
Kansas State University
Department of Computing and Information SciencesCIS 732: Machine Learning and Pattern Recognition

Thursday, 07 November 2002

William H. Hsu
Department of Computing and Information Sciences, KSU

http://www.kddresearch.org
http://www.cis.ksu.edu/~bhsu

Readings:
Section 7.5, Mitchell

“Bagging, Boosting, and C4.5”, Quinlan
Section 5, “MLC++ Utilities 2.0”, Kohavi and Sommerfield

Combining Classifiers:
Weighted Majority, Bagging, and Stacking

Lecture 20Lecture 20

Kansas State University
Department of Computing and Information SciencesCIS 732: Machine Learning and Pattern Recognition

Lecture OutlineLecture Outline

• Readings
– Section 7.5, Mitchell

– Section 5, MLC++ manual, Kohavi and Sommerfield

• This Week’s Paper Review: “Bagging, Boosting, and C4.5”, J. R. Quinlan

• Combining Classifiers
– Problem definition and motivation: improving accuracy in concept learning

– General framework: collection of weak classifiers to be improved

• Weighted Majority (WM)
– Weighting system for collection of algorithms

– “Trusting” each algorithm in proportion to its training set accuracy

– Mistake bound for WM

• Bootstrap Aggregating (Bagging)
– Voting system for collection of algorithms (trained on subsamples)

– When to expect bagging to work (unstable learners)

• Next Lecture: Boosting the Margin, Hierarchical Mixtures of Experts

Kansas State University
Department of Computing and Information SciencesCIS 732: Machine Learning and Pattern Recognition

Combining ClassifiersCombining Classifiers

• Problem Definition
– Given

• Training data set D for supervised learning
• D drawn from common instance space X
• Collection of inductive learning algorithms, hypothesis languages (inducers)

– Hypotheses produced by applying inducers to s(D)

• s: X vector →→→→ X’ vector (sampling, transformation, partitioning, etc.)
• Can think of hypotheses as definitions of prediction algorithms (“classifiers”)

– Return: new prediction algorithm (not necessarily ∈∈∈∈ H) for x ∈∈∈∈ X that combines
outputs from collection of prediction algorithms

• Desired Properties
– Guarantees of performance of combined prediction
– e.g., mistake bounds; ability to improve weak classifiers

• Two Solution Approaches
– Train and apply each inducer; learn combiner function(s) from result
– Train inducers and combiner function(s) concurrently

Kansas State University
Department of Computing and Information SciencesCIS 732: Machine Learning and Pattern Recognition

Principle:Principle:
Improving Weak ClassifiersImproving Weak Classifiers

Mixture
Model

6

5

3

4
2

1

First Classifier

5

1

4
2

6

3

Second Classifier

Both Classifiers

6

3

4

1

5

2

Kansas State University
Department of Computing and Information SciencesCIS 732: Machine Learning and Pattern Recognition

Framework:Framework:
Data Fusion and Mixtures of ExpertsData Fusion and Mixtures of Experts

• What Is A Weak Classifier?
– One not guaranteed to do better than random guessing (1 / number of classes)

– Goal: combine multiple weak classifiers, get one at least as accurate as strongest

• Data Fusion
– Intuitive idea

• Multiple sources of data (sensors, domain experts, etc.)

• Need to combine systematically, plausibly

– Solution approaches

• Control of intelligent agents: Kalman filtering

• General: mixture estimation (sources of data ���� predictions to be combined)

• Mixtures of Experts
– Intuitive idea: “experts” express hypotheses (drawn from a hypothesis space)

– Solution approach (next time)

• Mixture model: estimate mixing coefficients

• Hierarchical mixture models: divide-and-conquer estimation method

Kansas State University
Department of Computing and Information SciencesCIS 732: Machine Learning and Pattern Recognition

• Weight-Based Combiner
– Weighted votes: each prediction algorithm (classifier) hi maps from x ∈∈∈∈ X to hi(x)

– Resulting prediction in set of legal class labels

– NB: as for Bayes Optimal Classifier, resulting predictor not necessarily in H

• Intuitive Idea
– Collect votes from pool of prediction algorithms for each training example

