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Lecture OutlineLecture Outline

• Readings: Section 5, MLC++ 2.0 Manual [Kohavi and Sommerfield, 1996]

• Paper Review: “Bagging, Boosting, and C4.5”, J. R. Quinlan

• Boosting the Margin
– Filtering: feed examples to trained inducers, use them as “sieve” for consensus

– Resampling: aka subsampling (S[i] of fixed size m’ resampled from D)

– Reweighting: fixed size S[i] containing weighted examples for inducer 

• Mixture Model, aka Mixture of Experts (ME)

• Hierarchical Mixtures of Experts (HME)

• Committee Machines
– Static structures: ignore input signal

• Ensemble averaging (single-pass: weighted majority, bagging, stacking)

• Boosting the margin (some single-pass, some multi-pass)

– Dynamic structures (multi-pass): use input signal to improve classifiers

• Mixture of experts: training in combiner inducer (aka gating network)

• Hierarchical mixtures of experts: hierarchy of inducers, combiners
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Quick Review:Quick Review:
Ensemble AveragingEnsemble Averaging

• Intuitive Idea
– Combine experts (aka prediction algorithms, classifiers) using combiner function

– Combiner may be weight vector (WM), vote (bagging), trained inducer (stacking)

• Weighted Majority (WM)
– Weights each algorithm in proportion to its training set accuracy
– Use this weight in performance element (and on test set predictions)
– Mistake bound for WM

• Bootstrap Aggregating (Bagging)
– Voting system for collection of algorithms
– Training set for each member: sampled with replacement

– Works for unstable inducers (search for h sensitive to perturbation in D)

• Stacked Generalization (aka Stacking)
– Hierarchical system for combining inducers (ANNs or other inducers)

– Training sets for “leaves”: sampled with replacement; combiner: validation set

• Single-Pass: Train Classification and Combiner Inducers Serially
• Static Structures: Ignore Input Signal
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• Intuitive Idea
– Another type of static committee machine: can be used to improve any inducer

– Learn set of classifiers from D, but reweight examples to emphasize misclassified

– Final classifier ←←←← weighted combination of classifiers

• Different from Ensemble Averaging
– WM: all inducers trained on same D

– Bagging, stacking: training/validation partitions, i.i.d. subsamples S[i] of D

– Boosting: data sampled according to different distributions

• Problem Definition
– Given: collection of multiple inducers, large data set or example stream

– Return: combined predictor (trained committee machine)

• Solution Approaches
– Filtering: use weak inducers in cascade to filter examples for downstream ones

– Resampling: reuse data from D by subsampling (don’t need huge or “infinite” D)

– Reweighting: reuse x ∈∈∈∈ D, but measure error over weighted x

Boosting:Boosting:
IdeaIdea
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Boosting:Boosting:
ProcedureProcedure

• Algorithm Combiner-AdaBoost (D, L, k) // Resampling Algorithm
– m ←←←← D.size

– FOR i ←←←← 1 TO m DO // initialization

Distribution[i] ←←←← 1 / m // subsampling distribution

– FOR j ←←←← 1 TO k DO

• P[j] ←←←← L[j].Train-Inducer (Distribution, D) // assume L[j] identical; hj ≡≡≡≡ P[j]

• Error[j] ←←←← Count-Errors(P[j], Sample-According-To (Distribution, D))

• ββββ[j] ←←←← Error[j] / (1 - Error[j])

• FOR i ←←←← 1 TO m DO // update distribution on D

Distribution[i] ←←←← Distribution[i] * ((P[j](D[i]) = D[i].target) ? ββββ[j] : 1)

• Distribution.Renormalize () // Invariant: Distribution is a pdf

– RETURN (Make-Predictor (P, D, ββββ))

• Function Make-Predictor (P, D, ββββ)
– // Combiner(x) = argmaxv ∈∈∈∈ V ����j:P[j](x) = v lg (1/ββββ[j])

– RETURN (fn x ���� Predict-Argmax-Correct (P, D, x, fn ββββ ���� lg (1/ββββ)))
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Boosting:Boosting:
PropertiesProperties

• Boosting in General 
– Empirically shown to be effective

– Theory still under development
– Many variants of boosting, active research (see: references; current ICML, COLT)

• Boosting by Filtering
– Turns weak inducers into strong inducer (committee machine)
– Memory-efficient compared to other boosting methods

– Property: improvement of weak classifiers (trained inducers) guaranteed

• Suppose 3 experts (subhypotheses) each have error rate εεεε < 0.5 on D[i]
• Error rate of committee machine ≤≤≤≤ g(εεεε) = 3εεεε2 - 2εεεε3

