

Introduction to Genetic Algorithms

Thursday 14 November 2002

William H. Hsu

Department of Computing and Information Sciences, KSU

http://www.kddresearch.org

http://www.cis.ksu.edu/~bhsu

Readings: Sections 9.1-9.4, Mitchell Chapter 1, Sections 6.1-6.5, Goldberg Section 3.3.4, Shavlik and Dietterich (Booker, Goldberg, Holland)

CIS 732: Machine Learning and Pattern Recognition

Lecture Outline

- Readings
 - Sections 9.1-9.4, Mitchell
 - Suggested: Chapter 1, Sections 6.1-6.5, Goldberg
- Paper Review: "Genetic Algorithms and Classifier Systems", Booker et al
- Evolutionary Computation
 - Biological motivation: process of natural selection
 - Framework for search, optimization, and learning
- Prototypical (Simple) Genetic Algorithm
 - Components: selection, crossover, mutation
 - Representing hypotheses as individuals in GAs
- An Example: <u>GA-Based Inductive Learning</u> (GABIL)
- GA <u>Building Blocks</u> (*aka* <u>Schemas</u>)
- Taking Stock (Course Review): Where We Are, Where We're Going

Evolutionary Computation

- Perspectives
 - Computational procedures patterned after biological evolution
 - Search procedure that probabilistically applies search operators to the set of points in the search space
- Applications
 - Solving (*MP*-)hard problems
 - Search: finding Hamiltonian cycle in a graph
 - Optimization: <u>traveling salesman problem (TSP)</u>
 - Learning: hypothesis space search

Biological Evolution

- Lamarck and Others
 - Species "transmute" over time
 - Learning in single individual can increase its <u>fitness</u> (survivability)
- Darwin and Wallace
 - Consistent, heritable variation among individuals in population
 - Natural selection of the fittest
- Mendel on Genetics
 - Mechanism for inheriting traits
 - Genotype \rightarrow phenotype mapping
 - <u>Genotype</u>: functional unit(s) of heredity (genes) that an organism posesses
 - <u>Phenotype</u>: overt (observable) features of living organism

Simple Genetic Algorithm (SGA)

- Algorithm Simple-Genetic-Algorithm (Fitness, Fitness-Threshold, p, r, m)
 - // p: population size; r: replacement rate (aka generation gap width), m: string size
 - $P \leftarrow p$ random hypotheses // initialize population
 - FOR each h in P DO $f[h] \leftarrow Fitness(h)$ // evaluate Fitness: hypothesis $\rightarrow R$
 - WHILE (Max(f) < Fitness-Threshold) DO</p>
 - 1. <u>Select</u>: Probabilistically select (1 *r*)*p* members of *P* to add to *P_s*

$$\boldsymbol{P}(\boldsymbol{h}_i) = \frac{\boldsymbol{f}[\boldsymbol{h}_i]}{\sum_{j=1}^{p} \boldsymbol{f}[\boldsymbol{h}_j]}$$

- 2. <u>Crossover</u>:
 - Probabilistically select $(r \cdot p)/2$ pairs of hypotheses from P
 - FOR each pair $< h_1, h_2 > DO$

 P_S += Crossover (< h_1 , h_2 >) // $P_S[t+1] = P_S[t] + < offspring_1$, offspring₂>

- 3. <u>Mutate</u>: Invert a randomly selected bit in *m* · *p* random members of *P_s*
- 4. <u>Update</u>: $P \leftarrow P_S$
- 5. <u>Evaluate</u>: FOR each *h* in *P* DO *f*[*h*] ← *Fitness*(*h*)
- **RETURN** the hypothesis *h* in *P* that has maximum fitness *f*[*h*]

