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Lecture OutlineLecture Outline

• Readings: 13.1-13.4, Mitchell; 20.2-20.7, Russell and Norvig

• This Week’s Paper Review: “Connectionist Learning Procedures”, Hinton

• Suggested Exercises: 13.4, Mitchell; 20.11, Russell and Norvig

• Reinforcement Learning (RL) Concluded
– Control policies that choose optimal actions

– MDP framework, continued

– Continuing research topics

• Active learning: experimentation (exploration) strategies

• Generalization in RL

• Next: ANNs and GAs for RL

• Temporal Diffference (TD) Learning
– Family of dynamic programming algorithms for RL

• Generalization of Q learning

• More than one step of lookahead

– More on TD learning in action
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Quick Review:Quick Review:
Policy Learning FrameworkPolicy Learning Framework

• Interactive Model
– State s (may be partially observable)
– Agent selects action a based upon (current) policy

• Incremental reward (aka reinforcement) r(s, a) presented to agent

• Taking action puts agent into new state s’ = δδδδ(s, a) in environment
– Agent uses decision cycle to estimate s’, compute outcome distributions, select 

new actions

• Reinforcement Learning Problem
– Given

• Observation sequence 

• Discount factor γγγγ ∈∈∈∈ [0, 1)
– Learn to: choose actions that maximize r(t) + γγγγr(t + 1) + γγγγ2r(t + 2) + …
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Quick Review:Quick Review:
QQ LearningLearning
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immediate reward values
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• Deterministic World Scenario

– “Knowledge-free” (here, model-free) search for policy ππππ from policy space ΠΠΠΠ

– For each possible policy ππππ ∈∈∈∈ ΠΠΠΠ, can define an evaluation function over states:

where r(t), r(t + 1), r(t + 2), … are generated by following policy ππππ starting at state s

– Restated, task is to learn optimal policy ππππ*

• Finding Optimal Policy

• Q-Learning Training Rule
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Learning ScenariosLearning Scenarios

• First Learning Scenario
– Passive learning in known environment (Section 20.2, Russell and Norvig)

– Intuition (passive learning in known and unknown environments)

• Training sequences (s1, s2, …, sn, r = U(sn))

• Learner has fixed policy ππππ; determine benefits (expected total reward)

– Important note: known ≠≠≠≠ accessible ≠≠≠≠ deterministic (even if transition model 
known, state may not be directly observable and may be stochastic)

– Solutions: naïve updating (LMS), dynamic programming, temporal differences

• Second Learning Scenario
– Passive learning in unknown environment (Section 20.3, Russell and Norvig)

– Solutions: LMS, temporal differences; adaptation of dynamic programming

• Third Learning Scenario
– Active learning in unknown environment (Sections 20.4-20.6, Russell and Norvig)

– Policy must be learned (e.g., through application and exploration)

– Solutions: dynamic programming (Q-learning), temporal differences
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Reinforcement Learning MethodsReinforcement Learning Methods

• Solution Approaches
– Naïve updating: least-mean-square (LMS) utility update

– Dynamic programming (DP): solving constraint equations

• Adaptive DP (ADP):  includes value iteration, policy iteration, exact Q-learning

• Passive case: teacher selects sequences (trajectories through environment)

• Active case: exact Q-learning (recursive exploration)

– Method of temporal differences (TD): approximating constraint equations

• Intuitive idea: use observed transitions to adjust U(s) or Q(s, a)

• Active case: approximate Q-learning (TD Q-learning)

• Passive: Examples
– Temporal differences: U(s) ←←←← U(s) + γγγγ(R(s) + U(s’) - U(s))

– No exploration function

• Active: Examples
– ADP (value iteration): U(s) ←←←← R(s) + γγγγ maxa (����s’ (Ms,s’(a) · U(s’)))

– Exploration (exact Q-learning): ( ) ( ) ( )a' ,s'Q max �a s,r a s,Q 
a'

ˆˆ +←
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Active Learning and ExplorationActive Learning and Exploration

• Active Learning Framework
– So far: optimal behavior is to choose action with maximum expected utility 

(MEU), given current estimates

– Proposed revision: action has two outcomes

• Gains rewards on current sequence (agent preference: greed)

• Affects percepts →→→→ ability of agent to learn →→→→ ability of agent to receive future 
rewards (agent preference: “investment in education”, aka novelty, curiosity)

– Tradeoff: comfort (lower risk) reduced payoff versus higher risk, high potential

– Problem: how to quantify tradeoff, reward latter case?

