Lecture 13

Learning Bayesian Networks from Data

Thursday,04 October 2001

William H. Hsu

Department of Computing and Information Sciences, KSU

http://www.kddresearch.org

http://www.cis.ksu.edu/~bhsu

Readings:

Sections 6.11-6.13, Mitchell

"In Defense of Probability", Cheeseman

"A Tutorial on Learning Bayesian Networks", Heckerman

CIS 732: Machine Learning and Pattern Recognition

Lecture Outline

- Readings: 6.11-6.13, Mitchell; Pearl; Heckerman Tutorial
- More <u>Bayesian Belief</u> <u>Networks (BBNs</u>)
 - Inference: applying CPTs
 - Learning: CPTs from data, elicitation
 - In-class exercises
 - Hugin, BKD demos
 - CPT elicitation, application
- Learning BBN Structure
 - K2 algorithm
 - Other probabilistic scores and search algorithms
- <u>Causal Discovery</u>: Learning <u>Causality</u> from Observations
- Incomplete Data: Learning and Inference (Expectation-Maximization)
- Next Week: BBNs Concluded; Review for Midterm (11 October 2001)
- After Midterm: EM Algorithm, Unsupervised Learning, Clustering

Bayesian Networks: Quick Review

- Recall: Conditional Independence (CI) Assumptions
- Bayesian Network: <u>Digraph Model</u>
 - <u>Vertices</u> (nodes): denote events (each a random variable)
 - Edges (arcs, links): denote conditional dependencies
- Chain Rule for (Exact) Inference in BBNs $P(X_1, X_2, ..., X_n) = \prod_{i=1}^{n} P(X_i | parents(X_i))$
 - Arbitrary Bayesian networks: MP-complete
 - Polytrees: linear time
- Example ("Sprinkler" BBN)

CIS 732: Machine Learning and Pattern Recognition

Department of Computing and Information Sciences

Learning Distributions in BBNs: Quick Review

- Learning Distributions
 - Shortcomings of Naïve Bayes
 - Making judicious Cl assumptions
 - Scaling up to BBNs: need to learn a CPT for all parent sets
 - Goal: generalization
 - Given D (e.g., {1011, 1001, 0100})
 - Would like to know P(schema): e.g., $P(11^{**}) \equiv P(x_1 = 1, x_2 = 1)$
- Variants
 - Known or unknown structure
 - Training examples may have missing values
- Gradient Learning Algorithm
 - Weight update rule

$$\boldsymbol{w}_{ijk} \leftarrow \boldsymbol{w}_{ijk} + r \sum_{\boldsymbol{x} \in \boldsymbol{D}} \frac{\boldsymbol{P}_h(\boldsymbol{y}_{ij}, \boldsymbol{u}_{ik} \mid \boldsymbol{x})}{\boldsymbol{w}_{ijk}}$$

- Learns CPTs given data points D

Department of Computing and Information Sciences

Learning Structure

- Problem Definition
 - Given: data *D* (tuples or vectors containing observed values of variables)
 - Return: directed graph (*V*, *E*) expressing *target CPTs* (or commitment to acquire)
- Benefits
 - Efficient learning: more accurate models with less data P(A), P(B) vs. P(A, B)
 - Discover <u>structural properties</u> of the domain (causal relationships)
- Acccurate Structure Learning: Issues
 - Superfluous arcs: more parameters to fit; wrong assumptions about causality
 - Missing arcs: cannot compensate using CPT learning; ignorance about causality
- Solution Approaches
 - <u>Constraint-based</u>: enforce <u>consistency of network with observations</u>
 - <u>Score-based</u>: optimize <u>degree of match</u> between network and observations
- Overview: Tutorials
 - [Friedman and Goldszmidt, 1998] http://robotics.Stanford.EDU/people/nir/tutorial/
 - [Heckerman, 1999] <u>http://www.research.microsoft.com/~heckerman</u>

