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Lecture QOutline

 Readings: 6.12, Mitchell; Rumelhart and Zipser

« Suggested Reading: Kohonen

 This Week’s Review: “The Future of Time Series”, Gershenfeld and Weigend
« Unsupervised Learning and Clustering

— Definitions and framework
— Constructive induction

» Feature construction
 Cluster definition
— EM, AutoClass, Principal Components Analysis, Self-Organizing Maps
« Expectation-Maximization (EM) Algorithm
— More on EM and Bayesian Learning
— EM and unsupervised learning
* Next Lecture: Time Series Learning

— Intro to time series learning, characterization; stochastic processes
— Read Chapter 16, Russell and Norvig (decisions and utility) KS“
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Unsupervised Learning:

Objectives
o i rnin i f(x '
Unsupervised Lea g ] Supervised (x) %) x —__J|Unsupervised y
— 5| Learning Learning

— Given: data set D

« Vectors of attribute values (x;, x5, ..., X,)
* No distinction between input attributes and output attributes (class label)

— Return: (synthetic) descriptor y of each x

« Clustering: grouping points (x) into inherent regions of mutual similarity

» Vector quantization: discretizing continuous space with best labels

- Dimensionality reduction: projecting many attributes down to a few

» Feature extraction: constructing (few) new attributes from (many) old ones

e Intuitive Idea

— Want to map independent variables (x) to dependent variables (y = f(x))

— Don’t always know what “dependent variables” (y) are

— Need to discover y based on numerical criterion (e.g., distance metric) KS“
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A Mode of Unsupervised Learning

— Given: a collection of data points
— Goal: discover structure in the data
» Organize data into sensible groups (how many here?)

« Criteria: convenient and valid organization of the data
* NB: not necessarily rules for classifying future data points
— Cluster analysis: study of algorithms, methods for discovering this structure

* Representing structure: organizing data into clusters (cluster formation)

» Describing structure: cluster boundaries, centers (cluster segmentation)

« Defining structure: assigning meaningful names to clusters (cluster labeling)

 Cluster: Informal and Formal Definitions
— Set whose entities are alike and are different from entities in other clusters

— Aggregation of points in the instance space such that distance between any two
points in the cluster is less than the distance between any point in the cluster and

any point not in it Ks“
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Quick Review:

Bayesian Learning and EM

 Problem Definition

— Given: data (n-tuples) with missing values, aka partially observable (PO) data

— Want to fill in ? with expected value
« Solution Approaches
— Expected = distribution over possible values
— Use “best guess” Bayesian model (e.g., BBN) to estimate distribution
— Expectation-Maximization (EM) algorithm can be used here
* Intuitive Idea
— Want to find h;, in PO case (D = unobserved variables ° observed variables)

— Estimation step: calculate E[unobserved variables | h], assuming current h

— Maximization step: update w;, to maximize E[lg P(D | h)], D= all variables

# data cases with n, é D e (x j)
h,,, = arg max ——— = arg max =
heH  # data cases with é S X, KS“
j E=e /
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EM Algorithm:

Example [1]

« Experiment
— Two coins: P(Head on Coin 1) = p, P(Head on Coin 2) = q Coin

« Experimenter first selects a coin: P(Coin=1) = o P(Coin=1) =«
« Chosen coin tossed 3 times (per experimental run)
— Observe: D={(1HHT),(1HTT),(2THT)}
Flip, Flip,

— Want to predict: a, p, 9
— How to model the problem? P(Flip;=1| Coin=1) = p
P(Flip,=1| Coin=2) = q
- Simple Bayesian network
* Now, can find most likely values of parameters o, p, q given data D
« Parameter Estimation
— Fully observable case: easy to estimate p, g, and o
« Suppose k heads are observed out of n coin flips
« Maximum likelihood estimate v, for Flip;: p = kin
— Partially observable case
« Don’t know which coin the experimenter chose

« Observe: D={(HHT),(HTT),(THT)}={(?HHT),(?HTT),(? THT)} KS“
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EM Algorithm:

Example [2]

 Problem
— When we knew Coin =1 or Coin = 2, there was no problem
— No known analytical solution to the partially observable problem
* i.e., not known how to compute estimates of p, g, and o to get v;;
* Moreover, not known what the computational complexity is
« Solution Approach: Iterative Parameter Estimation
— Given: a guess of P(Coin=1 | x), P(Coin= 2 | x)
— Generate “fictional data points”, weighted according to this probability

« P(Coin=1|x)=P(x| Coin=1) P(Coin=1)/ P(x) based on our guess of o, p, g
- EXxpectation step (the “E” in EM)

— Now, can find most likely values of parameters «a, p, g given “fictional” data
» Use gradient descent to update our guess of o, p, g

« Maximization step (the “M” in EM)

— Repeat until termination condition met (e.g., stopping criterion on validation set)
« EM Converges to Local Maxima of the Likelihood Function P(D | ©®) KS“
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EM Algorithm:

Example [3]

- Expectation Step
— Suppose we observed m actual experiments, each n coin flips long
« Each experiment corresponds to one choice of coin (~a)
* Let h denote the number of heads in experiment x; (a single data point)
— Q: How did we simulate the “fictional” data points, E[X log P(x |a, p, 4)]1?

