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Lecture OutlineLecture Outline

• Readings: 6.12, Mitchell; Rumelhart and Zipser

• Suggested Reading: Kohonen

• This Week’s Review: “The Future of Time Series”, Gershenfeld and Weigend

• Unsupervised Learning and Clustering
– Definitions and framework

– Constructive induction

• Feature construction

• Cluster definition

– EM, AutoClass, Principal Components Analysis, Self-Organizing Maps

• Expectation-Maximization (EM) Algorithm
– More on EM and Bayesian Learning

– EM and unsupervised learning

• Next Lecture: Time Series Learning
– Intro to time series learning, characterization; stochastic processes

– Read Chapter 16, Russell and Norvig (decisions and utility)
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Unsupervised Learning:Unsupervised Learning:
ObjectivesObjectives

• Unsupervised Learning

– Given: data set D

• Vectors of attribute values (x1, x2, …, xn)

• No distinction between input attributes and output attributes (class label)

– Return: (synthetic) descriptor y of each x

• Clustering: grouping points (x) into inherent regions of mutual similarity

• Vector quantization: discretizing continuous space with best labels

• Dimensionality reduction: projecting many attributes down to a few

• Feature extraction: constructing (few) new attributes from (many) old ones

• Intuitive Idea

– Want to map independent variables (x) to dependent variables (y = f(x))

– Don’t always know what “dependent variables” (y) are

– Need to discover y based on numerical criterion (e.g., distance metric)

Supervised
Learning

Unsupervised
Learning yf(x)x

( )xf̂
x
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ClusteringClustering

• A Mode of Unsupervised Learning
– Given: a collection of data points

– Goal: discover structure in the data

• Organize data into sensible groups (how many here?)

• Criteria: convenient and valid organization of the data

• NB: not necessarily rules for classifying future data points

– Cluster analysis: study of algorithms, methods for discovering this structure

• Representing structure: organizing data into clusters (cluster formation)

• Describing structure: cluster boundaries, centers (cluster segmentation)

• Defining structure: assigning meaningful names to clusters (cluster labeling)

• Cluster: Informal and Formal Definitions
– Set whose entities are alike and are different from entities in other clusters

– Aggregation of points in the instance space such that distance between any two 
points in the cluster is less than the distance between any point in the cluster and 
any point not in it
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Quick Review:Quick Review:
Bayesian Learning and EMBayesian Learning and EM

• Problem Definition

– Given: data (n-tuples) with missing values, aka partially observable (PO) data

– Want to fill in ? with expected value

• Solution Approaches

– Expected = distribution over possible values

– Use “best guess” Bayesian model (e.g., BBN) to estimate distribution

– Expectation-Maximization (EM) algorithm can be used here

• Intuitive Idea

– Want to find hML in PO case (D ≡≡≡≡ unobserved variables °°°° observed variables)

– Estimation step: calculate E[unobserved variables | h], assuming current h

– Maximization step: update wijk to maximize E[lg P(D | h)], D ≡≡≡≡ all variables
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EM Algorithm:EM Algorithm:
Example [1]Example [1]

• Experiment
– Two coins: P(Head on Coin 1) = p, P(Head on Coin 2) = q

• Experimenter first selects a coin: P(Coin = 1) = αααα
• Chosen coin tossed 3 times (per experimental run)

– Observe: D = {(1 H H T), (1 H T T), (2 T H T)}

– Want to predict: αααα, p, q
– How to model the problem?

• Simple Bayesian network

• Now, can find most likely values of parameters αααα, p, q given data D

• Parameter Estimation
– Fully observable case: easy to estimate p, q, and αααα

• Suppose k heads are observed out of n coin flips
• Maximum likelihood estimate vML for Flipi: p = k/n

– Partially observable case
• Don’t know which coin the experimenter chose

• Observe: D = {(H H T), (H T T), (T H T)} ≡≡≡≡ {(? H H T), (? H T T), (? T H T)} 

Coin
P(Coin = 1) = αααα

P(Flipi = 1 | Coin = 1) = p
P(Flipi = 1 | Coin = 2) = q

Flip1 Flip2 Flip3
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• Problem
– When we knew Coin = 1 or Coin = 2, there was no problem

