.1 = 0.0
— P(D| T,)=P(1011 | T,) - P(1001 | T,) - P(0100 | T,)

* P(1011 | T2)=P(X4=1)-P(X1=1 |X4=1)-P(X2=0|X4=1)-P(Xe=1 |X4=1)=
1/2-1/2-1/3 - 5/6 = 5/72

« P1001 | T,)=1/2-1/2-.2/3-5/6 =10/72
« P0100 | T,)=1/2-1/2-2/3-5/6 =10/72
- P(D| T,)=500/373248 ~ 0.0013
- P(D| T3 =1/27
— Likelihood (T,) < Likelihood (T,) < Likelihood (T5)
* Notes
— Conclusion: of candidate models, T; is most likely to have produced D
— Looked at 3 fixed distributions (NB and T, a tree with fixed structure) KS“
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Learning Distributions:

Objectives

« Learning The Target Distribution
— What is the target distribution?
— Can’t use “the” target distribution

« Case In point: suppose target distribution was P, (collected over 20 examples)
« Using Naive Bayes would not produce an h close to the MAP/ML estimate

— Relaxing Cl assumptions: expensive
 MLE becomes intractable; BOC approximation, highly intractable
 Instead, should make judicious Cl assumptions

— As before, goal is generalization
« Given D (e.g., {1011, 1001, 0100})
« Would like to know P(1111) or P(11**) = P(x; =1, x,=1)

- Several Variants

— Known or unknown structure

— Training examples may have missing values

— Known structure and no missing values: as easy as training Naive Bayes KS“
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Learning Bayesian Networks:

Partial Observability

« Suppose Structure Known, Variables Partially Observable

— Example
« Can observe ForestFire, Storm, BusTourGroup, Thunder
« Can’t observe Lightning, Campfire

— Similar to training artificial neural net with hidden units

Bus
TourGroup

« Causes: Storm, BusTourGroup

 Observable effects: ForestFire, Thunder

- Intermediate variables: Lightning, Campfire
« Learning Algorithm

— Can use gradient learning (as for ANNSs)

— Converge to network h that (locally) maximizes P(D | h)
- Analogy: Medical Diagnosis

— Causes: diseases or diagnostic findings

— Intermediates: hidden causes or hypothetical inferences (e.g., heart rate)

— Observables: measurements (e.g., from medical instrumentation) KS“

CIS 732: Machine Learning and Pattern Recognition Kansas State University

Department of Computing and Information Sciences



Learning Bayesian Networks:

Gradient Ascent

« Algorithm Train-BN (D)
— Let w;, denote one entry in the CPT for variable Y;in the network

wi = P(Y;= y; | parents(Y) = <the list u; of values>)
- e.g., if Y; = Campfire, then (for example) u; = <Storm = T, BusTourGroup = F>
— WHILE termination condition not met DO // perform gradient ascent

Bus
TourGroup

* Update all CPT entries wj, using training data D

P, U, [ X
Wiikewijk_i'rz h(ylji ,k/ )
xeD Wijk

- Renormalize wj, to assure invariants:
2 Wy =1
Vj.0<wy <1

« Applying Train-BN

— Learns CPT values
— Useful in case of known structure
— Next: learning structure from data

KSU
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Tree Dependent Distributions:

Learning The Structure

* Problem Definition: Find Most Likely T Given D

« Brute Force Algorithm
— FOR each tree TDO
Compute the likelihood of T:
P(T |D)= P(D|T)=arg nT’eaHx(x,,xan)eDH P.(x, | parents(x;))
— RETURN the maximal T
« Is This Practical?
— Typically not... (|H| analogous to that of ANN weight space)
— What can we do about it?
« Solution Approaches
— Use criterion (scoring function): Kullback-Leibler (K-L) distance

) P(x)
D(P//P’) ZP P (x)

— Measures how well a distribution P approximates a distribution P’
— aka K-L divergence, aka cross-entropy, aka relative entropy KS“
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Tree Dependent Distributions:

Maximum Weight Spanning Tree (MWST)

* |Input: m Measurements (n-Tuples), i.i.d. ~ P

« Algorithm Learn-Tree-Structure (D)
— FOR each variable X DO estimate P(x) // binary variables: n numbers
— FOR each pair (X, Y) DO estimate P(x, y) // binary variables: n? numbers

— FOR each pair DO compute the mutual information (measuring the information X
gives about Y) with respect to this empirical distribution

X;Y)= Y P(x, y)lg—22Y)__pip(x, )| P(X)- P(Y)

P(x)-P(y)
— Build a complete undirected graph with all the variables as vertices
— Let I(X; Y) be the weight of edge (X, Y)
— Build a Maximum Weight Spanning Tree (MWST)