— A: By estimating (for 1 <i< m, i.e., the real data points)
P(x, |Coin =1)- P(Coin =1)

P(Coin=1/Xx;)=

« Maximization Step

— Q: What are we updating? What objective function are we maximizing?
: A . . OJOE OE OE u A
— A: We are updating a, p,q to maximize 36’ 9P’ 94 where E=E Zlog P(X,- la, p, Q)
i=1

h, s hp, .
> P(Coin=1/%;) . ZnP(Com—1/x,.) Znh P(Coin=1/ X,

)
a= m P > P(Coin=1/X;) /9 2.11-P(Coin=1/x,)] Ks“
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EM for Unsupervised Learning

« Unsupervised Learning Problem
— Obijective: estimate a probability distribution with unobserved variables
— Use EM to estimate mixture policy (more on this later; see 6.12, Mitchell)

- Pattern Recognition Examples

— Human-computer intelligent interaction (HCII)
» Detecting facial features in emotion recognition
» Gesture recognition in virtual environments

— Computational medicine [Frey, 1998]
« Determining morphology (shapes) of bacteria, viruses in microscopy
 ldentifying cell structures (e.g., nucleus) and shapes in microscopy

— Other image processing

— Many other examples (audio, speech, signal processing; motor control; etc.)

* Inference Examples

— Plan recognition: mapping from (observed) actions to agent’s (hidden) plans
— Hidden changes in context: e.g., aviation; computer security; MUDs KS“
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Unsupervised Learning:

AutoClass [1]

- Bayesian Unsupervised Learning

— Given: D = {(x;, X,, ..., X,,)} (vectors of indistingushed attribute values)
— Return: set of class labels that has maximum a posteriori (MAP) probability
* Intuitive Idea
— Bayesian learning: hy,, = arg max P(h|D)=arg max P(D | h)P(h)
— MDL/BIC (Occam’s Razor): priors P(h) express “cost of coding” each model h
— AutoClass
- Define mutually exclusive, exhaustive clusters (class labels) y,, ¥, ..., ¥,
- Suppose: each y; (1 < j< J) contributes to x
- Suppose also: y;'s contribution ~ known pdf, e.g., Mixture of Gaussians (MoG)

« Conjugate priors: priors on y of same form as priors on x

When to Use for Clustering
— Believe (or can assume): clusters generated by known pdf
— Believe (or can assume): clusters combined using finite mixture (later) KS“
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Unsupervised Learning:

AutoClass [2]

« AutoClass Algorithm [Cheeseman et al, 1988]

— Based on maximizing P(x | ©, y;; J)

* ©;: class (cluster) parameters (e.g., mean and variance)

* Jy;: synthetic classes (can estimate marginal P(y)) any time)
— Apply Bayes’s Theorem, use nhumerical BOC estimation techniques (cf. Gibbs)
— Search objectives

» Find best J (ideally: integrate out ®;, y;; really: start with big J, decrease)

 Find ©, y;: use MAP estimation, then “integrate in the neighborhood” of y;4p
* EM: Find MAP Estimate for P(x | ®, y;, J) by Iterative Refinement

- Advantages over Symbolic (Non-Numerical) Methods
— Returns probability distribution over class membership
* More robust than “best” y;
« Compare: fuzzy set membership (similar but probabilistically motivated)
— Can deal with continuous as well as discrete data KS“
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Unsupervised Learning:

AutoClass [3]

« AutoClass Resources
— Beginning tutorial (AutoClass Il): Cheeseman et al, 4.2.2 Buchanan and Wilkins
— Project page: http://ic-www.arc.nasa.gov/ic/projects/bayes-group/autoclass/

« Applications
— Knowledge discovery in databases (KDD) and data mining

- Infrared astronomical satellite (IRAS): spectral atlas (sky survey)
* Molecular biology: pre-clustering DNA acceptor, donor sites (mouse, human)
- LandSat data from Kansas (30 km? region, 1024 x 1024 pixels, 7 channels)
« Positive findings: see book chapter by Cheeseman and Stutz, online
— Other typical applications: see KD Nuggets (http://www.kdnuggets.com)

