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• Readings: 6.11, Mitchell; Chapter 15, Russell and Norvig; Charniak Tutorial

• Suggested Exercises: 6.6, Mitchell; 15.2 Russell and Norvig

• This Week’s Review: “A Theory of Inferred Causation”, Pearl and Verma

• Graphical Models of Probability
– Bayesian networks: introduction

• Definition and basic principles

• Conditional independence and causal Markovity

– Inference and learning using Bayesian networks

• Acquiring and applying distributions (conditional probability tables)

• Learning tree dependent distributions and polytrees

• Learning Distributions for Networks with Specified Structure
– Gradient learning

– Maximum weight spanning tree (MWST) algorithm for tree-structured networks

• Reasoning under Uncertainty: Applications and Augmented Models

• Next Lecture: (More on) Learning Bayesian Network Structure

Lecture OutlineLecture Outline
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• Idea
– Want: model that can be used to perform inference

– Desired properties
• Ability to represent functional, logical, stochastic relationships
• Express uncertainty

• Observe the laws of probability
• Tractable inference when possible
• Can be learned from data

• Additional Desiderata
– Ability to incorporate knowledge

• Knowledge acquisition and elicitation: in format familiar to domain experts
• Language of subjective probabilities and relative probabilities

– Support decision making

• Represent utilities (cost or value of information, state)
• Probability theory + utility theory = decision theory

– Ability to reason over time (temporal models)

Graphical ModelsGraphical Models
of Probability Distributionsof Probability Distributions
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• A Graphical View of Simple (Naïve) Bayes
– xi ∈∈∈∈ {0, 1} for each i ∈∈∈∈ {1, 2, …, n}; y ∈∈∈∈ {0, 1}

– Given: P(xi | y) for each i ∈∈∈∈ {1, 2, …, n}; P(y)

– Assume conditional independence

• ∀∀∀∀ i ∈∈∈∈ {1, 2, …, n} ���� P(xi | x≠≠≠≠i, y) ≡≡≡≡ P(xi | x1, x2, …, xi-1, xi+1, xi+2, …, xn, y) = P(xi | 
y) 

• NB: this assumption entails the Naïve Bayes assumption

• Why?

– Can compute P(y | x) given this info

– Can also compute the joint pdf over all n + 1 variables

• Inference Problem for a (Simple) Bayesian Network
– Use the above model to compute the probability of any conditional event

– Exercise: P(x1, x2, y | x3, x4)

Using Graphical ModelsUsing Graphical Models

y

x1 x2 xnx3

P(x1 | y)
P(x2 | y)

P(x3 | y) P(xn | y)

( ) ( ) ( )∏∏ == ≠
i

i
i

iin21  y|xP y,x|xPy|x,,x,xP �

( ) ( ) ( )
( )

( )
( ) ( ) ( )

( ) ( )∏∏
==

≠ ===
n

i
i

n

i
ii  y|xP

xP
yP y,x|xP

xP
yP

xP
yPy|xPx|yP

11
���

�
�

( ) ( ) ( ) ( ) ( ) ( ) ( )∏∏
==

≠ ===
n

i
i

n

i
ii  y|xPyP y,x|xPyPy|xPyPy,xP

11

��



Kansas State University
Department of Computing and Information SciencesCIS 732: Machine Learning and Pattern Recognition

InIn--Class Exercise:Class Exercise:
Probabilistic InferenceProbabilistic Inference

• Inference Problem for a (Simple) Bayesian Network

– Model: Naïve Bayes

– Objective: compute the probability of any conditional event

• Exercise

– Given

• P(xi | y), i ∈∈∈∈ {1, 2, 3, 4}

• P(y)

– Want: P(x1, x2, y | x3, x4)
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Unsupervised LearningUnsupervised Learning
and Conditional Independenceand Conditional Independence

• Given: (n + 1)-Tuples (x1, x2, …, xn, xn+1)
– No notion of instance variable or label

– After seeing some examples, want to know something about the domain
• Correlations among variables
• Probability of certain events

• Other properties

• Want to Learn: Most Likely Model that Generates Observed Data
– In general, a very hard problem
– Under certain assumptions, have shown that we can do it

• Assumption: Causal Markovity
– Conditional independence among “effects”, given “cause”
– When is the assumption appropriate?
– Can it be relaxed?

