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Lecture OutlineLecture Outline

• Readings: 6.11-6.13, Mitchell; Pearl; Heckerman Tutorial

• More Bayesian Belief Networks (BBNs)
– Inference: applying CPTs

– Learning: CPTs from data, elicitation

– In-class exercises

• Hugin, BKD demos

• CPT elicitation, application

• Learning BBN Structure
– K2 algorithm

– Other probabilistic scores and search algorithms

• Causal Discovery: Learning Causality from Observations

• Incomplete Data: Learning and Inference (Expectation-Maximization)

• Next Week: BBNs Concluded; Review for Midterm (11 October 2001)

• After Midterm: EM Algorithm, Unsupervised Learning, Clustering
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Bayesian Networks:Bayesian Networks:
Quick ReviewQuick Review

X1

X2

X3

X4

Season:
Spring
Summer
Fall
Winter

Sprinkler: On, Off

Rain: None, Drizzle, Steady, Downpour

Ground-Moisture:
Wet, Dry

X5

Ground-Slipperiness:
Slippery, Not-Slippery

P(Summer, Off, Drizzle, Wet, Not-Slippery) = P(S) · P(O | S) · P(D | S) · P(W | O, D) · P(N | W) 

• Recall: Conditional Independence (CI) Assumptions
• Bayesian Network: Digraph Model

– Vertices (nodes): denote events (each a random variable)

– Edges (arcs, links): denote conditional dependencies

• Chain Rule for (Exact) Inference in BBNs
– Arbitrary Bayesian networks: NPNPNPNP-complete

– Polytrees: linear time

• Example (“Sprinkler” BBN)

• MAP, ML Estimation over BBNs
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Learning Distributions in Learning Distributions in BBNsBBNs::
Quick ReviewQuick Review

• Learning Distributions
– Shortcomings of Naïve Bayes

– Making judicious CI assumptions

– Scaling up to BBNs: need to learn a CPT for all parent sets

– Goal: generalization

• Given D (e.g., {1011, 1001, 0100})

• Would like to know P(schema): e.g., P(11**) ≡≡≡≡ P(x1 = 1, x2 = 1)

• Variants
– Known or unknown structure

– Training examples may have missing values

• Gradient Learning Algorithm
– Weight update rule

– Learns CPTs given data points D
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Learning StructureLearning Structure

• Problem Definition
– Given: data D (tuples or vectors containing observed values of variables)

– Return: directed graph (V, E) expressing target CPTs (or commitment to acquire)

• Benefits
– Efficient learning: more accurate models with less data - P(A), P(B) vs. P(A, B)
– Discover structural properties of the domain (causal relationships)

• Acccurate Structure Learning: Issues
– Superfluous arcs: more parameters to fit; wrong assumptions about causality
– Missing arcs: cannot compensate using CPT learning; ignorance about causality

• Solution Approaches
– Constraint-based: enforce consistency of network with observations
– Score-based: optimize degree of match between network and observations

• Overview: Tutorials
– [Friedman and Goldszmidt, 1998] http://robotics.Stanford.EDU/people/nir/tutorial/
– [Heckerman, 1999] http://www.research.microsoft.com/~heckerman
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• Constraint-Based
– Perform tests of conditional independence

– Search for network consistent with observed dependencies (or lack thereof)

– Intuitive; closely follows definition of BBNs

– Separates construction from form of CI tests

– Sensitive to errors in individual tests

• Score-Based
– Define scoring function (aka score) that evaluates how well (in)dependencies in a 

structure match observations

– Search for structure that maximizes score

– Statistically and information theoretically motivated

– Can make compromises

• Common Properties
– Soundness: with sufficient data and computation, both learn correct structure

– Both learn structure from observations and can incorporate knowledge

Learning Structure:Learning Structure:
Constraints Versus ScoresConstraints Versus Scores



Kansas State University
Department of Computing and Information SciencesCIS 732: Machine Learning and Pattern Recognition

Learning Structure:Learning Structure:
MMaximum aximum WWeight eight SSpanning panning TTree (Chowree (Chow--Liu)Liu)

• Algorithm Learn-Tree-Structure-I (D)
– Estimate P(x) and P(x, y) for all single RVs, pairs; I(X; Y) = D(P(X, Y) || P(X) · P(Y))

– Build complete undirected graph: variables as vertices, I(X; Y) as edge weights

– T ←←←← Build-MWST (V ×××× V, Weights) // Chow-Liu algorithm: weight function ≡≡≡≡ I
– Set directional flow on T and place the CPTs on its edges (gradient learning)