– Decrease weight associated with each algorithm that guessed wrong (by a
multiplicative factor)

– Combiner predicts weighted majority label

• Performance Goals
– Improving training set accuracy

• Want to combine weak classifiers

• Want to bound number of mistakes in terms of minimum made by any one
algorithm

– Hope that this results in good generalization quality

Weighted Majority:Weighted Majority:
IdeaIdea

Kansas State University
Department of Computing and Information SciencesCIS 732: Machine Learning and Pattern Recognition

Weighted Majority:Weighted Majority:
ProcedureProcedure

• Algorithm Combiner-Weighted-Majority (D, L)
– n ←←←← L.size // number of inducers in pool

– m ←←←← D.size // number of examples <x ≡≡≡≡ D[j], c(x)>

– FOR i ←←←← 1 TO n DO

• P[i] ←←←← L[i].Train-Inducer (D) // P[i]: ith prediction algorithm

• wi ←←←← 1 // initial weight

– FOR j ←←←← 1 TO m DO // compute WM label

• q0 ←←←← 0, q1 ←←←← 0

• FOR i ←←←← 1 TO n DO

IF P[i](D[j]) = 0 THEN q0 ←←←← q0 + wi // vote for 0 (-)

IF P[i](D[j]) = 1 THEN q1 ←←←← q1 + wi // else vote for 1 (+)

Prediction[i][j] ←←←← (q0 > q1) ? 0 : ((q0 = q1) ? Random (0, 1): 1)

IF Prediction[i][j] ≠≠≠≠ D[j].target THEN // c(x) ≡≡≡≡ D[j].target

wi ←←←← ββββwi // ββββ < 1 (i.e., penalize)

– RETURN Make-Predictor (w, P)

Kansas State University
Department of Computing and Information SciencesCIS 732: Machine Learning and Pattern Recognition

Weighted Majority:Weighted Majority:
PropertiesProperties

• Advantages of WM Algorithm
– Can be adjusted incrementally (without retraining)

– Mistake bound for WM
• Let D be any sequence of training examples, L any set of inducers

• Let k be the minimum number of mistakes made on D by any L[i], 1 ≤≤≤≤ i ≤≤≤≤ n
• Property: number of mistakes made on D by Combiner-Weighted-Majority is at

most 2.4 (k + lg n)

• Applying Combiner-Weighted-Majority to Produce Test Set Predictor
– Make-Predictor: applies abstraction; returns funarg that takes input x ∈∈∈∈ Dtest

– Can use this for incremental learning (if c(x) is available for new x)

• Generalizing Combiner-Weighted-Majority
– Different input to inducers

• Can add an argument s to sample, transform, or partition D

• Replace P[i] ←←←← L[i].Train-Inducer (D) with P[i] ←←←← L[i].Train-Inducer (s(i, D))
• Still compute weights based on performance on D

– Can have qc ranging over more than 2 class labels

Kansas State University
Department of Computing and Information SciencesCIS 732: Machine Learning and Pattern Recognition

Bagging:Bagging:
IdeaIdea

• Bootstrap Aggregating aka Bagging

– Application of bootstrap sampling

• Given: set D containing m training examples

• Create S[i] by drawing m examples at random with replacement from D

• S[i] of size m: expected to leave out 0.37 of examples from D

– Bagging

• Create k bootstrap samples S[1], S[2], …, S[k]

• Train distinct inducer on each S[i] to produce k classifiers

• Classify new instance by classifier vote (equal weights)

• Intuitive Idea

– “Two heads are better than one”

– Produce multiple classifiers from one data set

• NB: same inducer (multiple instantiations) or different inducers may be used

• Differences in samples will “smooth out” sensitivity of L, H to D

Kansas State University
Department of Computing and Information SciencesCIS 732: Machine Learning and Pattern Recognition

Bagging:Bagging:
ProcedureProcedure

• Algorithm Combiner-Bootstrap-Aggregation (D, L, k)
– FOR i ←←←← 1 TO k DO

• S[i] ←←←← Sample-With-Replacement (D, m)