Learning Structure: Constraints Versus Scores

- Constraint-Based
 - Perform tests of conditional independence
 - Search for network consistent with observed dependencies (or lack thereof)
 - Intuitive; closely follows definition of BBNs
 - Separates construction from form of CI tests
 - Sensitive to errors in individual tests
- Score-Based
 - Define <u>scoring function</u> (*aka* <u>score</u>) that evaluates how well (in)dependencies in a structure match observations
 - Search for structure that maximizes score
 - Statistically and information theoretically motivated
 - Can make compromises
- Common Properties
 - <u>Soundness</u>: with sufficient data and computation, both learn correct structure
 - Both learn structure from observations and *can incorporate knowledge*

Learning Structure: <u>Maximum Weight Spanning Tree (Chow-Liu)</u>

- Algorithm *Learn-Tree-Structure-I*(*D*)
 - Estimate P(x) and P(x, y) for all single RVs, pairs; $I(X; Y) = D(P(X, Y) || P(X) \cdot P(Y))$
 - Build *complete* <u>undirected</u> graph: variables as vertices, I(X; Y) as edge weights
 - $T \leftarrow Build-MWST(V \times V, Weights)$ // Chow-Liu algorithm: weight function = I
 - Set directional flow on *T* and place the CPTs on its edges (gradient learning)
 - **RETURN**: tree-structured BBN with CPT values
- Algorithm *Build-MWST-Kruskal* ($E \subseteq V \times V$, *Weights*: $E \rightarrow R^+$)

– H ← Build-Heap (E, Weights)	// aka priority queue	O(<i>E</i>)
$- E' \leftarrow \emptyset; Forest \leftarrow \{\{v\} \mid v \in V\}$	// E': <u>set;</u> Forest: union-find	O(<i>V</i>)
– WHILE Forest.Size > 1 DO		O(<i>E</i>)
• <i>e</i> ← <i>H.Delete-Max</i> ()	// <i>e</i> ≡ new edge from <i>H</i>	O(lg <i>E</i>)
• IF $((T_S \leftarrow Forest.Find(e.Start)) \neq (T_B)$	$ \in Forest.Find(e.End))) THEN $	O(Ig [∗] <i>E</i>)
E'.Union(e)	// append edge <i>e</i> ; <i>E</i> '. <i>Size</i> ++	O(1)
Forest.Union (T _S , T _E)	// Forest.Size	O(1)
– RETURN E'		O(1)

• Running Time: $O(|E| |g||E|) = O(|V|^2 |g||V|^2) = O(|V|^2 |g||V|) = O(n^2 |g|n)$

Learning Structure: Overfitting Prevention and Avoidance

- "Classic" Issue in Machine Learning
 - h' worse than h on D_{train}
 - h' better than h on D_{test}
- Standard Approaches
 - Prevention: restricted hypothesis space H
 - Limits overfitting capability
 - Examples: restrict number of parents, number of parameters
 - Avoidance: <u>Minimum Description Length (MDL)</u>
 - Description length $MDL(h) = -BIC(h) = -\lg P(D/h) \lg P(h)$ measures complexity
 - Choose model that compactly describes D
 - Avoidance: Bayesian methods (cf. BOC)
 - Average over all possible values of BBN parameters Θ
 - Use prior knowledge
- Other Approaches
 - Holdout, cross-validation (CV), leave-one-out
 - Structural risk minimization: penalize $H' \subseteq H$ based on their VC dimension

Scores for Learning Structure: The Role of Inference

- General-Case BBN Structure Learning: Use Inference to Compute Scores
- Recall: Bayesian Inference aka <u>Bayesian Reasoning</u>
 - Assumption: $h \in H$ are mutually exclusive and exhaustive
 - Optimal strategy: combine predictions of hypotheses in proportion to likelihood
 - Compute conditional probability of hypothesis *h* given observed data *D*
 - i.e., compute expectation over unknown h for unseen cases
 - Let h = structure, parameters $\Theta =$ CPTs