• Structure Learning
– Can we learn more general probability distributions?
– Examples: automatic speech recognition (ASR), natural language, etc.

y

x1 x2 xnx3

P(x1 | y)
P(x2 | y)

P(x3 | y) P(xn | y)
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Bayesian Belief Networks (BBNS):Bayesian Belief Networks (BBNS):
DefinitionDefinition

X1

X2

X3

X4

Season:
Spring
Summer
Fall
Winter

Sprinkler: On, Off

Rain: None, Drizzle, Steady, Downpour

Ground:
Wet, Dry

X5

Ground:
Slippery, Not-Slippery

P(Summer, Off, Drizzle, Wet, Not-Slippery) = P(S) · P(O | S) · P(D | S) · P(W | O, D) · P(N | W) 

• Conditional Independence
– X is conditionally independent (CI) from Y given Z (sometimes written X ⊥⊥⊥⊥ Y | Z) iff

P(X | Y, Z) = P(X | Z) for all values of X, Y, and Z

– Example: P(Thunder | Rain, Lightning) = P(Thunder | Lightning) ⇔⇔⇔⇔ T ⊥⊥⊥⊥ R | L

• Bayesian Network
– Directed graph model of conditional dependence assertions (or CI assumptions)
– Vertices (nodes): denote events (each a random variable)

– Edges (arcs, links): denote conditional dependencies

• General Product (Chain) Rule for BBNs

• Example (“Sprinkler” BBN)
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Bayesian Belief Networks:Bayesian Belief Networks:
PropertiesProperties

• Conditional Independence

– Variable (node): conditionally independent of non-descendants given parents

– Example

– Result: chain rule for probabilistic inference 

• Bayesian Network: Probabilistic Semantics

– Node: variable

– Edge: one axis of a conditional probability table (CPT)

( ) ( )

( )ii

n

i
iin21

XparentsPa

Pa |XPX , ,X,XP

=

= ∏
=1

�

X1 X3

X4

X5

Age

Exposure-To-Toxics

Smoking

Cancer
X6

Serum Calcium

X2Gender X7

Lung Tumor�� ��� ��
sDescendantNon

                    
−

�����
Parents

           �����
sDescendant

                



Kansas State University
Department of Computing and Information SciencesCIS 732: Machine Learning and Pattern Recognition

Bayesian Belief Networks:Bayesian Belief Networks:
InferenceInference

• Problem Definition
– Given

• Bayesian network with specified CPTs

• Observed values for some nodes in network

– Return: inferred (probabilities of) values for query node(s)

• Implementation
– Bayesian network contains all information needed for this inference

• If only one variable with unknown value, easy to infer it

• In general case, problem is intractable (NPNPNPNP-hard: reduction to 3-CNF-SAT)

– In practice, can succeed in many cases using different methods

• Exact inference: work well for some network structures

• Monte Carlo: “simulate” network to randomly calculate approximate solutions

– Key machine learning issues

• Feasible to elicit this information or learn it from data?

• How to learn structure that makes inference more tractable?
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• Polytrees
– aka singly-connected Bayesian networks

– Definition: a Bayesian network with no undirected loops

– Idea: restrict distributions (CPTs) to single nodes

– Theorem: inference in singly-connected BBN requires linear time

• Linear in network size, including CPT sizes

• Much better than for unrestricted (multiply-connected) BBNs

• Tree Dependent Distributions
– Further restriction of polytrees: every node has at one parent

– Now only need to keep 1 prior, P(root), and n - 1 CPTs (1 per node)

– All CPTs are 2-dimensional: P(child | parent)

• Independence Assumptions
– As for general BBN: x is independent of non-descendants given (single) parent z

– Very strong assumption (applies in some domains but not most)

Tree Dependent DistributionsTree Dependent Distributions

x

z

root
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Inference in TreesInference in Trees

• Inference in Tree-Structured BBNs (“Trees”)
– Generalization of Naïve Bayes to model of tree dependent distribution

– Given: tree T with all associated probabilities (CPTs)

– Evaluate: probability of a specified event, P(x)

• Inference Procedure for Polytrees
– Recursively traverse tree

• Breadth-first, source(s) to sink(s)

