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Lecture OutlineLecture Outline

• Readings: Chapter 17, Russell and Norvig; Sections 13.1-13.2, Mitchell

• Suggested Exercises: 17.2, Russell and Norvig; 13.1, Mitchell

• This Week’s Paper Review: Temporal Differences [Sutton 1988]

• Making Decisions in Uncertain Environments
– Problem definition and framework (MDPs)

– Performance element: computing optimal policies given stepwise reward

• Value iteration

• Policy iteration

– Decision-theoretic agent design

• Decision cycle

• Kalman filtering

• Sensor fusion aka data fusion

– Dynamic Bayesian networks (DBNs) and dynamic decision networks (DDNs)

• Learning Problem: Acquiring Decision Models from Rewards

• Next Lecture: Reinforcement Learning
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• Almanac Game [Heckerman and Geiger, 1994; Russell and Norvig, 1995]
– Used by decision analysts to calibrate numerical estimates

– Numerical estimates: include subjective probabilities, other forms of knowledge

• Question Set 1 (Read Out Your Answers)
– Number of passengers who flew between NYC and LA in 1989

– Population of Warsaw in 1992 

– Year in which Coronado discovered the Mississippi River

– Number of votes received by Carter in the 1976 presidential election

– Number of newspapers in the U.S. in 1990

– Height of Hoover Dam in feet

– Number of eggs produced in Oregon in 1985

– Number of Buddhists in the world in 1992

– Number of deaths due to AIDS in the U.S. in 1981

– Number of U.S. patents granted in 1901

InIn--Class Exercise:Class Exercise:
Elicitation of Numerical Estimates [1]Elicitation of Numerical Estimates [1]
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InIn--Class Exercise:Class Exercise:
Elicitation of Numerical Estimates [2]Elicitation of Numerical Estimates [2]

• Calibration of Numerical Estimates
– Try to revise your bounds based on results from first question set

– Assess your own penalty for having too wide a CI versus guessing low, high

• Question Set 2 (Write Down Your Answers)
– Year of birth of Zsa Zsa Gabor

– Maximum distance from Mars to the sun in miles

– Value in dollars of exports of wheat from the U.S. in 1992

– Tons handled by the port of Honolulu in 1991

– Annual salary in dollars of the governor of California in 1993

– Population of San Diego in 1990

– Year in which Roger Williams founded Providence, RI

– Height of Mt. Kilimanjaro in feet

– Length of the Brooklyn Bridge in feet

– Number of deaths due to auto accidents in the U.S. in 1992 41710
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InIn--Class Exercise:Class Exercise:
Elicitation of Numerical Estimates [3]Elicitation of Numerical Estimates [3]

• Descriptive Statistics
– 50%, 25%, 75% guesses (median, first-second quartiles, third-fourth quartiles)

– Box plots [Tukey, 1977]: actual frequency of data within 25-75% bounds

– What kind of descriptive statistics do you think might be informative?

– What kind of descriptive graphics do you think might be informative?

• Common Effects
– Typically about half (50%) in first set

– Usually, see some improvement in second set

– Bounds also widen from first to second set (second system effect [Brooks, 1975])

– Why do you think this is?

– What do you think the ramifications are for interactive elicitation?

– What do you think the ramifications are for learning?

• Prescriptive (Normative) Conclusions
– Order-of-magnitude (“back of the envelope”) calculations [Bentley, 1985]

– Value-of-information (VOI): framework for selecting questions, precision
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Overview:Overview:
Making Decisions in Uncertain EnvironmentsMaking Decisions in Uncertain Environments

• Problem Definition
– Given: stochastic environment, outcome P(Result (action) | Do(action), state) 

– Return: a policy f : state →→→→ action

• Foundations of Sequential Decision Problems and Policy Learning
– Utility function: U : state →→→→ value
– U(State): analogy with P(State) ≡≡≡≡ agent’s belief as distributed over event space
– Expresses desirability of state according to decision-making agent

• Constraints and Rational Preferences
– Definition: a lottery is defined by the set of outcomes of a random scenario and a 

probability distribution over them (e.g., denoted [p, A; 1 - p, B] for outcomes A, B)

– Properties of rational preference (ordering on utility values)

• Total ordering: antisymmetric, transitive, and

• Continuity: 

• Substitutability:

• Monotonicity:

• Decomposability:

( ) ( ) ( )B~AA BB A . B A, ∨∨∀ ��

[ ] [ ] BB,~Cp,Ap, . p C  B A ≡−∃� 11 ;��

[ ] [ ]Cp,Bp,~Cp,Ap, B A −−� 1 ;1 ;~

[ ] [ ]( )Bq,Aq,Bp,Ap, qp B A −−⇔>� 1 ;1 ; ��  

[ ][ ] ( ) ( )( )[ ]C,qpB;q,pAp,~Cq,Bq,p,Ap, −−−−− 111;1 ;1 ;
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MMarkov arkov DDecision ecision PProcessesrocesses
and and MMarkov arkov DDecision ecision PProblemsroblems