– No known analytical solution to the partially observable problem

• i.e., not known how to compute estimates of p, q, and αααα to get vML

• Moreover, not known what the computational complexity is

• Solution Approach: Iterative Parameter Estimation
– Given: a guess of P(Coin = 1 | x), P(Coin = 2 | x)

– Generate “fictional data points”, weighted according to this probability

• P(Coin = 1 | x) = P(x | Coin = 1) P(Coin = 1) / P(x) based on our guess of αααα, p, q

• Expectation step (the “E” in EM)

– Now, can find most likely values of parameters αααα, p, q given “fictional” data

• Use gradient descent to update our guess of αααα, p, q

• Maximization step (the “M” in EM)

– Repeat until termination condition met (e.g., stopping criterion on validation set)

• EM Converges to Local Maxima of the Likelihood Function P(D | ΘΘΘΘ)

EM Algorithm:EM Algorithm:
Example [2]Example [2]
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EM Algorithm:EM Algorithm:
Example [3]Example [3]

• Expectation Step

– Suppose we observed m actual experiments, each n coin flips long

• Each experiment corresponds to one choice of coin (~αααα)

• Let h denote the number of heads in experiment xi (a single data point)

– Q: How did we simulate the “fictional” data points, E[���� log P(x |           )]?

– A: By estimating (for 1 ≤≤≤≤ i ≤≤≤≤ m, i.e., the real data points)

• Maximization Step

– Q: What are we updating?  What objective function are we maximizing?

– A: We are updating               to maximize                    where  
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EM for Unsupervised LearningEM for Unsupervised Learning

• Unsupervised Learning Problem
– Objective: estimate a probability distribution with unobserved variables

– Use EM to estimate mixture policy (more on this later; see 6.12, Mitchell)

• Pattern Recognition Examples
– Human-computer intelligent interaction (HCII)

• Detecting facial features in emotion recognition

• Gesture recognition in virtual environments

– Computational medicine [Frey, 1998]

• Determining morphology (shapes) of bacteria, viruses in microscopy

• Identifying cell structures (e.g., nucleus) and shapes in microscopy

– Other image processing

– Many other examples (audio, speech, signal processing; motor control; etc.)

• Inference Examples
– Plan recognition: mapping from (observed) actions to agent’s (hidden) plans

– Hidden changes in context: e.g., aviation; computer security; MUDs
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Unsupervised Learning:Unsupervised Learning:
AutoClassAutoClass [1][1]

• Bayesian Unsupervised Learning

– Given: D = {(x1, x2, …, xn)} (vectors of indistingushed attribute values)

– Return: set of class labels that has maximum a posteriori (MAP) probability

• Intuitive Idea

– Bayesian learning:

– MDL/BIC (Occam’s Razor): priors P(h) express “cost of coding” each model h

– AutoClass

• Define mutually exclusive, exhaustive clusters (class labels) y1, y2, …, yJ

• Suppose: each yj (1 ≤≤≤≤ j ≤≤≤≤ J) contributes to x

• Suppose also: yj’s contribution ~ known pdf, e.g., Mixture of Gaussians (MoG)

• Conjugate priors: priors on y of same form as priors on x

• When to Use for Clustering

– Believe (or can assume): clusters generated by known pdf

– Believe (or can assume): clusters combined using finite mixture (later)

( ) ( ) ( )hPh|DPmaxargD|hPmaxargh
HhHhMAP ∈∈
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Unsupervised Learning:Unsupervised Learning:
AutoClassAutoClass [2][2]

• AutoClass Algorithm [Cheeseman et al, 1988]

– Based on maximizing P(x | ΘΘΘΘj, yj, J)

• ΘΘΘΘj: class (cluster) parameters (e.g., mean and variance)

• yj : synthetic classes (can estimate marginal P(yj) any time)

– Apply Bayes’s Theorem, use numerical BOC estimation techniques (cf. Gibbs)