CIS 732: Machine Learning and Pattern Recognition

Scores for Learning Structure: Prior over Parameters

- Likelihood $L(\Theta : D)$
 - Definition: $L(\Theta : D) \equiv P(D \mid \Theta) = \prod_{x \in D} P(x \mid \Theta)$
 - General BBN (<u>i.i.d data x</u>): $L(\Theta : D) \equiv \prod_{x \in D} \prod_i P(x_i | Parents(x_i) \sim \Theta) = \prod_i L(\Theta_i : D)$
 - NB: Θ specifies CPTs for *Parents*(*x_i*)
 - Likelihood decomposes according to the structure of the BBN
- Estimating Prior over Parameters: $P(\Theta \mid D) \propto P(D) \cdot P(D \mid \Theta) \equiv P(D) \cdot L(\Theta : D)$
 - Example: Sprinkler
 - Scenarios D = {(Season(i), Sprinkler(i), Rain(i), Moisture(i), Slipperiness(i))}
 - $P(Su, Off, Dr, Wet, NS) = P(S) \cdot P(O \mid S) \cdot P(D \mid S) \cdot P(W \mid O, D) \cdot P(N \mid W)$
 - MLE for <u>multinomial distribution</u> (e.g., {Spring, Summer, Fall, Winter}): $\hat{\Theta}_k = \frac{N_k}{\sum N_l}$
 - Likelihood for multinomials $L(\Theta:D) = \prod_{k=1}^{K} \Theta_k^{N_k}$
 - Binomial case: N_1 = # heads, N_2 = # tails ("frequency is ML estimator")

Learning Structure: Dirichlet (Bayesian) Score and K2 Algorithm

- Dirichlet Prior
 - Definition: a Dirichlet prior with hyperparameters $\{\alpha_1, \alpha_2, ..., \alpha_k\}$ is a distribution

$$P(\Theta) \propto \prod_{k=1}^{K} \Theta_k^{\alpha_k - 1}$$
 for legal Θ_k

- Posterior has the same score, with hyperparameters { $\alpha_1 N_1, \alpha_2 N_2, ..., \alpha_k N_k$ } $P(\Theta / D) \propto P(\Theta) \cdot P(D / \Theta) \propto \prod_{k=1}^{K} \Theta_k^{\alpha_k - 1} \cdot \prod_{k=1}^{K} \Theta_k^{\alpha_k + N_k - 1}$
- <u>Bayesian Score</u> (*aka* <u>Dirichlet Score</u>) for Marginal Likelihood P(D | h)

$$P(D/h) \propto \prod_{i=1}^{n} \left[\prod_{Pa_{i}^{h}} \frac{\Gamma(\alpha(Pa_{i}^{h}))}{\Gamma(\alpha(Pa_{i}^{h}) + N(Pa_{i}^{h}))} \cdot \prod_{X_{i}=X_{i}} \frac{\Gamma(\alpha(x_{i}, Pa_{i}^{h}) + N(x_{i}, Pa_{i}^{h}))}{\Gamma(\alpha(x_{i}, Pa_{i}^{h}))} \right]$$

where $x_i \equiv x_{ij} \equiv$ particular value of X_i , $Pa_i^h \equiv Pa_{ik}^h \equiv$ particular value of $Parents_h(x_i)$, $\Gamma(i) = (i-1)!$ for $i \in \mathbb{Z}^+$

- K2: Algorithm for General Case Structure Learning
 - Greedy, Bayesian score-based
 - See: <u>http://wilma.cs.brown.edu/research/ai/dynamics/tutorial/</u>

CIS 732: Machine Learning and Pattern Recognition

Learning Structure: *K2* Algorithm and *ALARM*

• Algorithm Learn-BBN-Structure-K2 (D, Max-Parents)

FOR $i \leftarrow 1$ to n DO// arbitrary ordering of variables { $x_1, x_2, ..., x_n$ }WHILE (Parents[x_i].Size < Max-Parents) DO</td>// find best candidate parentBest \leftarrow argmax_{j>i} (P(D | $x_j \in Parents[x_i]$)// max Dirichlet scoreIF (Parents[x_i] + Best).Score > Parents[x_i].Score) THEN Parents[x_i] += BestRETURN ({Parents[x_i] | $i \in \{1, 2, ..., n\}$ })

- <u>A Logical Alarm Reduction Mechanism [Beinlich et al, 1989]</u>
 - BBN model for patient monitoring in surgical anesthesia
 - Vertices (37): findings (e.g., *esophageal intubation*), intermediates, observables
 - K2: found BBN different in only 1 edge from gold standard (elicited from expert)