— Transform the resulting undirected tree into a directed tree (choose a root, and
set the direction of all edges away from it)

— Place the corresponding CPTs on the edges (gradient learning)

— RETURN: a tree-structured BBN with CPT values Ks“
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Tree Dependent Distributions:

Example

 Input: D={1011, 1001, 0100}

- [Estimation of Model Parameters
- P(x;=1)=2/3, Px,=1)=1/3, P(x;3=1) =1/3, P(x,=1) = 2/3
— Pairs: 00, 01, 10, 11

* P(x,x,)=0;1/3;2/3;0 P(x,x,) / P(x;) - P(x,) =0; 3;3/2; 0
* P(x;x5)=1/3;0;1/3;1/3 P(x, x3) / P(x;) - P(x3) = 3/2; 0; 3/4; 3/2
* P(x,x,)=1/3;0;0; 2/3 P(x, x,) / P(x;) - P(x,) =3; 0; 0; 3/2
* P(x,x3) =1/3;1/3; 1/3; 0 P(x,x3) | P(x,) - P(x3) = 3/4; 3/2; 3/2; 0
 P(x,x,)=0;2/3;1/3; 0 P(x,x,) / P(x,) - P(x,) =0; 3;3/2;0
* P(x3x,)=1/3;1/3;0;1/3 P(x;x,) | P(x3) - P(x,) = 3/2; 3/4; 0; 3/2

— Use these CPTs as input to MWST and gradient learning
« MWST Algorithms
— MWST algorithms: Kruskal’s algorithm, Prim’s algorithm (quick sketch next time)
— Complexity: O(n?lg n)
— See [Cormen, Leiserson, and Rivest, 1990] KS“
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Applications of Bayesian Networks

Mid Aft
tarboar: tarboarg

v A 4
Generator

— Pattern recognition Frectrio

- Image identification: faces, gestures L
| ate
Pressurg

 Multimodal: speechreading, emotions ‘Querhez

« Inference: Decision Support Problems
— Diagnosis
* Medical [Heckerman, 1991]

« Equipment failure

Structurgl Damage
Fore
tarboa

A

Electric 2

« Automatic speech recognition

— Prediction: more applications later...
— Simulation-based training [Grois, Hsu, Wilkins, and Voloshin, 1998]
— Control automation

« Navigation with a mobile robot

- Battlefield reasoning [Mengshoel, Goldberg, and Wilkins, 1998]
« Learning: Acquiring Models for Inferential Applications KS“
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Related Work in Bayesian Networks

« BBN Variants, Issues Not Covered Yet
— Temporal models
« Markov Decision Processes (MDPs)
- Partially Observable Markov Decision Processes (POMDPSs)

» Useful in reinforcement learning
— Influence diagrams

« Decision theoretic model

« Augments BBN with utility values and decision nodes
— Unsupervised learning (EM, AutoClass)
— Feature (subset) selection: finding relevant attributes

« Current Research Topics Not Addressed in This Course
— Hidden variables (introduction of new variables not observed in data)

— Incremental BBN learning: modifying network structure online (“on the fly”)

— Structure learning for stochastic processes
— Noisy-OR Bayesian networks: another simplifying restriction KS“
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Terminology

- Graphical Models of Probability
— Bayesian belief networks (BBNs) aka belief networks aka causal networks

— Conditional independence, causal Markovity

— Inference and learning using Bayesian networks
« Representation of distributions: conditional probability tables (CPTs)
« Learning polytrees (singly-connected BBNs) and tree-structured BBNs (irees)

 BBN Inference
— Type of probabilistic reasoning

— Finds answer to query about P(x) - aka QA
- Gradient Learning in BBNs

— Known structure

— Partial observability

« Structure Learning for Trees
— Kullback-Leibler distance (K-L divergence, cross-entropy, relative entropy)

— Maximum weight spanning tree (MWST) algorithm KS“
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Summary Points

- Graphical Models of Probability
— Bayesian networks: introduction
» Definition and basic principles
« Conditional independence (causal Markovity) assumptions, tradeoffs
— Inference and learning using Bayesian networks
« Acquiring and applying CPTs
« Searching the space of trees: max likelihood

- Examples: Sprinkler, Cancer, Forest-Fire, generic tree learning
« CPT Learning: Gradient Algorithm Train-BN
« Structure Learning in Trees: MWST Algorithm Learn-Tree-Structure
 Reasoning under Uncertainty: Applications and Augmented Models

«  Some Material From: http://robotics.Stanford.EDU/~koller

 Next Lecture: Read Heckerman Tutorial

KSU
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