• Boosting by Resampling (AdaBoost): Forces ErrorDDDD toward ErrorD

• References
– Filtering: [Schapire, 1990] - MLJ, 5:197-227

– Resampling: [Freund and Schapire, 1996] - ICML 1996, p. 148-156
– Reweighting: [Freund, 1995]
– Survey and overview: [Quinlan, 1996; Haykin, 1999]
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Mixture Models:Mixture Models:
IdeaIdea

• Intuitive Idea

– Integrate knowledge from multiple experts (or data from multiple sensors)

• Collection of inducers organized into committee machine (e.g., modular ANN)

• Dynamic structure: take input signal into account

– References

• [Bishop, 1995] (Sections 2.7, 9.7)

• [Haykin, 1999] (Section 7.6)

• Problem Definition

– Given: collection of inducers (“experts”) L, data set D

– Perform: supervised learning using inducers and self-organization of experts

– Return: committee machine with trained gating network (combiner inducer)

• Solution Approach

– Let combiner inducer be generalized linear model (e.g., threshold gate)

– Activation functions: linear combination, vote, “smoothed” vote (softmax)
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Mixture Models:Mixture Models:
ProcedureProcedure

• Algorithm Combiner-Mixture-Model (D, L, Activation, k)

– m ←←←← D.size

– FOR j ←←←← 1 TO k DO // initialization

w[j] ←←←← 1

– UNTIL the termination condition is met, DO

• FOR j ←←←← 1 TO k DO

P[j] ←←←← L[j].Update-Inducer (D) // single training step for L[j]

• FOR i ←←←← 1 TO m DO

Sum[i] ←←←← 0

FOR j ←←←← 1 TO k DO Sum[i] += P[j](D[i])

Net[i] ←←←← Compute-Activation (Sum[i]) // compute gj ≡≡≡≡ Net[i][j]

FOR j ←←←← 1 TO k DO w[j] ←←←← Update-Weights (w[j], Net[i], D[i])

– RETURN (Make-Predictor (P, w))

• Update-Weights: Single Training Step for Mixing Coefficients
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Mixture Models:Mixture Models:
PropertiesProperties

• Unspecified Functions
– Update-Inducer

• Single training step for each expert module

• e.g., ANN: one backprop cycle, aka epoch

– Compute-Activation

• Depends on ME architecture

• Idea: smoothing of “winner-take-all” (“hard” max)

• Softmax activation function (Gaussian mixture model)

• Possible Modifications
– Batch (as opposed to online) updates: lift Update-Weights out of outer FOR loop

– Classification learning (versus concept learning): multiple yj values

– Arrange gating networks (combiner inducers) in hierarchy (HME)
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GGeneralized eneralized LiLinear near MModels (odels (GLIMsGLIMs))

• Recall: Perceptron (Linear Threshold Gate) Model

• Generalization of LTG Model [McCullagh and Nelder, 1989]
– Model parameters: connection weights as for LTG

– Representational power: depends on transfer (activation) function

• Activation Function
– Type of mixture model depends (in part) on this definition

– e.g., o(x) could be softmax (x · w) [Bridle, 1990]

• NB: softmax is computed across j = 1, 2, …, k (cf. “hard” max)

• Defines (multinomial) pdf over experts [Jordan and Jacobs, 1995]
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HHierarchical ierarchical MMixture of ixture of EExperts (HME):xperts (HME):
IdeaIdea

• Hierarchical Model
– Compare: stacked generalization network

– Difference: trained in multiple passes

• Dynamic Network of GLIMs All examples x and
targets y = c(x) identical
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HHierarchical ierarchical MMixture of ixture of EExperts (HME):xperts (HME):
ProcedureProcedure

• Algorithm Combiner-HME (D, L, Activation, Level, k, Classes)
– m ←←←← D.size
– FOR j ←←←← 1 TO k DO w[j] ←←←← 1 // initialization
– UNTIL the termination condition is met DO

• IF Level > 1 THEN

FOR j ←←←← 1 TO k DO

P[j] ←←←← Combiner-HME (D, L[j], Activation, Level - 1, k, Classes)

• ELSE

FOR j ←←←← 1 TO k DO P[j] ←←←← L[j].Update-Inducer (D)
• FOR i ←←←← 1 TO m DO

Sum[i] ←←←← 0
FOR j ←←←← 1 TO k DO

Sum[i] += P[j](D[i])

Net[i] ←←←← Compute-Activation (Sum[i])
FOR l ←←←← 1 TO Classes DO w[l] ←←←← Update-Weights (w[l], Net[i], D[i])

– RETURN (Make-Predictor (P, w))
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HHierarchical ierarchical MMixture of ixture of EExperts (HME):xperts (HME):
PropertiesProperties

• Advantages

– Benefits of ME: base case is single level of expert and gating networks

– More combiner inducers ���� more capability to decompose complex problems

• Views of HME

– Expresses divide-and-conquer strategy

• Problem is distributed across subtrees “on the fly” by combiner inducers

• Duality: data fusion ⇔⇔⇔⇔ problem redistribution

• Recursive decomposition: until good fit found to “local” structure of D

– Implements soft decision tree

• Mixture of experts: 1-level decision tree (decision stump)

