

More Reinforcement Learning: Temporal Differences

Thursday 31 October 2002

William H. Hsu

Department of Computing and Information Sciences, KSU

http://www.kddresearch.org http://www.cis.ksu.edu/~bhsu

Readings: Sections 13.5-13.8, Mitchell Sections 20.2-20.7, Russell and Norvig

CIS 732: Machine Learning and Pattern Recognition

Lecture Outline

- Readings: 13.1-13.4, Mitchell; 20.2-20.7, Russell and Norvig
- This Week's Paper Review: "Connectionist Learning Procedures", Hinton
- Suggested Exercises: 13.4, Mitchell; 20.11, Russell and Norvig
- <u>Reinforcement Learning (RL) Concluded</u>
 - Control policies that choose optimal actions
 - MDP framework, continued
 - Continuing research topics
 - Active learning: <u>experimentation (exploration) strategies</u>
 - Generalization in RL
 - Next: ANNs and GAs for RL
- <u>Temporal Diffference (TD) Learning</u>
 - Family of dynamic programming algorithms for RL
 - Generalization of *Q* learning
 - More than one step of lookahead
 - More on TD learning in action

Quick Review: Policy Learning Framework

- Interactive Model
 - State s (may be partially observable)
 - Agent selects action a based upon (current) policy
 - Incremental reward (aka reinforcement) r(s, a) presented to agent
 - Taking action puts agent into new state $s' = \delta(s, a)$ in environment
 - Agent uses <u>decision cycle</u> to estimate s', compute outcome distributions, select new actions
- Reinforcement Learning Problem
 - Given
 - Observation sequence $\mathbf{S}_0 \xrightarrow{a_0:r_0} \mathbf{S}_1 \xrightarrow{a_1:r_1} \mathbf{S}_2 \xrightarrow{a_2:r_2} \cdots$
 - **Discount factor** $\gamma \in [0, 1)$
 - Learn to: choose actions that maximize $r(t) + \gamma r(t+1) + \gamma^2 r(t+2) + \dots$

CIS 732: Machine Learning and Pattern Recognition

Quick Review: Q Learning

- Deterministic World Scenario
 - "Knowledge-free" (here, model-free) search for policy π from policy space Π
 - For each possible policy $\pi \in \Pi$, can define an evaluation function over states: $V^{\pi}(s) \equiv r(t) + \gamma r(t+1) + \gamma^2 r(t+1) + \dots$

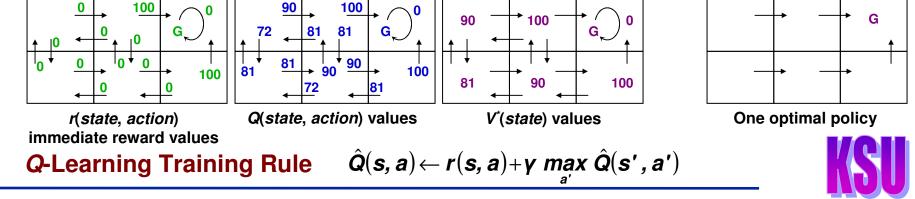
$$\equiv \sum_{i=0}^{\infty} \boldsymbol{\gamma}^{i} \boldsymbol{r} (\boldsymbol{t} + \boldsymbol{i})$$

where r(t), r(t + 1), r(t + 2), ... are generated by following policy π starting at state s

- Restated, task is to learn optimal policy π^*

$$\pi^* \equiv \arg \max_{\pi} V^{\pi}(s), \forall s$$

Finding Optimal Policy



CIS 732: Machine Learning and Pattern Recognition

Learning Scenarios

- First Learning Scenario
 - Passive learning in known environment (Section 20.2, Russell and Norvig)
 - Intuition (passive learning in known and unknown environments)
 - Training sequences $(s_1, s_2, ..., s_n, r = U(s_n))$
 - Learner has fixed policy π ; determine benefits (expected total reward)
 - Important note: known ≠ accessible ≠ deterministic (even if transition model known, state may not be directly observable and may be stochastic)
 - Solutions: naïve updating (LMS), dynamic programming, temporal differences
- Second Learning Scenario
 - Passive learning in unknown environment (Section 20.3, Russell and Norvig)
 - Solutions: LMS, temporal differences; adaptation of dynamic programming
- Third Learning Scenario
 - Active learning in unknown environment (Sections 20.4-20.6, Russell and Norvig)
 - Policy must be learned (e.g., through application and exploration)
 - Solutions: dynamic programming (*Q*-learning), temporal differences