• Stop when query value P(x) is known

– Perform inference at each node

– NB: for trees, proceed root to leaves (e.g., breadth-first or depth-first)

– Simple application of Bayes’s rule (more efficient algorithms exist)

( ) ( )
( ) ( )

( ) ( ) ( )21
y,y

21

21
yy

21

yPyP y,y |xP

y,yP y,y |xP

xXPxP

21

21

⋅⋅=

⋅=
==

�

�
,

Y2

X

Y1

( ) ( ) XYparentsYparents 21 ==

Leaves



Kansas State University
Department of Computing and Information SciencesCIS 732: Machine Learning and Pattern Recognition

Learning Tree Distributions:Learning Tree Distributions:
ExampleExample

P(x1)

P(x2 | x1)

P(x3 | x1)

P(x4 | x1)

T1

P(x1)

P(x2| x1) P(x3 | x1)

P(x4 | x3)

T2

• Candidate Models: Tree-Structured BBNs

• Learning Problem
– Given: sample D ~ distribution DDDD

– Return: most likely tree T that generated D

– i.e., search for MAP hypothesis

• MAP Estimation over BBNs

– Assuming uniform priors on trees, hMAP ≡≡≡≡ hML ≡≡≡≡ TML

– Maximization program

– Try this for Naïve Bayes…
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InIn--Class Exercise:Class Exercise:
Learning Distributions [1]Learning Distributions [1]

P(x1 = 1) = 1/2
P(x2 = 1 | x1 = 0) = 1/2 P(x2 = 1 | x1 = 1) = 1/2
P(x3 = 1 | x1 = 0) = 1/3 P(x3 = 1 | x1 = 1) = 1/3
P(x4 = 1 | x1 = 0) = 1/6 P(x4 = 1 | x1 = 1) = 5/6

• Input: D ≡≡≡≡ {1011, 1001, 0100} ~ DDDD

• CPT for P1

• CPT for P2

• CPT for P3

• Candidate Models (Trees): h1 ≡≡≡≡ P1, h2 ≡≡≡≡ T(P2), h3 ≡≡≡≡ T(P3)
• Tree-Structured BBN Learning

x P(x) x P(x) x P(x) x P(x)
0000 0.1 0100 0.1 1000 0.0 1100 0.05
0001 0.1 0101 0.1 1001 0.0 1101 0.05
0010 0.1 0110 0.1 1010 0.0 1110 0.05
0011 0.1 0111 0.1 1011 0.0 1111 0.05

P(x1)

P(x2 | x1)

P(x3 | x1)

P(x4 | x1)

T

P(x1 = 1) = 2/3
P(x2 = 1 | x1 = 0) = 1 P(x2 = 1 | x1 = 1) = 0
P(x3 = 1 | x1 = 0) = 0 P(x3 = 1 | x1 = 1) = 1/2
P(x4 = 1 | x1 = 0) = 0 P(x4 = 1 | x1 = 1) = 1
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InIn--Class Exercise:Class Exercise:
Learning Tree Distributions [2]Learning Tree Distributions [2]

• Input Data: D ≡≡≡≡ {1011, 1001, 0100}
• Candidate Models: CPTs for Table (T1), T2, T3

• Results: Likelihood Estimation
– P(D | T1) = P(1011 | T1) · P(1011 | T1) · P(1011 | T1) = 0.0 · 0.0 · 0.1 = 0.0

– P(D | T2) = P(1011 | T2) · P(1001 | T2) · P(0100 | T2)

• P(1011 | T2) = P(x4 = 1) · P(x1 = 1 | x4 = 1) · P(x2 = 0 | x4 = 1) · P(xe = 1 | x4 = 1) = 
1/2 · 1/2 · 1/3 · 5/6 = 5/72

• P(1001 | T2) = 1/2 · 1/2 · 2/3 · 5/6 = 10/72

• P(0100 | T2) = 1/2 · 1/2 · 2/3 · 5/6 = 10/72

• P(D | T2) = 500 / 373248 ≈≈≈≈ 0.0013

– P(D | T3) = 1/27

– Likelihood (T1) < Likelihood (T2) < Likelihood (T3)

• Notes
– Conclusion: of candidate models, T3 is most likely to have produced D

– Looked at 3 fixed distributions (NB and T, a tree with fixed structure)
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Learning Distributions:Learning Distributions:
ObjectivesObjectives

• Learning The Target Distribution
– What is the target distribution?