« Implementations
— Obtaining source code from project page
» AutoClass llI: Lisp implementation [Cheeseman, Stutz, Taylor, 1992]
« AutoClass C: C implementation [Cheeseman, Stutz, Taylor, 1998]
— These and others at: http://www.recursive-partitioning.com/cluster.html KS“
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Unsupervised Learning:

Competitive Learning for Feature Discovery

* Intuitive ldea: Competitive Mechanisms for Unsupervised Learning
— Global organization from local, competitive weight update

« Basic principle expressed by Von der Malsburg
+ Guiding examples from (neuro)biology: lateral inhibition

— Previous work: Hebb, 1949; Rosenblatt, 1959; Von der Malsburg, 1973;
Fukushima, 1975; Grossberg, 1976; Kohonen, 1982

« A Procedural Framework for Unsupervised Connectionist Learning
— Start with identical (“neural”) processing units, with random initial parameters

— Set limit on “activation strength” of each unit
— Allow units to compete for right to respond to a set of inputs

« Feature Discovery
— ldentifying (or constructing) new features relevant to supervised learning

— Examples: finding distinguishable letter characteristics in handwriten character
recognition (HCR), optical character recognition (OCR)

— Competitive learning: transform X into X’; train units in X closest to x KS“
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Unsupervised Learning:

Kohonen’s Self-Organizing Map (SOM) [1]

« Another Clustering Algorithm

— aka Self-Organizing Feature Map (SOFM)
— Given: vectors of attribute values (x,, x5, ..., X,))

— Returns: vectors of attribute values (x;’, X, ..., x;’)
« Typically, n>> k(nis high, k=1, 2, or 3; hence “dimensionality reducing”)
- Output: vectors x’, the projections of input points x; also get P(x;’ | x;)

« Mapping from x to x’is topology preserving

 Topology Preserving Networks
— Intuitive idea: similar input vectors will map to similar clusters
— Recall: informal definition of cluster (isolated set of mutually similar entities)
— Restatement: “clusters of X (high-D) will still be clusters of X’ (low-D)”
« Representation of Node Clusters
— Group of neighboring artificial neural network units (neighborhood of nodes)

— SOMs: combine ideas of topology-preserving networks, unsupervised learning
. Implementation: http://www.cis.hut.fi/nnrc/ and MATLAB NN Toolkit KS“
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Unsupervised Learning:

Kohonen’s Self-Organizing Map (SOM) [2]

« Kohonen Network (SOM) for Clustering

— Training algorithm: unnormalized competitive learning AR
— Map is organized as a grid (shown here in 2D)

- Each node (grid element) has a weight vector w; X :vector x:vector
- Dimension of w;is n (same as input vector) in 2-space in n-space
* Number of trainable parameters (weights): m- m - n for an m-by-m SOM
« 1999 state-of-the-art: typical small SOMs 5-20, “industrial strength” > 20

— Output found by selecting j*whose w;has minimum Euclidean distance from x

» Only one active node, aka Winner-Take-All (WTA): winning nhode j*

« i.e., j*=arg min;|| w;- x ||
« Update Rule

« Same as competitive learning algorithm, with one modification

* Neighborhood function associated with j* spreads the w; around
W ,(t)+r(t)h, .(x-w,(t)) if je Neighborhood(j*)

w (t+1)=
j(t+1) {W,(t) otherwise KS“
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Unsupervised Learning:

Kohonen’s Self-Organizing Map (SOM) [3]

- Traditional Competitive Learning
* Only train j* j*

« Corresponds to neighborhood of 0

» Neighborhood Function h; ;. Neighborhood of 1

— For 2D Kohonen SOMSs, h is typically a square or hexagonal region
 j*% the winner, is at the center of Neighborhood (j*)
d hj*; j* = 1

— Nodes in Neighborhood (j) updated whenever jwins, i.e., j*=j

— Strength of information fed back to w; is inversely proportional to its distance
from the j* for each x

— Often use exponential or Gaussian (normal) distribution on neighborhood to
decay weight delta as distance from j* increases

« Annealing of Training Parameters
— Neighborhood must shrink to 0 to achieve convergence

— r(learning rate) must also decrease monotonically KS“
. H H i K State Uni it
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Unsupervised Learning:

SOM and Other Projections for Clustering
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Cluster Formation and Segmentation Algorithm (Sketch) KS“

Kansas State University
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Unsupervised Learning:

Other Algorithms (PCA, Factor Analysis)

* Intuitive Idea

— Q: Why are dimensionality-reducing transforms good for supervised learning?
— A: There may be many attributes with undesirable properties, e.g.,

 Irrelevance: x;has little discriminatory power over c(x) = y;

« Sparseness of information: “feature of interest” spread out over many x;'s
(e.g., text document categorization, where x;is a word position)