– RETURN: tree-structured BBN with CPT values

• Algorithm Build-MWST-Kruskal (E ⊆⊆⊆⊆ V ×××× V, Weights: E →→→→ R+)
– H ←←←← Build-Heap (E, Weights) // aka priority queue ΟΟΟΟ(|E|)
– E’ ←←←← Ø; Forest ←←←← {{v} | v ∈∈∈∈ V} // E’: set; Forest: union-find ΟΟΟΟ(|V|)
– WHILE Forest.Size > 1 DO ΟΟΟΟ(|E|)

• e ←←←← H.Delete-Max() // e ≡≡≡≡ new edge from H ΟΟΟΟ(lg |E|)
• IF ((TS ←←←← Forest.Find(e.Start)) ≠≠≠≠ (TE ←←←← Forest.Find(e.End))) THEN ΟΟΟΟ(lg* |E|)

E’.Union(e) // append edge e; E’.Size++ ΟΟΟΟ(1)

Forest.Union (TS, TE) // Forest.Size-- ΟΟΟΟ(1)
– RETURN E’ ΟΟΟΟ(1)

• Running Time: ΟΟΟΟ(|E| lg |E|) = ΟΟΟΟ(|V|2 lg |V|2) = ΟΟΟΟ(|V|2 lg |V|) = ΟΟΟΟ(n2 lg n)
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Learning Structure:Learning Structure:
OverfittingOverfitting Prevention and AvoidancePrevention and Avoidance

• “Classic” Issue in Machine Learning
– h’ worse than h on Dtrain

– h’ better than h on Dtest

• Standard Approaches
– Prevention: restricted hypothesis space H

• Limits overfitting capability

• Examples: restrict number of parents, number of parameters
– Avoidance: Minimum Description Length (MDL)

• Description length                                              measures complexity  

• Choose model that compactly describes D
– Avoidance: Bayesian methods (cf. BOC)

• Average over all possible values of BBN parameters ΘΘΘΘ
• Use prior knowledge

• Other Approaches
– Holdout, cross-validation (CV), leave-one-out

– Structural risk minimization: penalize H’ ⊆⊆⊆⊆ H based on their VC dimension
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• General-Case BBN Structure Learning: Use Inference to Compute Scores

• Recall: Bayesian Inference aka Bayesian Reasoning
– Assumption: h ∈∈∈∈ H are mutually exclusive and exhaustive

– Optimal strategy: combine predictions of hypotheses in proportion to likelihood

• Compute conditional probability of hypothesis h given observed data D

• i.e., compute expectation over unknown h for unseen cases

• Let h ≡≡≡≡ structure, parameters ΘΘΘΘ ≡≡≡≡ CPTs

Scores for Learning Structure:Scores for Learning Structure:
The Role of InferenceThe Role of Inference
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• Likelihood L(ΘΘΘΘ : D)

– Definition: L(ΘΘΘΘ : D) ≡≡≡≡ P(D | ΘΘΘΘ) = ∏∏∏∏x ∈∈∈∈ D P(x | ΘΘΘΘ)

– General BBN (i.i.d data x): L(ΘΘΘΘ : D) ≡≡≡≡ ∏∏∏∏x ∈∈∈∈ D ∏∏∏∏i P(xi | Parents(xi) ~ ΘΘΘΘ) = ∏∏∏∏i L(ΘΘΘΘi : D)

• NB: ΘΘΘΘ specifies CPTs for Parents(xi)

• Likelihood decomposes according to the structure of the BBN

• Estimating Prior over Parameters: P(ΘΘΘΘ | D) ∝∝∝∝ P(D) · P(D | ΘΘΘΘ) ≡≡≡≡ P(D) · L(ΘΘΘΘ : D)

– Example: Sprinkler

• Scenarios D = {(Season(i), Sprinkler(i), Rain(i), Moisture(i), Slipperiness(i))}

• P(Su, Off, Dr, Wet, NS) = P(S) · P(O | S) · P(D | S) · P(W | O, D) · P(N | W)

– MLE for multinomial distribution (e.g., {Spring, Summer, Fall, Winter}): 

– Likelihood for multinomials

– Binomial case: N1 = # heads, N2 = # tails (“frequency is ML estimator”) 
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Prior over ParametersPrior over Parameters
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Learning Structure:Learning Structure:
DirichletDirichlet (Bayesian) Score and (Bayesian) Score and K2K2 AlgorithmAlgorithm

• Dirichlet Prior

– Definition: a Dirichlet prior with hyperparameters {αααα1, αααα2, …, ααααk} is a distribution

– Posterior has the same score, with hyperparameters {αααα1 - N1, αααα2 - N2, …, ααααk - Nk} 