– Can’t use “the” target distribution

• Case in point: suppose target distribution was P1 (collected over 20 examples)

• Using Naïve Bayes would not produce an h close to the MAP/ML estimate

– Relaxing CI assumptions: expensive

• MLE becomes intractable; BOC approximation, highly intractable

• Instead, should make judicious CI assumptions

– As before, goal is generalization

• Given D (e.g., {1011, 1001, 0100})

• Would like to know P(1111) or P(11**) ≡≡≡≡ P(x1 = 1, x2 = 1)

• Several Variants
– Known or unknown structure

– Training examples may have missing values

– Known structure and no missing values: as easy as training Naïve Bayes
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Learning Bayesian Networks:Learning Bayesian Networks:
Partial Partial Observability Observability 

• Suppose Structure Known, Variables Partially Observable
– Example

• Can observe ForestFire, Storm, BusTourGroup, Thunder

• Can’t observe Lightning, Campfire

– Similar to training artificial neural net with hidden units

• Causes: Storm, BusTourGroup

• Observable effects: ForestFire, Thunder

• Intermediate variables: Lightning, Campfire

• Learning Algorithm
– Can use gradient learning (as for ANNs)

– Converge to network h that (locally) maximizes P(D | h)

• Analogy: Medical Diagnosis

– Causes: diseases or diagnostic findings

– Intermediates: hidden causes or hypothetical inferences (e.g., heart rate)

– Observables: measurements (e.g., from medical instrumentation)

Bus
TourGroupStorm

Lightning Campfire

ForestFireThunder
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Learning Bayesian Networks:Learning Bayesian Networks:
Gradient Ascent Gradient Ascent 

• Algorithm Train-BN (D) 
– Let wijk denote one entry in the CPT for variable Yi in the network 

• wijk = P(Yi = yij | parents(Yi) = <the list uik of values>)

• e.g., if Yi  ≡≡≡≡ Campfire, then (for example) uik ≡≡≡≡ <Storm = T, BusTourGroup = F>

– WHILE termination condition not met DO // perform gradient ascent

• Update all CPT entries wijk using training data D

• Renormalize wijk to assure invariants:

• Applying Train-BN
– Learns CPT values

– Useful in case of known structure

– Next: learning structure from data

Bus
TourGroupStorm

Lightning Campfire

ForestFireThunder
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Tree Dependent Distributions:Tree Dependent Distributions:
Learning The StructureLearning The Structure

• Problem Definition: Find Most Likely T Given D
• Brute Force Algorithm

– FOR each tree T DO
Compute the likelihood of T:

– RETURN the maximal T

• Is This Practical?
– Typically not… (|H| analogous to that of ANN weight space)

– What can we do about it?

• Solution Approaches
– Use criterion (scoring function): Kullback-Leibler (K-L) distance

– Measures how well a distribution P approximates a distribution P’
– aka K-L divergence, aka cross-entropy, aka relative entropy
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Tree Dependent Distributions:Tree Dependent Distributions:
Maximum Weight Spanning Tree (MWST)Maximum Weight Spanning Tree (MWST)

• Input: m Measurements (n-Tuples), i.i.d. ~ P

• Algorithm Learn-Tree-Structure (D)
– FOR each variable X DO estimate P(x) // binary variables: n numbers

– FOR each pair (X, Y) DO estimate P(x, y) // binary variables: n2 numbers

– FOR each pair DO compute the mutual information (measuring the information X
gives about Y) with respect to this empirical distribution

– Build a complete undirected graph with all the variables as vertices

– Let I(X; Y) be the weight of edge (X, Y)

– Build a Maximum Weight Spanning Tree (MWST)

– Transform the resulting undirected tree into a directed tree (choose a root, and 
set the direction of all edges away from it)

– Place the corresponding CPTs on the edges (gradient learning)

– RETURN: a tree-structured BBN with CPT values
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Tree Dependent Distributions:Tree Dependent Distributions:
ExampleExample