• Maximum Expected Utility (MEU)
– E [U (action | D)] = ����i P(Resulti (action) | Do(action), D) · U(Resulti (action))

– D denotes agent’s available evidence about world

– Principle: rational agent should choose actions to maximize expected utility

• Markov Decision Processes (MDPs)
– Model: probabilistic state transition diagram, associated actions A: state →→→→ state

– Markov property: transition probabilities from any given state depend only on the 
state (not previous history)

– Observability

• Totally observable (MDP, TOMDP), aka accessible

• Partially observable (POMDP), aka inaccessible, hidden

• Markov Decision Problems
– Also called MDPs

– Given: a stochastic environment (process model, utility function, and D)

– Return: an optimal policy f : state →→→→ action
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Value IterationValue Iteration

• Value Iteration: Computing Optimal Policies by Dynamic Programming
– Given: transition model M, reward function R: state →→→→ value

– Mij(a) denotes probability of moving from state i to state j via action a

– Additive utility function on state sequences: U[s0, s1, …, sn] = R(s0) + U[s1, …, sn] 

• Function Value-Iteration (M, R)
– Local variables U, U’: “current” and “new” utility functions, initially identical to R

– REPEAT

• U ←←←← U’

• FOR each state i DO // dynamic programming update

U’ [i] ←←←← R[i] + maxa ����j Mij(a) · U[j]

UNTIL Close-Enough (U, U’)

– RETURN U // approximate utility function on all states

• Result: Provably Optimal Policy [Bellman and Dreyfus, 1962]
– Use computed U by maximizing utility U(next action | si)

– Evaluation: RMS error of U or expected difference U* - U (policy loss)
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Policy IterationPolicy Iteration

• Policy Iteration: Another Algorithm for Calculating Optimal Policies
– Given: transition model M, reward function R: state →→→→ value

– Value determination function: estimates current U (e.g., by solving linear system)

• Function Policy-Iteration (M, R)
– Local variables U: initially identical to R; P: policy, initially optimal under U

– REPEAT

• U ←←←← Value-Determination (P, U, M, R); unchanged? ←←←← true

• FOR each state i DO // dynamic programming update

IF maxa ����j Mij(a) · U[j] > ����j Mij(P[i]) · U[j] THEN

P[i] ←←←← R[i] + arg maxa ����j Mij(a) · U[j]; unchanged? ←←←← false

UNTIL unchanged?

– RETURN P // optimized policy

• Guiding Principle: Value Determination Simpler than Value Iteration
– Reason: action in each state is fixed by the policy

– Solutions: use value iteration without max; solve linear system
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Applying Policies:Applying Policies:
Decision Support, Planning, and AutomationDecision Support, Planning, and Automation

• Decision Support

– Learn an action-value function (to be discussed soon)

– Calculate MEU action in current state

– Open loop mode: recommend MEU action to agent (e.g., user)

• Planning

– Problem specification

• Initial state s0, goal state sG

• Operators (actions, preconditions ≡≡≡≡ applicable states, effects ≡≡≡≡ transitions)

– Process: computing policy to achieve goal state

– Traditional: symbolic; first-order logic (FOL), subsets thereof

– “Modern”: abstraction, conditionals, temporal constraints, uncertainty, etc.

• Automation

– Direct application of policy

– Caveats: partially observable state, uncertainty (measurement error, etc.)
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DecisionDecision--Theoretic AgentsTheoretic Agents

• Function Decision-Theoretic-Agent (Percept)
– Percept: agent’s input; collected evidence about world (from sensors)

– COMPUTE updated probabilities for current state based on available evidence, 
including current percept and previous action 

– COMPUTE outcome probabilities for actions,
given action descriptions and probabilities of current state

– SELECT action with highest expected utility,
given probabilities of outcomes and utility functions

– RETURN action

• Decision Cycle
– Processing done by rational agent at each step of action

– Decomposable into prediction and estimation phases

• Prediction and Estimation
– Prediction: compute pdf over expected states, given knowledge of previous state, 

effects of actions

– Estimation: revise belief over current state, given prediction, new percept
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KalmanKalman FilteringFiltering

• Intuitive Idea
– Infer “where we are” in order to compute outcome probabilities, select action

– Inference problem: estimate Bel(X(t))

• Problem Definition
– Given: action history, new percept
– Return: estimate of probability distribution over current state

• Assumptions
– State variables: real-valued, normal (Gaussian) distribution
– Sensors: unbiased (mean = 0), normally distributed (Gaussian) noise
– Actions: can be described as vector of real values, one for each state variable

– New state: linear function of previous state, action

• Interpretation as Bayesian Parameter Estimation
– Technique from classical control theory [Kalman, 1960]

– Good success even when not all assumptions are satisfied
– Prediction:
– Estimation:
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Sensor and Data FusionSensor and Data Fusion

• Intuitive Idea
– Sensing in uncertain worlds

– Compute estimates of conditional probability tables (CPTs)
• Sensor model (how environment generates sensor data): P(percept(t) | X(t))
• Action model (how actuators affect environment): P(X(t) | X(t - 1), action(t - 1))