• Train-Set[i] ←←←← S[i]

• P[i] ←←←← L[i].Train-Inducer (Train-Set[i])

– RETURN (Make-Predictor (P, k))

• Function Make-Predictor (P, k)
– RETURN (fn x ���� Predict (P, k, x))

• Function Predict (P, k, x)
– FOR i ←←←← 1 TO k DO

Vote[i] ←←←← P[i](x)

– RETURN (argmax (Vote[i]))

• Function Sample-With-Replacement (D, m)
– RETURN (m data points sampled i.i.d. uniformly from D)

Kansas State University
Department of Computing and Information SciencesCIS 732: Machine Learning and Pattern Recognition

Bagging:Bagging:
PropertiesProperties

• Experiments

– [Breiman, 1996]: Given sample S of labeled data, do 100 times and report average

• 1. Divide S randomly into test set Dtest (10%) and training set Dtrain (90%)

• 2. Learn decision tree from Dtrain

eS ←←←← error of tree on T

• 3. Do 50 times: create bootstrap S[i], learn decision tree, prune using D

eB ←←←← error of majority vote using trees to classify T

– [Quinlan, 1996]: Results using UCI Machine Learning Database Repository

• When Should This Help?

– When learner is unstable

• Small change to training set causes large change in output hypothesis

• True for decision trees, neural networks; not true for k-nearest neighbor

– Experimentally, bagging can help substantially for unstable learners, can

somewhat degrade results for stable learners

Kansas State University
Department of Computing and Information SciencesCIS 732: Machine Learning and Pattern Recognition

Bagging:Bagging:
ContinuousContinuous--Valued DataValued Data

• Voting System: Discrete-Valued Target Function Assumed

– Assumption used for WM (version described here) as well

• Weighted vote

• Discrete choices

– Stacking: generalizes to continuous-valued targets iff combiner inducer does

• Generalizing Bagging to Continuous-Valued Target Functions

– Use mean, not mode (aka argmax, majority vote), to combine classifier outputs

– Mean = expected value

• φφφφA(x) = ED[φφφφ(x, D)]

• φφφφ(x, D) is base classifier

• φφφφA(x) is aggregated classifier

– (ED[y - φφφφ(x, D)])2 = y2 - 2y · ED[φφφφ(x, D)] + ED[φφφφ2(x, D)]

• Now using ED[φφφφ(x, D)] = φφφφA(x) and EZ2≥≥≥≥ (EZ)2, (ED[y - φφφφ(x, D)])2 ≥≥≥≥ (y - φφφφA(x))2

• Therefore, we expect lower error for the bagged predictor φφφφA

Kansas State University
Department of Computing and Information SciencesCIS 732: Machine Learning and Pattern Recognition

• Stacked Generalization aka Stacking
• Intuitive Idea

– Train multiple learners
• Each uses subsample of D
• May be ANN, decision tree, etc.

– Train combiner on validation segment
– See [Wolpert, 1992; Bishop, 1995]

Stacked Generalization
Network

Stacked Generalization:Stacked Generalization:
IdeaIdea

Combiner

Inducer Inducer

y

x11 x12

y

Predictions

Combiner

Inducer Inducer

x21 x22

y y

Predictions

Combiner

y

y y

Predictions

Kansas State University
Department of Computing and Information SciencesCIS 732: Machine Learning and Pattern Recognition

Stacked Generalization:Stacked Generalization:
ProcedureProcedure

• Algorithm Combiner-Stacked-Gen (D, L, k, n, m’, Levels)
– Divide D into k segments, S[1], S[2], …, S[k] // Assert D.size = m

– FOR i ←←←← 1 TO k DO
• Validation-Set ←←←← S[i] // m/k examples
• FOR j ←←←← 1 TO n DO

Train-Set[j] ←←←← Sample-With-Replacement (D ~ S[i], m’) // m - m/k examples
IF Levels > 1 THEN