CIS 732: Machine Learning and Pattern Recognition

Learning Structure: (Score-Based) Hypothesis Space Search

- Learning Structure: Beyond Trees
 - Problem not as easy for more complex networks
 - Example
 - Allow two parents (even <u>singly-connected</u> case, *aka* <u>polytree</u>)
 - Greedy algorithms no longer guaranteed to find optimal network
 - In fact, no efficient algorithm exists
 - <u>Theorem</u>: finding network structure with maximal score, where *H* restricted to BBNs with at most k parents for each variable, is \mathcal{MP} -hard for k > 1
- Heuristic Search of Search Space H
 - Define *H*: elements denote possible structures, adjacency relation denotes transformation (e.g., arc addition, deletion, reversal)
 - Traverse this space looking for high-scoring structures
 - Algorithms
 - Greedy hill-climbing
 - Best-first search
 - Simulated annealing

Learning Structure: Causal Discovery

- Learning for Decision Support in Policy-Making
 - Does smoking cause cancer?
 - Does ingestion of lead paint decrease IQ?
 - Do school vouchers improve education?
 - Do Microsoft business practices harm customers?
- <u>Causal Discovery</u>: Inferring Existence, Direction of <u>Causal Relationships</u>
 - Methodology: <u>by experiment</u>
 - Can discover causality from observational data alone?
- What is "Causality" Anyway?
 - Probabilistic question
 - What is *P*(*lung cancer* | *yellow fingers*)?
 - Causal (mechanistic) question
 - What is P(lung cancer | set (yellow fingers))?
- Constraint-Based Methods for Causal Discovery
 - Require: no unexplained correlations, no accidental independencies (cause ^ CI)
 - Find: <u>plausible topologies</u> under <u>local CI tests</u> (cause $\Leftrightarrow \neg$ CI)

In-Class Exercise: *Hugin* Demo

- Hugin
 - Commercial product for BBN inference: <u>http://www.hugin.com</u>
 - First developed at University of Aalborg, Denmark
- Applications
 - Popular research tool for inference and learning
 - Used for real-world decision support applications
 - Safety and risk evaluation: <u>http://www.hugin.com/serene/</u>
 - Diagnosis and control in unmanned subs: <u>http://advocate.e-motive.com</u>
 - Customer support automation: <u>http://www.cs.auc.dk/research/DSS/SACSO/</u>
- Capabilities
 - Lauritzen-Spiegelhalter algorithm for inference (clustering aka clique reduction)
 - <u>Object Oriented Bayesian Networks (OOBNs)</u>: structured learning and inference
 - <u>Influence diagrams</u> for decision-theoretic inference (utility + probability)
 - See: <u>http://www.hugin.com/doc.html</u>

In-Class Exercise: *Hugin* and CPT Elicitation

- Hugin Tutorials
 - Introduction: causal reasoning for diagnosis in decision support (toy problem)
 - http://www.hugin.com/hugintro/bbn_pane.html
 - Example domain: <u>explaining</u> low yield (drought versus disease)
 - <u>Tutorial 1</u>: constructing a simple BBN in *Hugin*
 - http://www.hugin.com/hugintro/bbn_tu_pane.html
 - Eliciting CPTs (or collecting from data) and entering them
 - Tutorial 2: constructing a simple influence diagram (decision network) in Hugin
 - http://www.hugin.com/hugintro/id tu pane.html
 - Eliciting utilities (or collecting from data) and entering them
- Other Important BBN Resources
 - <u>Microsoft Bayesian Networks: <u>http://www.research.microsoft.com/dtas/msbn/</u>
 </u>
 - XML BN (Interchange Format): <u>http://www.research.microsoft.com/dtas/bnformat/</u>
 - BBN Repository (more data sets) http://www-nt.cs.berkeley.edu/home/nir/public html/Repository/index.html/