Reinforcement Learning Methods

- Solution Approaches
 - Naïve updating: least-mean-square (LMS) utility update
 - <u>Dynamic programming (DP)</u>: *solving* constraint equations
 - <u>Adaptive DP (ADP)</u>: includes value iteration, policy iteration, exact *Q*-learning
 - Passive case: teacher selects sequences (trajectories through environment)
 - Active case: exact Q-learning (recursive exploration)
 - Method of temporal differences (TD): *approximating* constraint equations
 - Intuitive idea: use observed transitions to adjust U(s) or Q(s, a)
 - Active case: approximate Q-learning (TD Q-learning)
- Passive: Examples
 - Temporal differences: $U(s) \leftarrow U(s) + \gamma(R(s) + U(s') U(s))$
 - No exploration function
- Active: Examples
 - ADP (value iteration): $U(s) \leftarrow R(s) + \gamma \max_{a} (\sum_{s'} (M_{s,s'}(a) \cdot U(s')))$
 - Exploration (exact *Q*-learning): $\hat{Q}(s, a) \leftarrow r(s, a) + \gamma \max \hat{Q}(s', a')$

CIS 732: Machine Learning and Pattern Recognition

Active Learning and Exploration

- Active Learning Framework
 - So far: optimal behavior is to choose action with <u>maximum expected utility</u> (<u>MEU</u>), given current estimates
 - Proposed revision: action has two outcomes
 - Gains rewards on current sequence (agent preference: greed)
 - Affects percepts → ability of agent to learn → ability of agent to receive future rewards (agent preference: "investment in education", *aka* <u>novelty</u>, <u>curiosity</u>)
 - Tradeoff: comfort (lower risk) reduced payoff versus higher risk, high potential
 - Problem: how to quantify tradeoff, reward latter case?
- Exploration
 - Define: exploration function e.g., f(u, n) = (n < N)? R^+ : u
 - *u*: expected utility under <u>optimistic</u> estimate; *f* increasing in *u* (greed)
 - $n \equiv N(s, a)$: number of trials of action-value pair; *f* decreasing in *n* (curiosity)
 - <u>Optimistic</u> utility estimator: $U^{t}(s) \leftarrow R(s) + \gamma \max_{a} f(\sum_{s'} (M_{s,s'}(a) \cdot U^{t}(s')), N(s, a))$
- Key Issues: Generalization (Today); Allocation (CIS 830)

Temporal Difference Learning: Rationale and Formula

- Q-Learning
 - Reduce discrepancy between successive estimates
 - **Q** estimates
 - One step time difference
 - $Q^{(1)}(s(t), a(t)) \equiv r(t) + \gamma \max_{a} \hat{Q}(s(t+1), a)$
- Method of <u>Temporal Differences (*TD*(λ)</u>), aka <u>Temporal Differencing</u>
 - Why not two steps?

$$\boldsymbol{Q}^{(2)}(\boldsymbol{s}(t),\boldsymbol{a}(t)) \equiv \boldsymbol{r}(t) + \boldsymbol{\gamma}\boldsymbol{r}(t+1) + \boldsymbol{\gamma}^{2} \max_{\boldsymbol{a}} \hat{\boldsymbol{Q}}(\boldsymbol{s}(t+2),\boldsymbol{a})$$

– Or *n* steps?

$$\boldsymbol{Q}^{(n)}(\boldsymbol{s}(t),\boldsymbol{a}(t)) \equiv \boldsymbol{r}(t) + \boldsymbol{\gamma}\boldsymbol{r}(t+1) + \ldots + \boldsymbol{\gamma}^{(n-1)}\boldsymbol{r}(t+n-1) + \boldsymbol{\gamma}^{n} \max_{\boldsymbol{\alpha}} \hat{\boldsymbol{Q}}(\boldsymbol{s}(t+n),\boldsymbol{a})$$

- *TD*(λ) formula
 - Blends all of these
 - $Q^{\lambda}(s(t), a(t)) \equiv (1-\lambda) \left[Q^{(1)}(s(t), a(t)) + \lambda Q^{(2)}(s(t), a(t)) + \lambda^2 Q^{(3)}(s(t), a(t)) + \dots \right]$
- <u>Intuitive idea</u>: use constant $0 \le \lambda \le 1$ to combine estimates from various lookahead distances (note normalization factor 1 λ)

CIS 732: Machine Learning and Pattern Recognition

Temporal Difference Learning: TD(λ) Training Rule and Algorithm

- Training Rule: Derivation from Formula
 - Formula: $Q^{\lambda}(s(t), a(t)) \equiv (1-\lambda) \left[Q^{(1)}(s(t), a(t)) + \lambda Q^{(2)}(s(t), a(t)) + \lambda^2 Q^{(3)}(s(t), a(t)) + \dots \right]$
 - <u>Recurrence equation</u> for $Q^{(\lambda)}(s(t), a(t))$ (recursive definition) defines update rule
 - Select *a*(*t* + *i*) based on current policy
 - $Q^{\lambda}(s(t), a(t)) = r(t) + \gamma \left[(1-\lambda) \max_{a} \hat{Q}(s(t+1), a) + \lambda Q^{\lambda}(s(t+1), a(t+1)) \right]$
- Algorithm
 - Use above training rule
 - Properties
 - Sometimes converges faster than Q learning
 - Converges for learning V^* for any $0 \le \lambda \le 1$ [Dayan, 1992]
 - Other results [Sutton, 1988; Peng and Williams, 1994]
 - Application: Tesauro's *TD-Gammon* uses this algorithm [Tesauro, 1995]
 - Recommended book
 - Reinforcement Learning [Sutton and Barto, 1998]
 - http://www.cs.umass.edu/~rich/book/the-book.html