• Information preservation compared to traditional (hard) decision tree

• Dynamics of HME improves on greedy (high-commitment) strategy of 
decision tree induction
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Training Methods forTraining Methods for
HHierarchical ierarchical MMixture of ixture of EExperts (HME)xperts (HME)

• Stochastic Gradient Ascent

– Maximize log-likelihood function L(ΘΘΘΘ) = lg P(D | ΘΘΘΘ)

– Compute

– Finds MAP values

• Expert network (leaf) weights wij

• Gating network (interior node) weights at lower level (aij), upper level (aj)

• Expectation-Maximization (EM) Algorithm

– Recall definition

• Goal: maximize incomplete-data log-likelihood function L(ΘΘΘΘ) = lg P(D | ΘΘΘΘ)

• Estimation step: calculate E[unobserved variables | ΘΘΘΘ], assuming current ΘΘΘΘ

• Maximization step: update ΘΘΘΘ to maximize E[lg P(D | ΘΘΘΘ)], D ≡≡≡≡ all variables

– Using EM: estimate with gating networks, then adjust ΘΘΘΘ ≡≡≡≡ {wij, aij, aj}
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Methods for Combining Classifiers:Methods for Combining Classifiers:
Committee MachinesCommittee Machines

• Framework

– Think of collection of trained inducers as committee of experts

– Each produces predictions given input (s(Dtest), i.e., new x)

– Objective: combine predictions by vote (subsampled Dtrain), learned weighting 

function, or more complex combiner inducer (trained using Dtrain or Dvalidation)

• Types of Committee Machines

– Static structures: based only on y coming out of local inducers

• Single-pass, same data or independent subsamples: WM, bagging, stacking

• Cascade training: AdaBoost

• Iterative reweighting: boosting by reweighting

– Dynamic structures: take x into account

• Mixture models (mixture of experts aka ME): one combiner (gating) level

• Hierarchical Mixtures of Experts (HME): multiple combiner (gating) levels

• Specialist-Moderator (SM) networks: partitions of x given to combiners
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Aggregating Mixtures Partitioning Mixtures

Stacking Bagging SM Networks Boosting HME

Sampling
Method

Round-robin
(cross-
validation)

Random, with
replacement

Attribute
partitioning/
clustering

Least squares
(proportionate)

Linear gating
(proportionate)

Splitting of
Data Length-wise Length-wise Length-wise Width-wise Width -wise

Guaranteed
improvement
of weak
classifiers?

No No No Yes No

Hierarchical? Yes No, but can be
extended Yes No Yes

Training Single bottom-
up pass N/A Single bottom-

up pass
Multiple
passes

Multiple top-
down passes

Wrapper or
mixture? Both Wrapper Mixture, can

be both Wrapper Mixture, can be
both

Comparison ofComparison of
Committee MachinesCommittee Machines
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TerminologyTerminology

• Committee Machines aka Combiners
• Static Structures

– Ensemble averaging
• Single-pass, separately trained inducers, common input

• Individual outputs combined to get scalar output (e.g., linear combination)
– Boosting the margin: separately trained inducers, different input distributions

• Filtering: feed examples to trained inducers (weak classifiers), pass on to next 
classifier iff conflict encountered (consensus model)

• Resampling: aka subsampling (S[i] of fixed size m’ resampled from D)
• Reweighting: fixed size S[i] containing weighted examples for inducer

• Dynamic Structures
– Mixture of experts: training in combiner inducer (aka gating network)
– Hierarchical mixtures of experts: hierarchy of inducers, combiners

• Mixture Model, aka Mixture of Experts (ME)
– Expert (classification), gating (combiner) inducers (modules, “networks”)
– Hierarchical Mixtures of Experts (HME): multiple combiner (gating) levels
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Summary PointsSummary Points

• Committee Machines aka Combiners
• Static Structures (Single-Pass)

– Ensemble averaging
• For improving weak (especially unstable) classifiers

• e.g., weighted majority, bagging, stacking
– Boosting the margin

• Improve performance of any inducer: weight examples to emphasize errors

• Variants: filtering (aka consensus), resampling (aka subsampling), 
reweighting

• Dynamic Structures (Multi-Pass)
– Mixture of experts: training in combiner inducer (aka gating network)

– Hierarchical mixtures of experts: hierarchy of inducers, combiners

• Mixture Model (aka Mixture of Experts)
– Estimation of mixture coefficients (i.e., weights)

– Hierarchical Mixtures of Experts (HME): multiple combiner (gating) levels

• Next Week: Intro to GAs, GP (9.1-9.4, Mitchell; 1, 6.1-6.5, Goldberg)