• Bayesian Score (aka Dirichlet Score) for Marginal Likelihood P(D | h)

• K2: Algorithm for General Case Structure Learning
– Greedy, Bayesian score-based

– See: http://wilma.cs.brown.edu/research/ai/dynamics/tutorial/

( ) k

K

k

�

k � ��P k legal for  
1

1∏
=

−∝

( ) ( ) ( ) ∏∏∏
=

−+

==

− =⋅∝⋅∝
K

k

N�

k

K

k

N
k

K

k

�

k
kkkk ����|DP�PD|�P

1

1

11

1   

( ) ( )( )
( ) ( )( )

( ) ( )( )
( )( )

( )
( ) ( ) +

= =

∈−=

≡≡≡≡

�
�

�

�

�
�

�

� +
⋅

+
∝ ∏ ∏∏

Ziii�

xParentsPaPa ,Xxx 

 
Pa ,x��

Pa ,xNPa ,x��
 

PaNPa��

Pa��
h|DP

ih
hh

iiji

n

i xX
h

i

h
i

h
i

Pa
hh

h

iki

ii i

ii

h
i ii

i

 for  !1

 of value particular of value particularwhere

1

,



Kansas State University
Department of Computing and Information SciencesCIS 732: Machine Learning and Pattern Recognition

Learning Structure:Learning Structure:
K2K2 Algorithm and Algorithm and ALARMALARM

• Algorithm Learn-BBN-Structure-K2 (D, Max-Parents)
FOR i ←←←← 1 to n DO // arbitrary ordering of variables {x1, x2, …, xn}

WHILE (Parents[xi].Size < Max-Parents) DO // find best candidate parent

Best ←←←← argmaxj>i (P(D | xj ∈∈∈∈ Parents[xi]) // max Dirichlet score

IF (Parents[xi] + Best).Score > Parents[xi].Score) THEN Parents[xi] += Best

RETURN ({Parents[xi] | i ∈∈∈∈ {1, 2, …, n}})

• A Logical Alarm Reduction Mechanism [Beinlich et al, 1989]
– BBN model for patient monitoring in surgical anesthesia

– Vertices (37): findings (e.g., esophageal intubation), intermediates, observables

– K2: found BBN different in only 1 edge from gold standard (elicited from expert)
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Learning Structure:Learning Structure:
(Score(Score--Based) Hypothesis Space SearchBased) Hypothesis Space Search

• Learning Structure: Beyond Trees
– Problem not as easy for more complex networks

– Example

• Allow two parents (even singly-connected case, aka polytree)

• Greedy algorithms no longer guaranteed to find optimal network

• In fact, no efficient algorithm exists

– Theorem: finding network structure with maximal score, where H restricted to 
BBNs with at most k parents for each variable, is NPNPNPNP-hard for k > 1

• Heuristic Search of Search Space H
– Define H: elements denote possible structures, adjacency relation denotes 

transformation (e.g., arc addition, deletion, reversal)
– Traverse this space looking for high-scoring structures

– Algorithms
• Greedy hill-climbing
• Best-first search

• Simulated annealing
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Learning Structure:Learning Structure:
Causal DiscoveryCausal Discovery

• Learning for Decision Support in Policy-Making
– Does smoking cause cancer?
– Does ingestion of lead paint decrease IQ?
– Do school vouchers improve education?
– Do Microsoft business practices harm customers?

• Causal Discovery: Inferring Existence, Direction of Causal Relationships
– Methodology: by experiment

– Can discover causality from observational data alone?

• What is “Causality” Anyway?
– Probabilistic question

• What is P(lung cancer | yellow fingers)?
– Causal (mechanistic) question

• What is P(lung cancer | set (yellow fingers))?

• Constraint-Based Methods for Causal Discovery
– Require: no unexplained correlations, no accidental independencies (cause ∧∧∧∧ CI)
– Find: plausible topologies under local CI tests (cause ⇔⇔⇔⇔ ¬¬¬¬CI)

Randomize:
Smoke?

