Lecture 18

More Reinforcement Learning:
Temporal Differences

Thursday 31 October 2002

William H. Hsu

Department of Computing and Information Sciences, KSU
http://www.kddresearch.org
http://www.cis.ksu.edu/~bhsu

Readings:
Sections 13.5-13.8, Mitchell
Sections 20.2-20.7, Russell and Norvig Ks“

CIS 732: Machine Learning and Pattern Recognition Kansas State University

Department of Computing and Information Sciences



Lecture QOutline

 Readings: 13.1-13.4, Mitchell; 20.2-20.7, Russell and Norvig
« This Week’s Paper Review: “Connectionist Learning Procedures”, Hinton
« Suggested Exercises: 13.4, Mitchell; 20.11, Russell and Norvig
* Reinforcement Learning (RL) Concluded
— Control policies that choose optimal actions
— MDP framework, continued

— Continuing research topics
« Active learning: experimentation (exploration) strategies

 Generalization in RL
 Next: ANNs and GAs for RL

« Temporal Diffference (TD) Learning
— Family of dynamic programming algorithms for RL
« Generalization of Q learning
« More than one step of lookahead

— More on TD learning in action KS“
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Quick Review:

Policy Learning Framework

Agent Policy

State : Reward @ \Action

Environment

» Interactive Model
— State s (may be partially observable)
— Agent selects action a based upon (current) policy
* Incremental reward (aka reinforcement) Hs, a) presented to agent

« Taking action puts agent into new state s’ = §(s, a) in environment

— Agent uses decision cycle to estimate s’, compute outcome distributions, select
new actions

* Reinforcement Learning Problem
— Given
- Observation sequence s,
- Discount factor ye [0, 1)

— Learn to: choose actions that maximize r(f) + yr(t+ 1) + Pr{t + 2) + ... KS“
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Quick Review:

Q Learning

« Deterministic World Scenario
— “Knowledge-free” (here, model-free) search for policy n from policy space II

— For each possible policy & € II, can define an evaluation function over states:
V7(s)=r(t)+yr (t+1)+y2r(t+1)+...

= Zy'r(t+ i
i=0
where 1), {t+ 1), {t + 2), ... are generated by following policy & starting at state s
— Restated, task is to learn optimal policy ©n*

m*=argmax V"(s),vs

- Finding Optimal Policy
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r(state, action) Q(state, action) values V'(state) values One optimal policy

immediate reward values

« Q-Learning Training Rule  Q(s,a)« r(s, a)+y max Q(s',a’) KS“
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Learning Scenarios

« First Learning Scenario
— Passive learning in known environment (Section 20.2, Russell and Norvig)

— Intuition (passive learning in known and unknown environments)
- Training sequences (S;, Sy, -.., Sy, I' = U(S,))
« Learner has fixed policy n; determine benefits (expected total reward)

— Important note: known # accessible # deterministic (even if transition model
known, state may not be directly observable and may be stochastic)

— Solutions: naive updating (LMS), dynamic programming, temporal differences
 Second Learning Scenario
— Passive learning in unknown environment (Section 20.3, Russell and Norvig)

— Solutions: LMS, temporal differences; adaptation of dynamic programming

« Third Learning Scenario
— Active learning in unknown environment (Sections 20.4-20.6, Russell and Norvig)

— Policy must be learned (e.g., through application and exploration)
— Solutions: dynamic programming (Q-learning), temporal differences KS“
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Reinforcement Learning Methods

« Solution Approaches
— Naive updating: least-mean-square (LMS) utility update
— Dynamic programming (DP): solving constraint equations
- Adaptive DP (ADP): includes value iteration, policy iteration, exact Q-learning
» Passive case: teacher selects sequences (irajectories through environment)

» Active case: exact Q-learning (recursive exploration)
— Method of temporal differences (TD): approximating constraint equations
 Intuitive idea: use observed transitions to adjust U(s) or Q(s, a)

« Active case: approximate Q-learning (TD Q-learning)

- Passive: Examples
— Temporal differences: U(s) < U(s) + Y(R(s) + U(s’) - U(s))
— No exploration function
* Active: Examples
— ADP (value iteration): U(s) < R(s) + y max, (Xs (M s{(a) - U(s")))
— Exploration (exact Q-learning): Q(s,a)« r(s, a)+y max Q(s',a’) KS“
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Active Learning and Exploration

« Active Learning Framework

— So far: optimal behavior is to choose action with maximum expected utility
(MEU), given current estimates

— Proposed revision: action has two outcomes
« Gains rewards on current sequence (agent preference: greed)

- Affects percepts — ability of agent to learn — ability of agent to receive future
rewards (agent preference: “investment in education”, aka novelty, curiosity)

— Tradeoff: comfort (lower risk) reduced payoff versus higher risk, high potential
— Problem: how to quantify tradeoff, reward latter case?