Applying Results of RL: Models versus Action-Value Functions

- Distinction: Learning Policies with and without Models
 - Model-theoretic approach
 - Learning: transition function δ , utility function U
 - ADP component: value/policy iteration to reconstruct U from R
 - Putting learning and ADP components together: <u>decision cycle</u> (Lecture 17)
 - Function Active-ADP-Agent: Figure 20.9, Russell and Norvig
 - Contrast: Q-learning
 - Produces estimated action-value function
 - No environment model (i.e., no explicit representation of state transitions)
 - *NB*: this includes both exact and approximate (e.g., TD) *Q*-learning
 - Function Q-Learning-Agent: Figure 20.12, Russell and Norvig
- Ramifications: A Debate
 - Knowledge in model-theoretic approach corresponds to "pseudo-experience" in TD (see: 20.3, Russell and Norvig; <u>distal supervised learning</u>; <u>phantom induction</u>)
 - Dissenting conjecture: model-free methods "reduce need for knowledge"
 - At issue: when is it worth while to combine analytical, inductive learning?

Applying Results of RL: MDP Decision Cycle Revisited

- Function *Decision-Theoretic-Agent* (*Percept*)
 - Percept: agent's input; collected evidence about world (from sensors)
 - COMPUTE updated <u>probabilities for current state</u> based on available evidence, including current percept and previous action (prediction, estimation)
 - COMPUTE <u>outcome probabilities</u> for actions, given action descriptions and probabilities of current state (decision model)
 - SELECT <u>action</u> with highest expected utility, given probabilities of outcomes and utility functions
 - **RETURN** action
- Situated Decision Cycle
 - Update percepts, collect rewards
 - Update active model (prediction and estimation; decision model)
 - Update utility function: value iteration
 - Selecting action to maximize expected utility: performance element
- Role of Learning: Acquire State Transition Model, Utility Function

Generalization in RL

- Explicit Representation
 - One output value for each input tuple
 - Assumption: functions represented in tabular form for DP
 - Utility U: state \rightarrow value, U_h: state vector \rightarrow value
 - Transition *M*: *state* × *state* × *action* → *probability*
 - Reward *R*: *state* → *value*, *r*: *state* × *action* → *value*
 - Action-value *Q*: *state* × *action* → *value*
 - Reasonable for small state spaces, breaks down rapidly with more states
 - ADP convergence, time per iteration becomes unmanageable
 - "Real-world" problems and games: still intractable even for approximate ADP
- Solution Approach: <u>Implicit Representation</u>
 - Compact representation: allows calculation of U, M, R, Q
 - e.g., checkers: $\hat{V}(b) = w_0 + w_1 b p(b) + w_2 r p(b) + w_3 b k(b) + w_4 r k(b) + w_5 b t(b) + w_6 r t(b)$
- Input Generalization
 - Key benefit of compact representation: *inductive generalization over states*
 - Implicit representation : RL :: representation bias : supervised learning

Relationship to Dynamic Programming

- Q-Learning
 - Exact version closely related to DP-based MDP solvers
 - Typical assumption: perfect knowledge of $\delta(s, a)$ and r(s, a)
 - NB: remember, does not mean
 - Accessibility (total observability of s)
 - Determinism of δ , r
- <u>Situated</u> Learning
 - aka <u>in vivo</u>, <u>online</u>, <u>lifelong</u> learning
 - Achieved by moving about, interacting with real environment
 - Opposite: simulated, in vitro learning
- Bellman's Equation [Bellman, 1957]

$$(\forall s \in S)$$
 . $V^*(s) = E[r(s, \pi(s)) + \gamma V^*(\delta(s, \pi(s)))]$

- Note very close relationship to definition of optimal policy:

$$\pi^* \equiv \arg \max_{\pi} V^{\pi}(s), \forall s$$

- Result: π satisfies above equation *iff* $\pi = \pi^*$

Department of Computing and Information Sciences

Subtle Issues and Continuing Research

- Current Research Topics
 - Replace table of **Q** estimates with ANN or other generalizer
 - Neural reinforcement learning (next time)
 - Genetic reinforcement learning (next week)
 - Handle case where state only partially observable
 - Estimation problem clear for ADPs (many approaches, e.g., Kalman filtering)
 - How to learn Q in MDPs?
 - Optimal exploration strategies
 - Extend to continuous action, state
 - Knowledge: incorporate or attempt to discover?
- Role of Knowledge in Control Learning
 - Method of incorporating domain knowledge: simulated experiences
 - Distal supervised learning [Jordan and Rumelhart, 1992]
 - <u>Pseudo-experience</u> [Russell and Norvig, 1995]
 - Phantom induction [Brodie and Dejong, 1998])
 - TD Q-learning: knowledge discovery or brute force (or both)?