– Search objectives

• Find best J (ideally: integrate out ΘΘΘΘj, yj; really: start with big J, decrease)

• Find ΘΘΘΘj, yj: use MAP estimation, then “integrate in the neighborhood” of yMAP

• EM: Find MAP Estimate for P(x | ΘΘΘΘj, yj, J) by Iterative Refinement

• Advantages over Symbolic (Non-Numerical) Methods

– Returns probability distribution over class membership

• More robust than “best” yj

• Compare: fuzzy set membership (similar but probabilistically motivated)

– Can deal with continuous as well as discrete data
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Unsupervised Learning:Unsupervised Learning:
AutoClassAutoClass [3][3]

• AutoClass Resources
– Beginning tutorial (AutoClass II): Cheeseman et al, 4.2.2 Buchanan and Wilkins

– Project page: http://ic-www.arc.nasa.gov/ic/projects/bayes-group/autoclass/

• Applications
– Knowledge discovery in databases (KDD) and data mining

• Infrared astronomical satellite (IRAS): spectral atlas (sky survey)

• Molecular biology: pre-clustering DNA acceptor, donor sites (mouse, human)

• LandSat data from Kansas (30 km2 region, 1024 x 1024 pixels, 7 channels)

• Positive findings: see book chapter by Cheeseman and Stutz, online

– Other typical applications: see KD Nuggets (http://www.kdnuggets.com)

• Implementations
– Obtaining source code from project page

• AutoClass III: Lisp implementation [Cheeseman, Stutz, Taylor, 1992]

• AutoClass C: C implementation [Cheeseman, Stutz, Taylor, 1998]

– These and others at: http://www.recursive-partitioning.com/cluster.html
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Unsupervised Learning:Unsupervised Learning:
Competitive Learning for Feature DiscoveryCompetitive Learning for Feature Discovery

• Intuitive Idea: Competitive Mechanisms for Unsupervised Learning
– Global organization from local, competitive weight update

• Basic principle expressed by Von der Malsburg

• Guiding examples from (neuro)biology: lateral inhibition

– Previous work: Hebb, 1949; Rosenblatt, 1959; Von der Malsburg, 1973; 
Fukushima, 1975; Grossberg, 1976; Kohonen, 1982

• A Procedural Framework for Unsupervised Connectionist Learning
– Start with identical (“neural”) processing units, with random initial parameters

– Set limit on “activation strength” of each unit

– Allow units to compete for right to respond to a set of inputs

• Feature Discovery
– Identifying (or constructing) new features relevant to supervised learning

– Examples: finding distinguishable letter characteristics in handwriten character 
recognition (HCR), optical character recognition (OCR)

– Competitive learning: transform X into X’; train units in X’ closest to x
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Unsupervised Learning:Unsupervised Learning:
Kohonen’sKohonen’s SSelfelf--OOrganizing rganizing MMap (SOM) [1]ap (SOM) [1]

• Another Clustering Algorithm
– aka Self-Organizing Feature Map (SOFM)

– Given: vectors of attribute values (x1, x2, …, xn)

– Returns: vectors of attribute values (x1’, x2’, …, xk’)

• Typically, n >> k (n is high, k = 1, 2, or 3; hence “dimensionality reducing”) 

• Output: vectors x’, the projections of input points x; also get P(xj’ | xi)

• Mapping from x to x’ is topology preserving

• Topology Preserving Networks
– Intuitive idea: similar input vectors will map to similar clusters

– Recall: informal definition of cluster (isolated set of mutually similar entities)

– Restatement: “clusters of X (high-D) will still be clusters of X’ (low-D)”

• Representation of Node Clusters
– Group of neighboring artificial neural network units (neighborhood of nodes)

– SOMs: combine ideas of topology-preserving networks, unsupervised learning

• Implementation: http://www.cis.hut.fi/nnrc/ and MATLAB NN Toolkit
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• Kohonen Network (SOM) for Clustering
– Training algorithm: unnormalized competitive learning

– Map is organized as a grid (shown here in 2D)

• Each node (grid element) has a weight vector wj

• Dimension of wj is n (same as input vector)