« Exploration

— Define: exploration function - e.g., {u,n)=(n<N)? R*: u
« u: expected utility under optimistic estimate; fincreasing in u (greed)

* n= N(s, a): number of trials of action-value pair; fdecreasing in n (curiosity)
— Optimistic utility estimator: U*(s) < R(s) + y max, f (2 (M, ;{(a) - U*(s)), N(s, a))
« Key Issues: Generalization (Today); Allocation (CIS 830) Ks“
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Temporal Difference Learning:

Rationale and Formula

 Q-Learning
— Reduce discrepancy between successive estimates
— Qestimates
» One step time difference
- Q"(s(t),a(t)=rt)+y max Q(s(t+1), a)
« Method of Temporal Differences (TD(A)), aka Temporal Differencing

— Why not two steps?
Q®(s(t), a(t))=r(t)+yr (t+1)+y? max Q(s(t+2), a)
— Or n steps? ’
Q""(s(t), a(t))=r(t)+yr (t+1)+...+y" r(t+n-1)+y" max Q(s(t + n), a)

— TDQ\) formula )

« Blends all of these

- @'(s(t), a(t)=(1-A) Q" (s(t), a(t))+AQ @(s(t), a(t))+A2Q®)(s(t), a(t))+ ... |
— Intuitive idea: use constant 0 < A <1 to combine estimates from various

lookahead distances (note normalization factor 1 - ) KS“
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Temporal Difference Learning:

TD(A) Training Rule and Algorithm

« Training Rule: Derivation from Formula
— Formula: @ (s(t),a(t)=(1-A) Q" (s(t), a(t))+AQ @ (s(t), a(t))+A2Q®)(s(t), a(t))+... |
— Recurrence equation for @QM(s(f), a(f)) (recursive definition) defines update rule

» Select a(t + i) based on current policy
© @ (s(t), a(t))= r(t)+y|(1-2)max Q(s(t +1), a)+A @ (s(t+1), alt +1)
« Algorithm
— Use above training rule
— Properties
- Sometimes converges faster than Q learning
« Converges for learning V* for any 0 <A <1 [Dayan, 1992]
» Other results [Sutton, 1988; Peng and Williams, 1994]
— Application: Tesauro’s TD-Gammon uses this algorithm [Tesauro, 1995]
— Recommended book
* Reinforcement Learning [Sutton and Barto, 1998]
« http://www.cs.umass.edu/~rich/book/the-book.html KS“
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Applying Results of RL:

Models versus Action-Value Functions

« Distinction: Learning Policies with and without Models

— Model-theoretic approach
« Learning: transition function 9, utility function U
« ADP component: value/policy iteration to reconstruct U from R
« Putting learning and ADP components together: decision cycle (Lecture 17)
» Function Active-ADP-Agent: Figure 20.9, Russell and Norvig

— Contrast: Q-learning
« Produces estimated action-value function
* No environment model (i.e., no explicit representation of state transitions)
» NB: this includes both exact and approximate (e.g., TD) Q-learning
« Function Q-Learning-Agent: Figure 20.12, Russell and Norvig

« Ramifications: A Debate

— Knowledge in model-theoretic approach corresponds to “pseudo-experience” in
TD (see: 20.3, Russell and Norvig; distal supervised learning; phantom induction)

— Dissenting conjecture: model-free methods “reduce need for knowledge”
— At issue: when is it worth while to combine analytical, inductive learning? Ks“
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Applying Results of RL:

MDP Decision Cycle Revisited

* Function Decision-Theoretic-Agent (Percept)

Percept: agent’s input; collected evidence about world (from sensors)

COMPUTE updated probabilities for current state based on available evidence,
including current percept and previous action (prediction, estimation)

COMPUTE outcome probabilities for actions,
given action descriptions and probabilities of current state (decision model)

SELECT action with highest expected utility,
given probabilities of outcomes and utility functions

RETURN action

- Situated Decision Cycle

Update percepts, collect rewards

Update active model (prediction and estimation; decision model)
Update utility function: value iteration

Selecting action to maximize expected utility: performance element

* Role of Learning: Acquire State Transition Model, Utility Function Ks“
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Generalization in RL

- Explicit Representation
— One output value for each input tuple
— Assumption: functions represented in tabular form for DP

 Utility U: state — value, U,: state vector — value
» Transition M: state x state x action — probability
 Reward R: state — value, r: state x action — value
« Action-value Q: state x action — value
— Reasonable for small state spaces, breaks down rapidly with more states
- ADP convergence, time per iteration becomes unmanageable
- “Real-world” problems and games: still intractable even for approximate ADP
« Solution Approach: Implicit Representation
— Compact representation: allows calculation of U, M, R, Q
— e.g., checkers: V(b)=w, +w,bp(b)+w,rp(b)+w,bk(b)+ w,rk(b)+w_bt(b)+ w,rt(b)
* Input Generalization
— Key benefit of compact representation: inductive generalization over states
— Implicit representation : RL :: representation bias : supervised learning KS“
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Relationship to Dynamic Programming

* Q-Learning
— Exact version closely related to DP-based MDP solvers
— Typical assumption: perfect knowledge of d(s, a) and r(s, a)
— NB: remember, does not mean
» Accessibility (total observability of s)
* Determinism of o, r
- Situated Learning
— aka in vivo, online, lifelong learning