• Input: D ≡≡≡≡ {1011, 1001, 0100}

• Estimation of Model Parameters

– P(x1 = 1) = 2/3, P(x2 = 1) = 1/3, P(x3 = 1) = 1/3, P(x4 = 1) = 2/3

– Pairs: 00, 01, 10, 11

• P(x1 x2) = 0; 1/3; 2/3; 0 P(x1 x2 ) / P(x1) · P(x2) = 0; 3; 3/2; 0

• P(x1 x3) = 1/3; 0; 1/3; 1/3 P(x1 x3 ) / P(x1) · P(x3) = 3/2; 0; 3/4; 3/2

• P(x1 x4) = 1/3; 0; 0; 2/3 P(x1 x4 ) / P(x1) · P(x4) = 3; 0; 0; 3/2

• P(x2 x3) = 1/3; 1/3; 1/3; 0 P(x2 x3 ) / P(x2) · P(x3) = 3/4; 3/2; 3/2; 0

• P(x2 x4) = 0; 2/3; 1/3; 0 P(x2 x4 ) / P(x2) · P(x4) = 0; 3; 3/2; 0

• P(x3 x4) = 1/3; 1/3; 0; 1/3 P(x3 x4 ) / P(x3) · P(x4) = 3/2; 3/4; 0; 3/2

– Use these CPTs as input to MWST and gradient learning

• MWST Algorithms
– MWST algorithms: Kruskal’s algorithm, Prim’s algorithm (quick sketch next time)

– Complexity: ΟΟΟΟ(n2 lg n)

– See [Cormen, Leiserson, and Rivest, 1990]
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Applications of Bayesian NetworksApplications of Bayesian Networks

• Inference: Decision Support Problems

– Diagnosis

• Medical [Heckerman, 1991]

• Equipment failure

– Pattern recognition

• Image identification: faces, gestures

• Automatic speech recognition

• Multimodal: speechreading, emotions

– Prediction: more applications later…

– Simulation-based training [Grois, Hsu, Wilkins, and Voloshin, 1998]

– Control automation

• Navigation with a mobile robot

• Battlefield reasoning [Mengshoel, Goldberg, and Wilkins, 1998]

• Learning: Acquiring Models for Inferential Applications
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Related Work in Bayesian NetworksRelated Work in Bayesian Networks

• BBN Variants, Issues Not Covered Yet
– Temporal models

• Markov Decision Processes (MDPs) 

• Partially Observable Markov Decision Processes (POMDPs)

• Useful in reinforcement learning

– Influence diagrams

• Decision theoretic model

• Augments BBN with utility values and decision nodes

– Unsupervised learning (EM, AutoClass)

– Feature (subset) selection: finding relevant attributes

• Current Research Topics Not Addressed in This Course
– Hidden variables (introduction of new variables not observed in data)

– Incremental BBN learning: modifying network structure online (“on the fly”)

– Structure learning for stochastic processes

– Noisy-OR Bayesian networks: another simplifying restriction
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TerminologyTerminology

• Graphical Models of Probability
– Bayesian belief networks (BBNs) aka belief networks aka causal networks

– Conditional independence, causal Markovity

– Inference and learning using Bayesian networks

• Representation of distributions: conditional probability tables (CPTs)

• Learning polytrees (singly-connected BBNs) and tree-structured BBNs (trees)

• BBN Inference
– Type of probabilistic reasoning

– Finds answer to query about P(x) - aka QA

• Gradient Learning in BBNs
– Known structure

– Partial observability

• Structure Learning for Trees
– Kullback-Leibler distance (K-L divergence, cross-entropy, relative entropy)

– Maximum weight spanning tree (MWST) algorithm



Kansas State University
Department of Computing and Information SciencesCIS 732: Machine Learning and Pattern Recognition

Summary PointsSummary Points

• Graphical Models of Probability

– Bayesian networks: introduction

• Definition and basic principles

• Conditional independence (causal Markovity) assumptions, tradeoffs

– Inference and learning using Bayesian networks

• Acquiring and applying CPTs

• Searching the space of trees: max likelihood

• Examples: Sprinkler, Cancer, Forest-Fire, generic tree learning

• CPT Learning: Gradient Algorithm Train-BN

• Structure Learning in Trees: MWST Algorithm Learn-Tree-Structure

• Reasoning under Uncertainty: Applications and Augmented Models

• Some Material From: http://robotics.Stanford.EDU/~koller

• Next Lecture: Read Heckerman Tutorial