RL Applications: Game Playing

- Board Games
 - Checkers
 - Samuel's player [Samuel, 1959]: precursor to temporal difference methods
 - Early case of <u>multi-agent learning</u> and <u>co-evolution</u>
 - Backgammon
 - Predecessor: Neurogammon (backprop-based) [Tesauro and Sejnowski, 1989]
 - *TD-Gammon*: based on *TD*(λ) [Tesauro, 1992]
- Robot Games
 - Soccer
 - RoboCup web site: <u>http://www.robocup.org</u>
 - Soccer server manual: <u>http://www.dsv.su.se/~johank/RoboCup/manual/</u>
 - Air hockey: <u>http://cyclops.csl.uiuc.edu</u>
- Discussions Online (Other Games and Applications)
 - Sutton and Barto book: <u>http://www.cs.umass.edu/~rich/book/11/node1.html</u>
 - Sheppard's thesis: http://www.cs.jhu.edu/~sheppard/thesis/node32.html

RL Applications: Control and Optimization

- Mobile Robot Control: Autonomous Exploration and Navigation
 - USC Information Sciences Institute (Shen et al): http://www.isi.edu/~shen
 - Fribourg (Perez): <u>http://lslwww.epfl.ch/~aperez/robotreinfo.html</u>
 - Edinburgh (Adams et al): <u>http://www.dai.ed.ac.uk/groups/mrg/MRG.html</u>
 - CMU (Mitchell et al): http://www.cs.cmu.edu/~rll
- General Robotics: Smart Sensors and Actuators
 - CMU robotics FAQ: <u>http://www.frc.ri.cmu.edu/robotics-faq/TOC.html</u>
 - Colorado State (Anderson et al): <u>http://www.cs.colostate.edu/~anderson/res/rl/</u>
- Optimization: General Automation
 - Planning
 - UM Amherst: <u>http://eksl-www.cs.umass.edu/planning-resources.html</u>
 - USC ISI (Knoblock et al) <u>http://www.isi.edu/~knoblock</u>
 - Scheduling: <u>http://www.cs.umass.edu/~rich/book/11/node7.html</u>

Terminology

- <u>Reinforcement Learning (RL)</u>
 - Definition: learning policies π : *state* \rightarrow *action* from <<*state*, *action*>, *reward*>
 - <u>Markov decision problems (MDPs</u>): finding control policies to choose optimal actions
 - <u>Q-learning</u>: produces action-value function Q : state × action → value (expected utility)
 - Active learning: <u>experimentation (exploration) strategies</u>
 - Exploration function: f(u, n)
 - Tradeoff: greed (u) preference versus novelty (1 / n) preference, aka curiosity
- <u>Temporal Difference (TD) Learning</u>
 - $-\lambda$: constant for blending alternative training estimates from multi-step lookahead
 - *TD*(λ): algorithm that uses recursive training rule with λ -estimates
- Generalization in RL
 - Explicit representation: tabular representation of U, M, R, Q
 - <u>Implicit representation</u>: <u>compact</u> (*aka* <u>compressed</u>) representation

Summary Points

- <u>Reinforcement Learning (RL) Concluded</u>
 - Review: RL framework (learning from << state, action>, reward>
 - Continuing research topics
 - Active learning: <u>experimentation (exploration) strategies</u>
 - Generalization in RL: made possible by implicit representations
- <u>Temporal Diffference (TD) Learning</u>
 - Family of algorithms for RL: generalizes *Q*-learning
 - More than one step of lookahead
 - Many more TD learning results, applications: [Sutton and Barto, 1998]
- More Discussions Online
 - Harmon's tutorial: http://www-anw.cs.umass.edu/~mharmon/rltutorial/
 - CMU RL Group: <u>http://www.cs.cmu.edu/Groups/reinforcement/www/</u>
 - Michigan State RL Repository: <u>http://www.cse.msu.edu/rlr/</u>
- Next Time: Neural Computation (Chapter 19, Russell and Norvig)
 - ANN learning: advanced topics (associative memory, neural RL)
 - Numerical learning techniques (ANNs, BBNs, GAs): relationships