— Achieved by moving about, interacting with real environment
— Opposite: simulated, in vitro learning

 Bellman’s Equation [Bellman, 1957]

(vse S).V'(s)=Elr(s,n(s))+yV "(5(s,m(s))

— Note very close relationship to definition of optimal policy:
m*=argmax V"(s),vs

— Result: & satisfies above equation iff & =n* KS“
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Subtle Issues and
Continuing Research

« Current Research Topics

— Replace table of Q estimates with ANN or other generalizer
* Neural reinforcement learning (next time)
* Genetic reinforcement learning (next week)

— Handle case where state only partially observable
- Estimation problem clear for ADPs (many approaches, e.g., Kalman filtering)
 How to learn Q in MDPs?

— Optimal exploration strategies

— Extend to continuous action, state

— Knowledge: incorporate or attempt to discover?

« Role of Knowledge in Control Learning
— Method of incorporating domain knowledge: simulated experiences
» Distal supervised learning [Jordan and Rumelhart, 1992]
» Pseudo-experience [Russell and Norvig, 1995]
- Phantom induction [Brodie and Dejong, 1998])
— TD Q-learning: knowledge discovery or brute force (or both)? Ks“
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RL Applications:

Game Playing

- Board Games
— Checkers
« Samuel’s player [Samuel, 1959]: precursor to temporal difference methods
« Early case of multi-agent learning and co-evolution

— Backgammon
» Predecessor: Neurogammon (backprop-based) [Tesauro and Sejnowski, 1989]
« TD-Gammon: based on TD(\A) [Tesauro, 1992]

 Robot Games
— Soccer
* RoboCup web site: http://www.robocup.orq

« Soccer server manual: http:/www.dsv.su.se/~johank/RoboCup/manual/

— Air hockey: http://cyclops.csl.uiuc.edu

« Discussions Online (Other Games and Applications)

— Sutton and Barto book: http://www.cs.umass.edu/~rich/book/11/node1.himl
— Sheppard’s thesis: http://www.cs.jhu.edu/~sheppard/thesis/node32.html KS“

CIS 732: Machine Learning and Pattern Recognition Kansas State University

Department of Computing and Information Sciences



RL Applications:

Control and Optimization

- Mobile Robot Control: Autonomous Exploration and Navigation

— USC Information Sciences Institute (Shen et al): hitp://www.isi.edu/~shen

— Fribourg (Perez): hitp://Isliwww.epfl.ch/~aperez/robotreinfo.html

— Edinburgh (Adams et al): http://www.dai.ed.ac.uk/groups/mrg/MRG.html
— CMU (Mitchell et al): http://www.cs.cmu.edu/~rll

« General Robotics: Smart Sensors and Actuators
— CMU robotics FAQ: http://www.frc.ri.cmu.edu/robotics-faq/TOC.hitml

— Colorado State (Anderson et al): http://www.cs.colostate.edu/~anderson/res/rl/

« Optimization: General Automation
— Planning
* UM Ambherst: http://eksl-www.cs.umass.edu/planning-resources.html
« USC ISI (Knoblock et al) http://www.isi.edu/~knoblock

— Scheduling: http://www.cs.umass.edu/~rich/book/11/node7.himl

KSU
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Terminology

 Reinforcement Learning (RL)

— Definition: learning policies n : state — action from <<state, action>, reward>

« Markov decision problems (MDPs): finding control policies to choose optimal
actions

« Q-learning: produces action-value function Q : state x action — value
(expected utility)

— Active learning: experimentation (exploration) strategies

» Exploration function: f(u, n)

- Tradeoff: greed (u) preference versus novelty (1 / n) preference, aka curiosity
 Temporal Diffference (TD) Learning
— A: constant for blending alternative training estimates from multi-step lookahead
— TD()): algorithm that uses recursive training rule with A-estimates

« Generalization in RL

— Explicit representation: tabular representation of U, M, R, Q

— Implicit representation: compact (aka compressed) representation KS“
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Summary Points

* Reinforcement Learning (RL) Concluded
— Review: RL framework (learning from <<state, action>, reward>
— Continuing research topics
« Active learning: experimentation (exploration) strategies
» Generalization in RL: made possible by implicit representations
 Temporal Diffference (TD) Learning
— Family of algorithms for RL: generalizes Q-learning

— More than one step of lookahead
— Many more TD learning results, applications: [Sutton and Barto, 1998]
« More Discussions Online
— Harmon'’s tutorial: http://www-anw.cs.umass.edu/~mharmon/rltutorial/
— CMU RL Group: http:/www.cs.cmu.edu/Groups/reinforcement/www/
— Michigan State RL Repository: http://www.cse.msu.edu/rir/
« Next Time: Neural Computation (Chapter 19, Russell and Norvig)
— ANN learning: advanced topics (associative memory, neural RL)
— Numerical learning techniques (ANNs, BBNs, GAs): relationships KS“
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