Lecture 17

Introduction to Reinforcement Learning:
Q Learning

Thursday 29 October 2002

William H. Hsu

Department of Computing and Information Sciences, KSU
http://www.kddresearch.org
http://www.cis.ksu.edu/~bhsu

Readings:
Sections 13.3-13.4, Mitchell

Sections 20.1-20.2, Russell and Norvig Ks“

CIS 732: Machine Learning and Pattern Recognition Kansas State University

Department of Computing and Information Sciences

Lecture QOutline

 Readings: Chapter 13, Mitchell; Sections 20.1-20.2, Russell and Norvig
— Today: Sections 13.1-13.4, Mitchell
— Review: “Learning to Predict by the Method of Temporal Differences”, Sutton

« Suggested Exercises: 13.2, Mitchell; 20.5, 20.6, Russell and Norvig

« Control Learning
— Control policies that choose optimal actions
— MDP framework, continued
— Issues
» Delayed reward
» Active learning opportunities
» Partial observability
* Reuse requirement
 Q@QLearning
— Dynamic programming algorithm
— Deterministic and nondeterministic cases; convergence properties KS“

CIS 732: Machine Learning and Pattern Recognition Kansas State University

Department of Computing and Information Sciences

Control Learning

« Learning to Choose Actions
— Performance element
» Applying policy in uncertain environment (last time)
« Control, optimization objectives: belong to intelligent agent

— Applications: automation (including mobile robotics), information retrieval

« Examples
— Robot learning to dock on battery charger
— Learning to choose actions to optimize factory output
— Learning to play Backgammon
* Problem Characteristics
— Delayed reward: loss signal may be episodic (e.g., win-loss at end of game)

— Opportunity for active exploration: situated learning

— Possible partially observability of states

— Possible need to learn multiple tasks with same sensors, effectors

(e.g., actuators) KS“

CIS 732: Machine Learning and Pattern Recognition Kansas State University

Department of Computing and Information Sciences

Example:

TD-Gammon

 Learns to Play Backgammon [Tesauro, 1995]
— Predecessor: NeuroGammon [Tesauro and Sejnowski, 1989]

» Learned from examples of labelled moves (very tedious for human expert)
» Result: strong computer player, but not grandmaster-level
— TD-Gammon: first version, 1992 - used reinforcement learning
 Immediate Reward
— +100 if win
— =100 if loss
— 0 for all other states
« Learning in TD-Gammon

— Algorithm: temporal differences [Sutton, 1988] - next time

— Training: playing 200000 - 1.5 million games against itself (several weeks)
— Learning curve: improves until ~1.5 million games

— Result: now approximately equal to best human player (won World Cup of
Backgammon in 1992; among top 3 since 1995) KS“

CIS 732: Machine Learning and Pattern Recognition Kansas State University

Department of Computing and Information Sciences

Reinforcement Learning:

Problem Definition

Agent Policy

State : Reward @ \Action

Environment

» Interactive Model
— State (may be partially observable), incremental reward presented to agent
— Agent selects actions based upon (current) policy
— Taking action puts agent into new state in environment
 New reward: reinforcement (feedback)

« Agent uses decision cycle to estimate new state, compute outcome
distributions, select new actions

* Reinforcement Learning Problem
— Given
- Observation sequence s,
- Discount factor ye [0, 1)

— Learn to: choose actions that maximize r(f) + yr(t+ 1) + Pr{t + 2) + ... KS“

ao:

I, a; . I a,:r
0 >S1 1-'1 >82 272)...

CIS 732: Machine Learning and Pattern Recognition Kansas State University

Department of Computing and Information Sciences

Quick Review:

Markov Decision Processes

 Markov Decision Processes (MDPs)

— Components
* Finite set of states S
+ Set of actions A
— At each time, agent
« observes state s(f) € S and chooses action a(i) € A;
« then receives reward K1),
« and state changes to s(f + 1)
— Markov property, aka Markov assumption: s(t+ 1) = 6(t + 1) and Hf) = A(s(f), a(t))

* i.e., {1) and s(t + 1) depend only on current state and action
» Previous history s(0), s(1), ..., s(t- 1): irrelevant

* i.e., s(t+ 1) conditionally independent of s(0), s(1), ..., s(t- 1) given s(i)
« 9, r may be nondeterministic; not necessarily known to agent
— Variants: totally observable (accessible), partially observable (inaccessible)