Measure Rate
Lung Cancer

Yes

Measure Rate
Lung Cancer

No



Kansas State University
Department of Computing and Information SciencesCIS 732: Machine Learning and Pattern Recognition

InIn--Class Exercise:Class Exercise:
HuginHugin DemoDemo

• Hugin

– Commercial product for BBN inference: http://www.hugin.com

– First developed at University of Aalborg, Denmark

• Applications

– Popular research tool for inference and learning

– Used for real-world decision support applications

• Safety and risk evaluation: http://www.hugin.com/serene/

• Diagnosis and control in unmanned subs: http://advocate.e-motive.com

• Customer support automation: http://www.cs.auc.dk/research/DSS/SACSO/

• Capabilities

– Lauritzen-Spiegelhalter algorithm for inference (clustering aka clique reduction)

– Object Oriented Bayesian Networks (OOBNs): structured learning and inference

– Influence diagrams for decision-theoretic inference (utility + probability)

– See: http://www.hugin.com/doc.html
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InIn--Class Exercise:Class Exercise:
HuginHugin and CPT Elicitationand CPT Elicitation

• Hugin Tutorials
– Introduction: causal reasoning for diagnosis in decision support (toy problem)

• http://www.hugin.com/hugintro/bbn_pane.html

• Example domain: explaining low yield (drought versus disease)

– Tutorial 1: constructing a simple BBN in Hugin

• http://www.hugin.com/hugintro/bbn_tu_pane.html

• Eliciting CPTs (or collecting from data) and entering them

– Tutorial 2: constructing a simple influence diagram (decision network) in Hugin

• http://www.hugin.com/hugintro/id_tu_pane.html

• Eliciting utilities (or collecting from data) and entering them

• Other Important BBN Resources
– Microsoft Bayesian Networks: http://www.research.microsoft.com/dtas/msbn/

– XML BN (Interchange Format): http://www.research.microsoft.com/dtas/bnformat/

– BBN Repository (more data sets)
http://www-nt.cs.berkeley.edu/home/nir/public_html/Repository/index.htm
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InIn--Class Exercise:Class Exercise:
BBayesian ayesian KKnowledge nowledge DDiscoverer iscoverer ((BKDBKD) Demo) Demo

• Bayesian Knowledge Discoverer (BKD)

– Research product for BBN structure learning: http://kmi.open.ac.uk/projects/bkd/

– Bayesian Knowledge Discovery Project [Ramoni and Sebastiani, 1997]

• Knowledge Media Institute (KMI), Open University, United Kingdom

• Closed source, beta freely available for educational use

– Handles missing data

– Uses Branch and Collapse: Dirichlet score-based BOC approximation algorithm 

http://kmi.open.ac.uk/techreports/papers/kmi-tr-41.ps.gz

• Sister Product: Robust Bayesian Classifier (RoC)

– Research product for BBN-based classification with missing data 

http://kmi.open.ac.uk/projects/bkd/pages/roc.html

– Uses Robust Bayesian Estimator, a deterministic approximation algorithm 

http://kmi.open.ac.uk/techreports/papers/kmi-tr-79.ps.gz
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Learning Structure:Learning Structure:
ConclusionsConclusions

• Key Issues
– Finding a criterion for inclusion or exclusion of an edge in the BBN

– Each edge

• “Slice” (axis) of a CPT or a commitment to acquire one

• Positive statement of conditional dependency

• Other Techniques
– Focus today: constructive (score-based) view of BBN structure learning

– Other score-based algorithms

• Heuristic search over space of addition, deletion, reversal operations

• Other criteria (information theoretic, coding theoretic)

– Constraint-based algorithms: incorporating knowledge into causal discovery

• Augmented Techniques
– Model averaging: optimal Bayesian inference (integrate over structures)

– Hybrid BBN/DT models: use a decision tree to record P(x | Parents(x))

• Other Structures: e.g., Belief Propagation with Cycles
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Bayesian Network Learning:Bayesian Network Learning:
Related Fields and ReferencesRelated Fields and References

• ANNs: BBNs as Connectionist Models
• GAs: BBN Inference, Learning as Genetic Optimization, Programming
• Hybrid Systems (Symbolic / Numerical AI)
• Conferences

– General (with respect to machine learning)
• International Conference on Machine Learning (ICML)
• American Association for Artificial Intelligence (AAAI)
• International Joint Conference on Artificial Intelligence (IJCAI, biennial)

– Specialty
• International Joint Conference on Neural Networks (IJCNN)
• Genetic and Evolutionary Computation Conference (GECCO)
• Neural Information Processing Systems (NIPS)
• Uncertainty in Artificial Intelligence (UAI)
• Computational Learning Theory (COLT)

• Journals
– General: Artificial Intelligence, Machine Learning, Journal of AI Research
– Specialty: Neural Networks, Evolutionary Computation, etc.
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Learning Bayesian Networks:Learning Bayesian Networks:
Missing ObservationsMissing Observations

• Problem Definition

– Given: data (n-tuples) with missing values, aka partially observable (PO) data

– Kinds of missing values

• Undefined, unknown (possible new)

• Missing, corrupted (not properly collected)