• Number of trainable parameters (weights): m · m · n for an m-by-m SOM

• 1999 state-of-the-art: typical small SOMs 5-20, “industrial strength” > 20

– Output found by selecting j* whose wj has minimum Euclidean distance from x

• Only one active node, aka Winner-Take-All (WTA): winning node j*

• i.e., j* = arg minj || wj - x ||2

• Update Rule
• Same as competitive learning algorithm, with one modification

• Neighborhood function associated with j* spreads the wj around
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Unsupervised Learning:Unsupervised Learning:
Kohonen’sKohonen’s SSelfelf--OOrganizing rganizing MMap (SOM) [2]ap (SOM) [2]

x : vector
in n-space

x’ : vector
in 2-space
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Unsupervised Learning:Unsupervised Learning:
Kohonen’sKohonen’s SSelfelf--OOrganizing rganizing MMap (SOM) [3]ap (SOM) [3]

j*

• Traditional Competitive Learning
• Only train j*

• Corresponds to neighborhood of 0

• Neighborhood Function hj, j*

– For 2D Kohonen SOMs, h is typically a square or hexagonal region

• j*, the winner, is at the center of Neighborhood (j*)

• hj*, j* ≡≡≡≡ 1

– Nodes in Neighborhood (j) updated whenever j wins, i.e., j* = j

– Strength of information fed back to wj is inversely proportional to its distance 
from the j* for each x

– Often use exponential or Gaussian (normal) distribution on neighborhood to 
decay weight delta as distance from j* increases

• Annealing of Training Parameters
– Neighborhood must shrink to 0 to achieve convergence

– r (learning rate) must also decrease monotonically

Neighborhood of 1
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Unsupervised Learning:Unsupervised Learning:
SOM and Other Projections for ClusteringSOM and Other Projections for Clustering

Cluster Formation and Segmentation Algorithm (Sketch)

Dimensionality-
Reducing

Projection (x’) Clusters of
Similar Records

Delaunay
Triangulation

Voronoi
(Nearest Neighbor)

Diagram (y)
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Unsupervised Learning:Unsupervised Learning:
Other Algorithms (PCA, Factor Analysis)Other Algorithms (PCA, Factor Analysis)

• Intuitive Idea

– Q: Why are dimensionality-reducing transforms good for supervised learning?

– A: There may be many attributes with undesirable properties, e.g.,

• Irrelevance: xi has little discriminatory power over c(x) = yi

• Sparseness of information: “feature of interest” spread out over many xi’s
(e.g., text document categorization, where xi is a word position)

• We want to increase the “information density” by “squeezing X down”

• Principal Components Analysis (PCA)

– Combining redundant variables into a single variable (aka component, or factor)

– Example: ratings (e.g., Nielsen) and polls (e.g., Gallup); responses to certain 
questions may be correlated (e.g., “like fishing?” “time spent boating”)

• Factor Analysis (FA)

– General term for a class of algorithms that includes PCA

– Tutorial: http://www.statsoft.com/textbook/stfacan.html
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Clustering Methods:Clustering Methods:
Design ChoicesDesign Choices

• Intuition
– Functional (declarative) definition: easy (“We recognize a cluster when we see it”)

– Operational (procedural, constructive) definition: much harder to give

– Possible reason: clustering of objects into groups has taxonomic semantics (e.g., 
shape, size, time, resolution, etc.)

• Possible Assumptions
– Data generated by a particular probabilistic model

– No statistical assumptions

• Design Choices
– Distance (similarity) measure: standard metrics, transformation-invariant metrics

• L1 (Manhattan): ���� |xi - yi|, L2 (Euclidean):                      , L∞∞∞∞ (Sup): max |xi - yi|

• Symmetry: Mahalanobis distance

• Shift, scale invariance: covariance matrix

– Transformations (e.g., covariance diagonalization: rotate axes to get rotational 
invariance, cf. PCA, FA)

( )� − 2
ii yx
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Clustering: ApplicationsClustering: Applications

ThemeScapes - http://www.cartia.com

6500 news stories
from the WWW
in 1997

Information Retrieval:
Text Document
Categorization

Transactional Database Mining
NCSA D2K 1.0 - http://www.ncsa.uiuc.edu/STI/ALG/

Confidential and proprietary to Caterpillar; may only
be used with prior written consent from Caterpillar.