– Use estimates to implement Decision-Theoretic-Agent : percept →→→→ action

• Assumption: Stationary Sensor Model
– Stationary sensor model: ∀∀∀∀t . P(percept(t) | X(t)) = P(percept(t) | X)

• Circumscribe (exhaustively describe) percept influents (variables that affect 
sensor performance)

• NB: this does not mean sensors are immutable or unbreakable

– Conditional independence of sensors given true value

• Problem Definition
– Given: multiple sensor values for same state variables

– Return: combined sensor value
– Inferential process: sensor fusion, aka sensor integration, aka data fusion

S(t)

P1(t) P2(t)

Sensor Model Sensor Model
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DDynamic ynamic BBayesian ayesian NNetworks (etworks (DBNsDBNs))

• Intuitive Idea
– State of environment evolves over time

• Evolution modeled by conditional pdf: P(X(t) | X(t - 1), action(i - 1))

• Describes how state depends on previous state, action of agent

– Monitoring scenario

• Agent can only observe (and predict): P(X(t) | X(t - 1))

• State evolution model, aka Markov chain

– Probabilistic projection

• Predicting continuation of observed X(t) values (see last lecture)

• Goal: use results of prediction and monitoring to make decisions, take action

• Dynamic Bayesian Network (aka Dynamic Belief Network)
– Bayesian network unfolded through time (one note for each state and sensor 

variable, at each step)

– Decomposable into prediction, rollup, and estimation phases

– Prediction: as before; rollup: compute                ; estimation: unroll X(t + 1)( )( )tXleB ˆ

S(t-1) S(t) S(t+1)

P(t-1) P(t) P(t+1)
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DDynamic ynamic DDecision ecision NNetworks (etworks (DDNsDDNs))

• Augmented Bayesian Network [Howard and Matheson, 1984]

– Chance nodes (ovals): denote random variables as in BBNs

– Decision nodes (rectangles): denote points where agent has choice of actions

– Utility nodes (diamonds): denote agent’s utility function (e.g., in chance of death)

• Properties

– Chance nodes: related as in BBNs (CI assumed among nodes not connected)

– Decision nodes: choices can influence chance nodes, utility nodes (directly)

– Utility nodes: conditionally dependent on joint pdf of parent chance nodes and 

decision values at parent decision nodes

– See Section 16.5, Russell and Norvig

• Dynamic Decision Network

– aka dynamic influence diagram

– DDN : DBN :: DN : BBN

– Inference: over predicted (unfolded) sensor, decision variables

Toxics

Smoke?

Cancer

Serum Calcium

Lung Tumor

Micromorts
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Learning to Make DecisionsLearning to Make Decisions
in Uncertain Environmentsin Uncertain Environments

• Learning Problem

– Given: interactive environment

• No notion of examples as assumed in supervised, unsupervised learning

• Feedback from environment in form of rewards, penalties (reinforcements)

– Return: utility function for decision-theoretic inference and planning

• Design 1: utility function on states, U : state →→→→ value

• Design 2: action-value function, Q : state ×××× action →→→→ value (expected utility)

– Process

• Build predictive model of the environment

• Assign credit to components of decisions based on (current) predictive model

• Issues

– How to explore environment to acquire feedback?

– Credit assignment: how to propagate positive credit and negative credit (blame) 

back through decision model in proportion to importance?
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TerminologyTerminology

• Making Decisions in Uncertain Environments
– Policy learning

• Performance element: decision support system, planner, automated system
• Performance criterion: utility function
• Training signal: reward function

– MDPs
• Markov Decision Process (MDP): model for decision-theoretic planning (DTP)
• Markov Decision Problem (MDP): problem specification for DTP

• Value iteration: iteration over actions; decomposition of utilities into rewards
• Policy iteration: iteration over policy steps; value determination at each step

– Decision cycle: processing (inference) done by a rational agent at each step

– Kalman filtering: estimate belief function (pdf) over state by iterative refinement
– Sensor and data fusion: combining multiple sensors for same state variables
– Dynamic Bayesian network (DBN): temporal BBN (unfolded through time)

– Dynamic decision network (DDN): temporal decision network

• Learning Problem: Based upon Reinforcements (Rewards, Penalties)
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Summary PointsSummary Points

• Making Decisions in Uncertain Environments
– Framework: Markov Decision Processes, Markov Decision Problems (MDPs)

– Computing policies

• Solving MDPs by dynamic programming given a stepwise reward

• Methods: value iteration, policy iteration

– Decision-theoretic agents

• Decision cycle, Kalman filtering

• Sensor fusion (aka data fusion)

– Dynamic Bayesian networks (DBNs) and dynamic decision networks (DDNs)

• Learning Problem
– Mapping from observed actions and rewards to decision models 

– Rewards/penalties: reinforcements

• Next Lecture: Reinforcement Learning
– Basic model: passive learning in a known environment

– Q learning: policy learning by adaptive dynamic programming (ADP)