• Exploration
– Define: exploration function - e.g., f(u, n) = (n < N) ? R+ : u

• u: expected utility under optimistic estimate; f increasing in u (greed)

• n ≡≡≡≡ N(s, a): number of trials of action-value pair; f decreasing in n (curiosity)

– Optimistic utility estimator: U+(s) ←←←← R(s) + γγγγ maxa f (����s’ (Ms,s’(a) · U+(s’)), N(s, a))

• Key Issues: Generalization (Today); Allocation (CIS 830)
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Temporal Difference Learning:Temporal Difference Learning:
Rationale and FormulaRationale and Formula

• Q-Learning
– Reduce discrepancy between successive estimates

– Q estimates

• One step time difference

•

• Method of Temporal Differences (TD(λλλλ)), aka Temporal Differencing
– Why not two steps?

– Or n steps?

– TD(λλλλ) formula

• Blends all of these

•

– Intuitive idea: use constant 0 ≤≤≤≤ λλλλ ≤≤≤≤ 1 to combine estimates from various 
lookahead distances (note normalization factor 1 - λλλλ)
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Temporal Difference Learning:Temporal Difference Learning:
TD(TD(λλλλλλλλ) Training Rule and Algorithm) Training Rule and Algorithm

• Training Rule: Derivation from Formula
– Formula:

– Recurrence equation for Q(λλλλ)(s(t), a(t)) (recursive definition) defines update rule 

• Select a(t + i) based on current policy

•

• Algorithm
– Use above training rule

– Properties

• Sometimes converges faster than Q learning

• Converges for learning V* for any 0 ≤≤≤≤ λλλλ ≤≤≤≤ 1 [Dayan, 1992]

• Other results [Sutton, 1988; Peng and Williams, 1994]

– Application: Tesauro’s TD-Gammon uses this algorithm [Tesauro, 1995]

– Recommended book

• Reinforcement Learning [Sutton and Barto, 1998]

• http://www.cs.umass.edu/~rich/book/the-book.html
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Applying Results of RL:Applying Results of RL:
Models versus ActionModels versus Action--Value FunctionsValue Functions

• Distinction: Learning Policies with and without Models
– Model-theoretic approach

• Learning: transition function δδδδ, utility function U
• ADP component: value/policy iteration to reconstruct U from R
• Putting learning and ADP components together: decision cycle (Lecture 17)

• Function Active-ADP-Agent: Figure 20.9, Russell and Norvig
– Contrast: Q-learning

• Produces estimated action-value function

• No environment model (i.e., no explicit representation of state transitions)
• NB: this includes both exact and approximate (e.g., TD) Q-learning
• Function Q-Learning-Agent: Figure 20.12, Russell and Norvig

• Ramifications: A Debate
– Knowledge in model-theoretic approach corresponds to “pseudo-experience” in 

TD (see: 20.3, Russell and Norvig; distal supervised learning; phantom induction)

– Dissenting conjecture: model-free methods “reduce need for knowledge”
– At issue: when is it worth while to combine analytical, inductive learning?
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Applying Results of RL:Applying Results of RL:
MDP Decision Cycle RevisitedMDP Decision Cycle Revisited

• Function Decision-Theoretic-Agent (Percept)
– Percept: agent’s input; collected evidence about world (from sensors)

– COMPUTE updated probabilities for current state based on available evidence, 
including current percept and previous action (prediction, estimation)

– COMPUTE outcome probabilities for actions,
given action descriptions and probabilities of current state (decision model)

– SELECT action with highest expected utility,
given probabilities of outcomes and utility functions

– RETURN action

• Situated Decision Cycle
– Update percepts, collect rewards

– Update active model (prediction and estimation; decision model)

– Update utility function: value iteration

– Selecting action to maximize expected utility: performance element

• Role of Learning: Acquire State Transition Model, Utility Function
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Generalization in RLGeneralization in RL

• Explicit Representation
– One output value for each input tuple

– Assumption: functions represented in tabular form for DP

• Utility U: state →→→→ value, Uh: state vector →→→→ value
• Transition M: state ×××× state ×××× action →→→→ probability
• Reward R: state →→→→ value, r: state ×××× action →→→→ value
• Action-value Q: state ×××× action →→→→ value

– Reasonable for small state spaces, breaks down rapidly with more states

• ADP convergence, time per iteration becomes unmanageable
• “Real-world” problems and games: still intractable even for approximate ADP

• Solution Approach: Implicit Representation
– Compact representation: allows calculation of U, M, R, Q
– e.g., checkers:

• Input Generalization
– Key benefit of compact representation: inductive generalization over states
– Implicit representation : RL :: representation bias : supervised learning
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Relationship to Dynamic ProgrammingRelationship to Dynamic Programming

• Q-Learning
– Exact version closely related to DP-based MDP solvers

– Typical assumption: perfect knowledge of δδδδ(s, a) and r(s, a)

– NB: remember, does not mean

• Accessibility (total observability of s)

• Determinism of δδδδ, r

• Situated Learning
– aka in vivo, online, lifelong learning

– Achieved by moving about, interacting with real environment

– Opposite: simulated, in vitro learning 

• Bellman’s Equation [Bellman, 1957]

– Note very close relationship to definition of optimal policy:

– Result: ππππ satisfies above equation iff ππππ =ππππ*
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Subtle Issues and Subtle Issues and 
Continuing ResearchContinuing Research

• Current Research Topics
– Replace table of Q estimates with ANN or other generalizer

• Neural reinforcement learning (next time)
• Genetic reinforcement learning (next week)

– Handle case where state only partially observable

• Estimation problem clear for ADPs (many approaches, e.g., Kalman filtering)
• How to learn Q in MDPs?