– Second case (“truly missing”): want to fill in ? with expected value

• Solution Approaches

– Expected = distribution over possible values

– Use “best guess” BBN to estimate distribution

– Expectation-Maximization (EM) algorithm can be used here

• Intuitive Idea

– Want to find hML in PO case (D ≡≡≡≡ unobserved variables °°°° observed variables)

– Estimation step: calculate E[unobserved variables | h], assuming current h

– Maximization step: update wijk to maximize E[lg P(D | h)], D ≡≡≡≡ all variables
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EExpectationxpectation--MMaximization (EM)aximization (EM)

• Intuitive Idea
– In fully observable case:

– h ≡≡≡≡ BBN parameters (ΘΘΘΘ), Ni ≡≡≡≡ unobserved variable, Ei ≡≡≡≡ observed variable

–

• Partially Observable Case
– I is unknown

– Best estimate for I:                                         , hML ≡≡≡≡ ΘΘΘΘML – unknown!

• Incomplete Data: Learning and Inference
– Missing values: to be filled in given partial observations

– Expectation-Maximization (EM): iterative refinement algorithm

• Estimation step: use current parameters ΘΘΘΘ to estimate missing {Ni}

• Maximization (re-estimation) step: update ΘΘΘΘ to maximize P(Ni, Ej | D)

( )
( )�

�
=

==

∈∈
==

j jeE

j jeE,nN

HhHhML XI

XI
maxarg

e withcases  data #
e ,n withcases  data #

maxargh �

�

�

��

��

����

( ) ( )
( )

	


	
�
� =≡

=

==

otherwise  0

 case data in  if  1 jiiji

jiijeE

XeEX

X,e�XI
ii

�

�

( ) ( )MLh,x|e,nPx|e,nI
������

=ˆ



Kansas State University
Department of Computing and Information SciencesCIS 732: Machine Learning and Pattern Recognition

• Advanced Topics (Not Covered)
– Continuous variables and hybrid (discrete/continuous) BBNs

– Induction of hidden variables

– Local structure: localized constraints and assumptions, e.g., Noisy-OR BBNs

– Online learning

• Incrementality (aka lifelong, situated, in vivo learning)

• Ability to change network structure during inferential process

– Structural EM

– Polytree structure learning (tree decomposition): alternatives to Chow-Liu MWST

– Hybrid quantitative and qualitative Inference (“simulation”)

– Complexity of learning, inference in restricted classes of BBNs

• Topics to Be Covered Later
– Decision theoretic models: decision networks aka influence diagrams (briefly)

– Control and prediction models: POMDPs (for reinforcement learning)

– Some temporal models: Dynamic Bayesian Networks (DBNs)

Continuing Research onContinuing Research on
Learning Bayesian Networks from DataLearning Bayesian Networks from Data
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TerminologyTerminology

• Bayesian Networks: Quick Review on Learning, Inference

– Structure learning: determining the best topology for a graphical model from data

• Constraint-based methods

• Score-based methods: statistical or information-theoretic degree of match

• Both can be global or local, exact or approximate

– Elicitation of subjective probabilities

• Causal Modeling

– Causality: “direction” from cause to effect among events (observable or not)

– Causal discovery: learning causality from observations

• Incomplete Data: Learning and Inference

– Missing values: to be filled in given partial observations

– Expectation-Maximization (EM): iterative refinement clustering algorithm

• Estimation step: use current parameters ΘΘΘΘ to estimate missing {Ni}

• Maximization (re-estimation) step: update ΘΘΘΘ to maximize P(Ni, Ej | D)
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Summary PointsSummary Points

• Bayesian Networks: Quick Review on Learning, Inference
– Learning, eliciting, applying CPTs

– In-class exercise: Hugin demo; CPT elicitation, application

– Learning BBN structure: constraint-based versus score-based approaches

– K2, other scores and search algorithms

• Causal Modeling and Discovery: Learning Causality from Observations

• Incomplete Data: Learning and Inference (Expectation-Maximization)

• Tutorials on Bayesian Networks
– Breese and Koller (AAAI ‘97, BBN intro): http://robotics.Stanford.EDU/~koller

– Friedman and Goldszmidt (AAAI ‘98, Learning BBNs from Data): 
http://robotics.Stanford.EDU/people/nir/tutorial/

– Heckerman (various UAI/IJCAI/ICML 1996-1999, Learning BBNs from Data): 
http://www.research.microsoft.com/~heckerman

• Next Week: BBNs Concluded; Review for Midterm (Thu 17 October 2002)

• After Midterm: More EM, Clustering, Exploratory Data Analysis