NCSA D2K 2.0 - http://www.ncsa.uiuc.edu/STI/ALG/

Facial Feature Extraction

http://www.cnl.salk.edu/~wiskott/Bibliographies/
FaceFeatureFinding.html

Data from T. Mitchell’s web site:
http://www.cs.cmu.edu/~tom/faces.html
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Unsupervised Learning andUnsupervised Learning and
Constructive InductionConstructive Induction

• Unsupervised Learning in Support of Supervised Learning
– Given: D ≡≡≡≡ labeled vectors (x, y)

– Return: D’ ≡≡≡≡ transformed training examples (x’, y’)
– Solution approach: constructive induction

• Feature “construction”: generic term

• Cluster definition

• Feature Construction: Front End
– Synthesizing new attributes

• Logical: x1 ∨∨∨∨ ¬¬¬¬ x2, arithmetic: x1 + x5 / x2

• Other synthetic attributes: f(x1, x2, …, xn), etc.

– Dimensionality-reducing projection, feature extraction
– Subset selection: finding relevant attributes for a given target y
– Partitioning: finding relevant attributes for given targets y1, y2, …, yp

• Cluster Definition: Back End
– Form, segment, and label clusters to get intermediate targets y’
– Change of representation: find an (x’, y’) that is good for learning target y

Constructive
Induction

(x, y)

x’ / (x1’, …, xp’)

Cluster
Definition

(x’, y’) or ((x1’, y1’), …, (xp’, yp’))

Feature (Attribute)
Construction and

Partitioning
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Clustering:Clustering:
Relation to Constructive InductionRelation to Constructive Induction

• Clustering versus Cluster Definition

– Clustering: 3-step process

– Cluster definition: “back end” for feature construction

• Clustering: 3-Step Process

– Form

• (x1’, …, xk’) in terms of (x1, …, xn)

• NB: typically part of construction step, sometimes integrates both

– Segment

• (y1’, …, yJ’) in terms of (x1’, …, xk’)

• NB: number of clusters J not necessarily same as number of dimensions k

– Label

• Assign names (discrete/symbolic labels (v1’, …, vJ’)) to (y1’, …, yJ’)

• Important in document categorization (e.g., clustering text for info retrieval)

• Hierarchical Clustering: Applying Clustering Recursively
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TerminologyTerminology

• Expectation-Maximization (EM) Algorithm
– Iterative refinement: repeat until convergence to a locally optimal label

– Expectation step: estimate parameters with which to simulate data

– Maximization step: use simulated (“fictitious”) data to update parameters

• Unsupervised Learning and Clustering
– Constructive induction: using unsupervised learning for supervised learning

• Feature construction: “front end” - construct new x values

• Cluster definition: “back end” - use these to reformulate y

– Clustering problems: formation, segmentation, labeling

– Key criterion: distance metric (points closer intra-cluster than inter-cluster)

– Algorithms

• AutoClass: Bayesian clustering

• Principal Components Analysis (PCA), factor analysis (FA)

• Self-Organizing Maps (SOM): topology preserving transform (dimensionality 
reduction) for competitive unsupervised learning
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Summary PointsSummary Points

• Expectation-Maximization (EM) Algorithm

• Unsupervised Learning and Clustering
– Types of unsupervised learning

• Clustering, vector quantization

• Feature extraction (typically, dimensionality reduction)

– Constructive induction: unsupervised learning in support of supervised learning

• Feature construction (aka feature extraction)

• Cluster definition

– Algorithms

• EM: mixture parameter estimation (e.g., for AutoClass)

• AutoClass: Bayesian clustering

• Principal Components Analysis (PCA), factor analysis (FA)

• Self-Organizing Maps (SOM): projection of data; competitive algorithm

– Clustering problems: formation, segmentation, labeling

• Next Lecture: Time Series Learning and Characterization