 Criterion for a(f): Total Reward — Maximum Expected Utility (MEU) KS“

CIS 732: Machine Learning and Pattern Recognition Kansas State University

Department of Computing and Information Sciences

Agent’s Learning Task

 Performance Element
— Execute actions in environment, observe results

— Learn action policy & : state — action that maximizes expected discounted reward
E[r(f) + yr(t + 1) + Y’r(t + 2) + ...] from any starting state in S

— Y€ [05 1)
« Discount factor on future rewards

« Expresses preference for rewards sooner rather than later

* Note: Something New!
— Target function is ©n : state — action
— However...
- We have no training examples of form <state, action>

« Training examples are of form <<state, action>, reward>

KSU

CIS 732: Machine Learning and Pattern Recognition Kansas State University

Department of Computing and Information Sciences

Value Function

First Learning Scenario: Deterministic Worlds

— Agent considers adopting policy © from policy space I1
— For each possible policy & € II, can define an evaluation function over states:
V7(s)=r(t)+yr (t+1)+y2r(t+1)+...
= iy"r(t+ i
where 1), H{t+ 1), {t + 2), ...lzgre generated by following policy & starting at state s

— Restated, task is to learn optimal policy ©n*
m*=argmaxV"(s),Vs

- Finding Optimal Policy

o[100] 0 90| 100 0 K K K K
> > > > 90 > 100 > 0 > >
0 G 72 _ |81 81 G S G
=T HH— T H HH—H f T
0" 04,070 L oollst Bise0 2L 100 — b
0 72 81 81 90 100
-« -« -« -« -« -«
r(state, action) Q(state, action) values V'(state) values One optimal policy
immediate reward values Ks“
Kansas State University
Department of Computing and Information Sciences

CIS 732: Machine Learning and Pattern Recognition

What to Learn

* Idea
— Might have agent try to learn evaluation function V* (abbreviated V*)

— Could then perform lookahead search to choose best action from any state s,
because:

m*(s)=arg mfx[r(s, a)+V*@&(s,a))
* Problem with Idea
— Works well if agent knows
« 0 : state x action — state
« r: state x action - R

— When agent doesn’t know 6 and r, cannot choose actions this way

KSU

CIS 732: Machine Learning and Pattern Recognition Kansas State University

Department of Computing and Information Sciences

« Solution Approach

— Define new function very similar to V*
Q(s,a)=r(s,a)+yV *((s, a))
— If agent learns Q, it can choose optimal action even without knowing 6!
« Using Learned Q
— Q@: evaluation function to be learned by agent
— Apply Qto select action
 ldealized, computed policy (this is your brain without Q-learning):
m*(s)=arg mfx[r(s, a)+V*3(s,a))

- Approximated policy (this is your brain with Q-learning):

m*(s)=argmax Q(s, a)

KSU

CIS 732: Machine Learning and Pattern Recognition Kansas State University

Department of Computing and Information Sciences

Training Rule to Learn Q

« Developing Recurrence Equation for Q
— Note: Q and V* closely related
V*(s)=arg max Q(s,a’)
— Allows us to write Q recursively as

Q(s(t), a(t)) = r(s(t), a(t))+yV &(s(t), a(t)))
=r(s(t),a(t))+y max Q(s(t+1),a’)

— Nice! Let Qdenote learner’s current approximation to Q
« Training Rule
Q(s,a)« r(s,a)+y max Q(s',a’)
— §’: state resulting from applying action a in state s

— (Deterministic) transition function 6 made implicit

— Dynamic programming: iterate over table of possible a’ values

KSU

CIS 732: Machine Learning and Pattern Recognition Kansas State University

Department of Computing and Information Sciences

Q Learning for

Deterministic Worlds

* (Nonterminating) Procedure for Situated Agent

 Procedure Q-Learning-Deterministic (Reinforcement-Stream)

Reinforcement-Stream: consists of <<state, action>, reward> tuples
FOR each <s, a> DO
- Initialize table entry Q(s,a)«<0
Observe current state s
WHILE (true) DO
« Select action a and execute it
- Receive immediate reward r
« Observe new state s’

. Update table entry for Q(s, a) as follows
Q(s,a)« r(s,a)+y max Q(s', a’)

« Move: record transition from sto s’ KS“

CIS 732:

Machine Learning and Pattern Recognition Kansas State University

Department of Computing and Information Sciences

Updating the Q Estimate

72
> > a bt : >
rig
s, %,8| © s, 88| ©
v v
Initial state: s, Next state: s,

« Example: Propagating Credit (Q) for Candidate Action

— © glyph: denotes mobile robot
— Initial state: s, (upper left)

— Let discount factor ybe 0.9

— Q@ estimate X X
Q(s,, a,,.g,,,)e r(s,a)+y max Q(s,,a’)
«0+0.9 - max {63, 81,100}
<90
* Property