P[j] ←←←← Combiner-Stacked-Gen (Train-Set[j], L, k, n, m’, Levels - 1)
ELSE // Base case: 1 level

P[j] ←←←← L[j].Train-Inducer (Train-Set[j])

• Combiner ←←←← L[0].Train-Inducer (Validation-Set.targets,
Apply-Each (P, Validation-Set.inputs))

– Predictor ←←←← Make-Predictor (Combiner, P)
– RETURN Predictor

• Function Sample-With-Replacement: Same as for Bagging

Kansas State University
Department of Computing and Information SciencesCIS 732: Machine Learning and Pattern Recognition

Stacked Generalization:Stacked Generalization:
PropertiesProperties

• Similar to Cross-Validation

– k-fold: rotate validation set

– Combiner mechanism based on validation set as well as training set

• Compare: committee-based combiners [Perrone and Cooper, 1993; Bishop,

1995] aka consensus under uncertainty / fuzziness, consensus models

• Common application with cross-validation: treat as overfitting control method

– Usually improves generalization performance

• Can Apply Recursively (Hierarchical Combiner)

– Adapt to inducers on different subsets of input

• Can apply s(Train-Set[j]) to transform each input data set

• e.g., attribute partitioning [Hsu, 1998; Hsu, Ray, and Wilkins, 2000]

– Compare: Hierarchical Mixtures of Experts (HME) [Jordan et al, 1991]

• Many differences (validation-based vs. mixture estimation; online vs. offline)

• Some similarities (hierarchical combiner)

Kansas State University
Department of Computing and Information SciencesCIS 732: Machine Learning and Pattern Recognition

Other CombinersOther Combiners

• So Far: Single-Pass Combiners

– First, train each inducer

– Then, train combiner on their output and evaluate based on criterion

• Weighted majority: training set accuracy

• Bagging: training set accuracy

• Stacking: validation set accuracy

– Finally, apply combiner function to get new prediction algorithm (classfier)

• Weighted majority: weight coefficients (penalized based on mistakes)

• Bagging: voting committee of classifiers

• Stacking: validated hierarchy of classifiers with trained combiner inducer

• Next: Multi-Pass Combiners

– Train inducers and combiner function(s) concurrently

– Learn how to divide and balance learning problem across multiple inducers

– Framework: mixture estimation

Kansas State University
Department of Computing and Information SciencesCIS 732: Machine Learning and Pattern Recognition

TerminologyTerminology

• Combining Classifiers
– Weak classifiers: not guaranteed to do better than random guessing

– Combiners: functions f: prediction vector ×××× instance →→→→ prediction

• Single-Pass Combiners
– Weighted Majority (WM)

• Weights prediction of each inducer according to its training-set accuracy

• Mistake bound: maximum number of mistakes before converging to correct h

• Incrementality: ability to update parameters without complete retraining

– Bootstrap Aggregating (aka Bagging)

• Takes vote among multiple inducers trained on different samples of D

• Subsampling: drawing one sample from another (D ~ DDDD)

• Unstable inducer: small change to D causes large change in h

– Stacked Generalization (aka Stacking)

• Hierarchical combiner: can apply recursively to re-stack

• Trains combiner inducer using validation set

Kansas State University
Department of Computing and Information SciencesCIS 732: Machine Learning and Pattern Recognition

Summary PointsSummary Points

• Combining Classifiers
– Problem definition and motivation: improving accuracy in concept learning

– General framework: collection of weak classifiers to be improved (data fusion)

• Weighted Majority (WM)
– Weighting system for collection of algorithms

• Weights each algorithm in proportion to its training set accuracy
• Use this weight in performance element (and on test set predictions)

– Mistake bound for WM

• Bootstrap Aggregating (Bagging)
– Voting system for collection of algorithms

– Training set for each member: sampled with replacement
– Works for unstable inducers

• Stacked Generalization (aka Stacking)
– Hierarchical system for combining inducers (ANNs or other inducers)
– Training sets for “leaves”: sampled with replacement; combiner: validation set

• Next Lecture: Boosting the Margin, Hierarchical Mixtures of Experts