– Optimal exploration strategies

– Extend to continuous action, state
– Knowledge: incorporate or attempt to discover?

• Role of Knowledge in Control Learning
– Method of incorporating domain knowledge: simulated experiences

• Distal supervised learning [Jordan and Rumelhart, 1992]

• Pseudo-experience [Russell and Norvig, 1995]
• Phantom induction [Brodie and Dejong, 1998])

– TD Q-learning: knowledge discovery or brute force (or both)?
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RL Applications:RL Applications:
Game PlayingGame Playing

• Board Games
– Checkers

• Samuel’s player [Samuel, 1959]: precursor to temporal difference methods

• Early case of multi-agent learning and co-evolution

– Backgammon

• Predecessor: Neurogammon (backprop-based) [Tesauro and Sejnowski, 1989]

• TD-Gammon: based on TD(λλλλ) [Tesauro, 1992]

• Robot Games
– Soccer

• RoboCup web site: http://www.robocup.org

• Soccer server manual: http://www.dsv.su.se/~johank/RoboCup/manual/

– Air hockey: http://cyclops.csl.uiuc.edu

• Discussions Online (Other Games and Applications)
– Sutton and Barto book: http://www.cs.umass.edu/~rich/book/11/node1.html
– Sheppard’s thesis: http://www.cs.jhu.edu/~sheppard/thesis/node32.html
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RL Applications:RL Applications:
Control and OptimizationControl and Optimization

• Mobile Robot Control: Autonomous Exploration and Navigation

– USC Information Sciences Institute (Shen et al): http://www.isi.edu/~shen

– Fribourg (Perez): http://lslwww.epfl.ch/~aperez/robotreinfo.html

– Edinburgh (Adams et al): http://www.dai.ed.ac.uk/groups/mrg/MRG.html

– CMU (Mitchell et al): http://www.cs.cmu.edu/~rll

• General Robotics: Smart Sensors and Actuators

– CMU robotics FAQ: http://www.frc.ri.cmu.edu/robotics-faq/TOC.html

– Colorado State (Anderson et al): http://www.cs.colostate.edu/~anderson/res/rl/

• Optimization: General Automation 

– Planning

• UM Amherst: http://eksl-www.cs.umass.edu/planning-resources.html

• USC ISI (Knoblock et al) http://www.isi.edu/~knoblock

– Scheduling: http://www.cs.umass.edu/~rich/book/11/node7.html
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TerminologyTerminology

• Reinforcement Learning (RL)

– Definition: learning policies ππππ : state →→→→ action from <<state, action>, reward>

• Markov decision problems (MDPs): finding control policies to choose optimal 
actions

• Q-learning: produces action-value function Q : state ×××× action →→→→ value 
(expected utility)

– Active learning: experimentation (exploration) strategies

• Exploration function: f(u, n)

• Tradeoff: greed (u) preference versus novelty (1 / n) preference, aka curiosity

• Temporal Diffference (TD) Learning
– λλλλ: constant for blending alternative training estimates from multi-step lookahead

– TD(λλλλ): algorithm that uses recursive training rule with λλλλ-estimates

• Generalization in RL
– Explicit representation: tabular representation of U, M, R, Q

– Implicit representation: compact (aka compressed) representation
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Summary PointsSummary Points

• Reinforcement Learning (RL) Concluded
– Review: RL framework (learning from <<state, action>, reward>

– Continuing research topics
• Active learning: experimentation (exploration) strategies
• Generalization in RL: made possible by implicit representations

• Temporal Diffference (TD) Learning
– Family of algorithms for RL: generalizes Q-learning

– More than one step of lookahead
– Many more TD learning results, applications: [Sutton and Barto, 1998]

• More Discussions Online
– Harmon’s tutorial: http://www-anw.cs.umass.edu/~mharmon/rltutorial/
– CMU RL Group: http://www.cs.cmu.edu/Groups/reinforcement/www/
– Michigan State RL Repository: http://www.cse.msu.edu/rlr/

• Next Time: Neural Computation (Chapter 19, Russell and Norvig)
– ANN learning: advanced topics (associative memory, neural RL)
– Numerical learning techniques (ANNs, BBNs, GAs): relationships