— If rewards nonnegative, then Q increases monotonically between 0 and true Q
— r(s,a)20 = vs,a,n.Q, (s,a)>Q,(s,a) A Vs,a,n.0<Q (s a)<Q(s,a) KS“

CIS 732: Machine Learning and Pattern Recognition Kansas State University

Department of Computing and Information Sciences

Convergence

« Claim

e converges to Q

— Scenario: deterministic world where <s, a> are observed (visited) infinitely often
* Proof

— Define full interval: interval during which each <s, a> is visited

— During each full interval, largest error in Q table is reduced by factor of y
— Let Q,be table after n updates and A, be the maximum error in @,; that is,
Q,(s, a)-Ql(s, a)

— For any table entry Q (s, a), updated error in revised estimate Q_ (s, a)is

A, = max
s,a

Q... (s, a)-Q(s, a)‘ = ‘r+y max Q,(s',a')- (r+y max Q. (s, a')}
:y‘ max Q,(s',a')- max Q(s',a’)
stfx‘ Q,(s',a')-Q(s',a’) <y max Q,(s'",a')-Q(s'",a’)
Q,..(s,a)-Q(s, a)‘ <yA,
— Note: used general fact, ‘mgx f(a)— max fz(a)‘ < max f,(a)-,(a) KS“
CIS 732: Machine Learning and Pattern Recognition Kansas State University

Department of Computing and Information Sciences

Nondeterministic Case

« Second Learning Scenario: Nondeterministic World (Nondeterministic MDP)

— What if reward and next state are nondeterministically selected?

— i.e., reward function and transition function are nondeterministic
— Nondeterminism may express many kinds of uncertainty

* Inherent uncertainty in dynamics of world

« Effector exceptions (qualifications), side effects (ramifications)

« Solution Approach
— Redefine V, Qin terms of expected values

V™(s)= E[r(t)+yr (t+1)+y2r(t+1)+...]
_E gy"r(ni)}

Q(s,a)=Elr(s,a)+yV *(&(s, a))]

— Introduce decay factor; retain some of previous Q value
— Compare: momentum term in ANN learning KS“

CIS 732: Machine Learning and Pattern Recognition Kansas State University

Department of Computing and Information Sciences

Nondeterministic Case:

Generalizing Q Learning

« Q Learning Generalizes to Nondeterministic Worlds

— Alter training rule to
Q,(s,a)«(1-a,)Q (s, a)+a, lr +y max Q, (s’, a')J
— Decaying weighted average

a,= ; .1
1+ visits, (s, a)

— visits,(s, a): total number of times <s, a> has been visited by iteration n, inclusive
— r: observed reward (may also be stochastically determined)
- Can Still Prove Convergence of Q to Q[Watkins and Dayan, 1992]

* Intuitive Idea

— o € [0, 1]: discounts estimate by number of visits, prevents oscillation
— Tradeoff

* More gradual revisions to Q
» Able to deal with stochastic environment: P(s’ | s, a), P(r| s, s’, a) KS“

CIS 732: Machine Learning and Pattern Recognition Kansas State University

Department of Computing and Information Sciences

Terminology

 Reinforcement Learning (RL)
— RL: learning to choose optimal actions from <state, reward, action> observations
— Scenarios
- Delayed reward: reinforcement is deferred until end of episode

« Active learning: agent can control collection of experience
- Partial observability: may only be able to observe rewards (must infer state)

- Reuse requirement: sensors, effectors may be required for multiple tasks

« Markov Decision Processes (MDPs)

— Markovity (aka Markov property, Markov assumption): Cl assumption on states
over time

— Maximum expected utility (MEU): maximum expected total reward (under additive
decomposition assumption)

« Q@QLearning

— Action-value function Q : state x action — value
— Q@ learning: training rule and dynamic programming algorithm for RL KS“

CIS 732: Machine Learning and Pattern Recognition Kansas State University

Department of Computing and Information Sciences

Summary Points

« Control Learning

Learning policies from <state, reward, action> observations
Objective: choose optimal actions given new percepts and incremental rewards
Issues

» Delayed reward

» Active learning opportunities

- Partial observability

* Reuse of sensors, effectors

 Q@QLearning

Action-value function Q : state x action — value (expected utility)
Training rule

Dynamic programming algorithm

Q learning for deterministic worlds

Convergence to true Q

Generalizing Q learning to nondeterministic worlds

* Next Week: More Reinforcement Learning (Temporal Differences) KS“

CIS 732: Machine Learning and Pattern Recognition Kansas State University

Department of Computing and Information Sciences