In-Class Exercise: <u>Bayesian Knowledge Discoverer (BKD</u>) Demo

- <u>Bayesian Knowledge Discoverer (BKD)</u>
 - Research product for BBN structure learning: <u>http://kmi.open.ac.uk/projects/bkd/</u>
 - Bayesian Knowledge Discovery Project [Ramoni and Sebastiani, 1997]
 - <u>Knowledge Media Institute (KMI)</u>, Open University, United Kingdom
 - Closed source, beta freely available for educational use
 - Handles missing data
 - Uses <u>Branch and Collapse</u>: Dirichlet score-based BOC approximation algorithm <u>http://kmi.open.ac.uk/techreports/papers/kmi-tr-41.ps.gz</u>
- Sister Product: <u>Robust Bayesian Classifier (RoC</u>)
 - Research product for BBN-based classification with missing data <u>http://kmi.open.ac.uk/projects/bkd/pages/roc.html</u>
 - Uses <u>Robust Bayesian Estimator</u>, a deterministic approximation algorithm <u>http://kmi.open.ac.uk/techreports/papers/kmi-tr-79.ps.gz</u>

Learning Structure: Conclusions

- Key Issues
 - Finding a <u>criterion</u> for inclusion or exclusion of an edge in the BBN
 - Each edge
 - "Slice" (axis) of a CPT or a commitment to acquire one
 - Positive statement of conditional dependency
- Other Techniques
 - Focus today: <u>constructive</u> (score-based) view of BBN structure learning
 - Other score-based algorithms
 - Heuristic search over space of addition, deletion, reversal operations
 - Other criteria (information theoretic, coding theoretic)
 - Constraint-based algorithms: *incorporating knowledge into causal discovery*
- Augmented Techniques
 - <u>Model averaging</u>: optimal Bayesian inference (integrate over <u>structures</u>)
 - <u>Hybrid BBN/DT models</u>: use a decision tree to record P(x | Parents(x))
- Other Structures: e.g., <u>Belief Propagation with Cycles</u>

Bayesian Network Learning: Related Fields and References

- ANNs: BBNs as Connectionist Models
- GAs: BBN Inference, Learning as Genetic Optimization, Programming
- Hybrid Systems (Symbolic / Numerical Al)
- Conferences
 - General (with respect to machine learning)
 - International Conference on Machine Learning (ICML)
 - <u>American Association for Artificial Intelligence (AAAI)</u>
 - <u>International Joint Conference on Artificial Intelligence (IJCAI</u>, biennial)
 - Specialty
 - International Joint Conference on Neural Networks (IJCNN)
 - <u>Genetic and Evolutionary Computation Conference (GECCO)</u>
 - <u>Neural Information Processing Systems (NIPS)</u>
 - <u>Uncertainty in Artificial Intelligence (UAI)</u>
 - <u>Computational Learning Theory (COLT)</u>
- Journals
 - General: <u>Artificial Intelligence</u>, Machine Learning, <u>Journal of AI Research</u>
 - Specialty: Neural Networks, Evolutionary Computation, etc.

Learning Bayesian Networks: Missing Observations

- Problem Definition
 - <u>Given</u>: data (*n*-tuples) with <u>missing values</u>, *aka* <u>partially observable</u> (PO) data
 - Kinds of missing values
 - <u>Undefined</u>, <u>unknown</u> (possible *new*)
 - Missing, corrupted (not properly collected)
 - Second case ("truly missing"): want to fill in ? with expected value
- Solution Approaches
 - Expected = distribution over possible values
 - Use "best guess" BBN to estimate distribution
 - <u>Expectation-Maximization (EM)</u> algorithm can be used here
- Intuitive Idea
 - Want to find h_{ML} in PO case ($D \equiv$ unobserved variables ° observed variables)
 - Estimation step: calculate E[unobserved variables | h], assuming current h
 - <u>Maximization step</u>: update w_{ijk} to maximize $E[\lg P(D | h)], D \equiv all variables$

Expectation-Maximization (EM)

- Intuitive Idea
 - In fully observable case: $h_{ML} = \arg \max_{h \in H} \frac{\# \text{ data cases with } \vec{n}, \vec{e}}{\# \text{ data cases with } \vec{e}} = \arg \max_{h \in H} \frac{\sum_{j} I_{\vec{N} = \vec{n}, \vec{E} = \vec{e}}(\vec{X}_{j})}{\sum_{j} I_{\vec{E} = \vec{e}}(\vec{X}_{j})}$
 - $h \equiv BBN$ parameters (Θ), $N_i \equiv$ unobserved variable, $E_i \equiv$ observed variable

$$- I_{E_i=e_i}(\vec{X}_j) = \delta(e_i, X_{ji})$$
$$= \begin{cases} 1 \text{ if } (X_{ji} \equiv E_i) = e_i \text{ in data case } \vec{X}_j \\ 0 \text{ otherwise} \end{cases}$$