« We want to increase the “information density” by “squeezing X down”
« Principal Components Analysis (PCA)

— Combining redundant variables into a single variable (aka component, or factor)

— Example: ratings (e.g., Nielsen) and polls (e.g., Gallup); responses to certain
questions may be correlated (e.g., “like fishing?” “time spent boating”)

« Factor Analysis (FA)
— General term for a class of algorithms that includes PCA
— Tutorial: http://www.statsoft.com/textbook/stfacan.htmi Ks“
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Clustering Methods:

Design Choices

* Intuition
— Functional (declarative) definition: easy (“We recognize a cluster when we see it”)

— Operational (procedural, constructive) definition: much harder to give

— Possible reason: clustering of objects into groups has taxonomic semantics (e.g.,
shape, size, time, resolution, etc.)

 Possible Assumptions
— Data generated by a particular probabilistic model
— No statistical assumptions
- Design Choices
— Distance (similarity) measure: standard metrics, transformation-invariant metrics
* L, (Manhattan): X |x; - y||, L, (Euclidean): \/Z(X,- —y,-)z, L.. (Sup): max |x; - y;
« Symmetry: Mahalanobis distance

« Shift, scale invariance: covariance matrix
— Transformations (e.g., covariance diagonalization: rotate axes to get rotational

invariance, cf. PCA, FA) KS“
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Clustering: Applications
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Unsupervised Learning and

Constructive Induction

« Unsupervised Learning in Support of Supervised Learning

— Given: D = labeled vectors (x, ) Constructive
.. Induction
— Return: D’ = transformed training examples (x’, y’)
: . . X,
— Solution approach: constructive induction oY)
“ PSRNT . Feature (Attribute)
» Feature “construction”: generic term Construction and
« Cluster definition Partitioning
« Feature Construction: Front End § X0 k)
— Synthesizing new attributes Cluster
] . . Definition
» Logical: x; v — Xx,, arithmetic: x, + x5/ X, |

- Other synthetic attributes: f(x,, x,, ..., X,), etc. |
— Dimensionality-reducing projection, feature extraction %> ¥) or (X ¥s), -, (6% ¥p)
— Subset selection: finding relevant attributes for a given target y
— Partitioning: finding relevant attributes for given targets y;, y ..., ¥,
» Cluster Definition: Back End

— Form, segment, and label clusters to get intermediate targets y’
— Change of representation: find an (X, y’) that is good for learning target y KS“
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Clustering:

Relation to Constructive Induction

» Clustering versus Cluster Definition

— Clustering: 3-step process
— Cluster definition: “back end” for feature construction S

« Clustering: 3-Step Process

— Form

* (X7, .., X;’) in terms of (x;, ..., X,)

» NB: typically part of construction step, sometimes integrates both
— Segment

* (¥, .- yj)interms of (x/, ..., x;’)

« NB: number of clusters J not necessarily same as humber of dimensions k
— Label

« Assign names (discrete/symbolic labels (v/, ..., v))) to (y;, ---, V)

« Important in document categorization (e.g., clustering text for info retrieval)

« Hierarchical Clustering: Applying Clustering Recursively KS“

Kansas State University
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Terminology

« Expectation-Maximization (EM) Algorithm

— lterative refinement: repeat until convergence to a locally optimal label

— EXxpectation step: estimate parameters with which to simulate data

— Maximization step: use simulated (“fictitious”) data to update parameters
« Unsupervised Learning and Clustering
— Constructive induction: using unsupervised learning for supervised learning

+ Feature construction: “front end” - construct new x values

« Cluster definition: “back end” - use these to reformulate y
— Clustering problems: formation, segmentation, labeling

— Key criterion: distance metric (points closer intra-cluster than inter-cluster)

— Algorithms
« AutoClass: Bayesian clustering

« Principal Components Analysis (PCA), factor analysis (FA)

+ Self-Organizing Maps (SOM): topology preserving transform (dimensionality
reduction) for competitive unsupervised learning KS“
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Summary Points

« Expectation-Maximization (EM) Algorithm
« Unsupervised Learning and Clustering
— Types of unsupervised learning
« Clustering, vector quantization
» Feature extraction (typically, dimensionality reduction)
— Constructive induction: unsupervised learning in support of supervised learning
» Feature construction (aka feature extraction)
 Cluster definition
— Algorithms
« EM: mixture parameter estimation (e.g., for AutoClass)
» AutoClass: Bayesian clustering

« Principal Components Analysis (PCA), factor analysis (FA)
« Self-Organizing Maps (SOM): projection of data; competitive algorithm
— Clustering problems: formation, segmentation, labeling

« Next Lecture: Time Series Learning and Characterization KS“
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