- Partially Observable Case
 - / is unknown
 - Best estimate for *I*: $\hat{I}(\vec{n},\vec{e} \mid \vec{x}) = P(\vec{n},\vec{e} \mid \vec{x}, h_{ML}), h_{ML} \equiv \Theta_{ML}$ unknown!
- Incomplete Data: Learning and Inference
 - <u>Missing values</u>: to be filled in given <u>partial observations</u>
 - <u>Expectation-Maximization (EM)</u>: <u>iterative refinement</u> algorithm
 - Estimation step: use current parameters Θ to estimate missing $\{N_i\}$
 - Maximization (<u>re-estimation</u>) step: update Θ to maximize $P(N_i, E_i | D)$

Continuing Research on Learning Bayesian Networks from Data

- Advanced Topics (Not Covered)
 - Continuous variables and hybrid (discrete/continuous) BBNs
 - Induction of <u>hidden variables</u>
 - Local structure: localized constraints and assumptions, e.g., <u>Noisy-OR</u> BBNs
 - Online learning
 - Incrementality (aka lifelong, situated, in vivo learning)
 - Ability to change network structure during inferential process
 - Structural EM
 - Polytree structure learning (tree decomposition): alternatives to Chow-Liu MWST
 - Hybrid <u>quantitative</u> and <u>qualitative</u> Inference ("<u>simulation</u>")
 - Complexity of learning, inference in restricted classes of BBNs
- Topics to Be Covered Later
 - Decision theoretic models: <u>decision networks</u> aka <u>influence diagrams</u> (briefly)
 - Control and prediction models: <u>POMDPs</u> (for <u>reinforcement learning</u>)
 - Some temporal models: <u>Dynamic Bayesian Networks (DBNs</u>)

Terminology

- Bayesian Networks: Quick Review on Learning, Inference
 - <u>Structure learning</u>: determining the best <u>topology</u> for a graphical model from data
 - <u>Constraint-based</u> methods
 - <u>Score-based</u> methods: statistical or information-theoretic degree of match
 - Both can be global or local, exact or approximate
 - Elicitation of subjective probabilities
- Causal Modeling
 - <u>Causality</u>: "direction" from cause to effect among events (observable or not)
 - <u>Causal discovery</u>: learning causality from observations
- Incomplete Data: Learning and Inference
 - <u>Missing values</u>: to be filled in given <u>partial observations</u>
 - <u>Expectation-Maximization (EM)</u>: <u>iterative refinement</u> clustering algorithm
 - Estimation step: use current parameters Θ to estimate missing $\{N_i\}$
 - <u>Maximization</u> (re-estimation) step: update Θ to maximize $P(N_i, E_i | D)$

Summary Points

- Bayesian Networks: Quick Review on Learning, Inference
 - Learning, eliciting, applying CPTs
 - In-class exercise: *Hugin* demo; CPT elicitation, application
 - Learning BBN structure: <u>constraint-based</u> versus <u>score-based</u> approaches
 - K2, other scores and search algorithms
- Causal Modeling and Discovery: Learning Causality from Observations
- Incomplete Data: Learning and Inference (Expectation-Maximization)
- Tutorials on Bayesian Networks
 - Breese and Koller (AAAI '97, BBN intro): <u>http://robotics.Stanford.EDU/~koller</u>
 - Friedman and Goldszmidt (AAAI '98, Learning BBNs from Data): <u>http://robotics.Stanford.EDU/people/nir/tutorial/</u>
 - Heckerman (various UAI/IJCAI/ICML 1996-1999, Learning BBNs from Data): <u>http://www.research.microsoft.com/~heckerman</u>
- Next Week: BBNs Concluded; Review for Midterm (Thu 17 October 2002)
- After Midterm: More EM, Clustering, Exploratory Data Analysis