Representing Hypotheses

- Individuals (*aka* Genes, Strings): What Can We Represent?
 - Hypothesis
 - Single classification rule
- Bit String Encodings
 - Representation: implicit disjunction
 - Q: How many bits per attribute?
 - A: Number of values of the attribute
 - Example: hypothesis
 - Hypothesis: (Outlook = Overcast v Rain) ^ (Wind = Strong)
 - Representation: *Outlook* [011] . *Wind* [10] = 01110
 - Example: classification rule
 - Rule: (*Outlook* = *Overcast* ∨ *Rain*) ∧ (*Wind* = *Strong*) → *PlayTennis* = *Yes*
 - Representation: *Outlook* [011] . *Wind* [10] . *PlayTennis* [10] = 1111010

Operators for Genetic Algorithms: Crossover

- Crossover Operator
 - Combines individuals (usually 2) to generate offspring (usually 2)
 - Crossover mask: bit mask, indicates membership in first or second offspring
- Single-Point
 - Initial strings: <u>11101</u>001000 00001<u>010101</u>
 Crossover mask: 11111000000
 - Offspring: <u>1110101010</u> 00001001000
- Two-Point
 - Initial strings: 11<u>10100</u>1000 <u>00</u>00101<u>0101</u>
 - Crossover mask: 00111110000
 - Offspring: 11001011000 <u>00101000101</u>
- Uniform (Choose Mask Bits Randomly ~ I.I.D. Uniform)
 - Initial strings: <u>11101001000</u> 0<u>0001010101</u>01
 - Crossover mask: 10011010011
 - Offspring: <u>10001000100</u> 01101011001

CIS 732: Machine Learning and Pattern Recognition

Operators for Genetic Algorithms: Mutation

- Intuitive Idea
 - Random changes to "structures" (gene strings) generate diversity among $h \in P$
 - Compare: *stochastic search* in hypothesis space *H*
 - Motivation: global search from "good, randomly selected" starting points (in P_s)
- Single-Point
 - Initial string: 11101001000
 - <u>Mutated string</u>: 111010<u>1</u>1000 (randomly selected bit is inverted)
 - Similar to Boltzmann machine
 - Recall: type of constraint satisfaction network
 - +1, -1 activations (i.e., bit string)
 - "Flip" one randomly and test whether new network state is accepted
 - Stochastic acceptance function (with simulated annealing)
- Multi-Point
 - Flip multiple bits (chosen at random or to fill prespecified quota)
 - Similar to: some MCMC learning algorithms

Selecting Most Fit Hypotheses

- Fitness-Proportionate Selector
 - aka proportionate reproduction, aka roulette wheel
 - Representation ∝ share of total fitness (used in *Simple-Genetic-Algorithm*)

$$\boldsymbol{P}(\boldsymbol{h}_i) = \frac{\boldsymbol{f}[\boldsymbol{h}_i]}{\sum_{j=1}^{p} \boldsymbol{f}[\boldsymbol{h}_j]}$$

- Can lead to <u>crowding</u> (loss of diversity when fittest individuals dominate)
- Tournament Selection
 - Intuitive idea: eliminate unfit individuals through direct competition
 - Pick h_1 , h_2 at random with uniform probability
 - With probability *p*, select the most fit
- Rank Selection
 - Like fitness-proportionate (key difference: non-uniform weighting wrt fitness)
 - Sort all hypotheses by fitness
 - Probability of selection is proportional to rank

<u>GA-Based Inductive Learning (GABIL)</u>

- GABIL System [Dejong et al, 1993]
 - Given: concept learning problem and examples
 - Learn: disjunctive set of propositional rules
 - Goal: results competitive with those for current decision tree learning algorithms (e.g., C4.5)
- Fitness Function: Fitness(h) = (Correct(h))²
- Representation
 - Rules: IF $a_1 = T \land a_2 = F$ THEN c = T; IF $a_2 = T$ THEN c = F
 - Bit string encoding: a_1 [10] . a_2 [01] . c [1] . a_1 [11] . a_2 [10] . c [0] = 10011 11100
- Genetic Operators
 - Want variable-length rule sets
 - Want only well-formed bit string hypotheses

CIS 732: Machine Learning and Pattern Recognition

Crossover: Variable-Length Bit Strings

- Basic Representation
 - Start with

	a ₁	a 2	С	a ₁	a 2	С
h 1	1[0	01	1	11	1]0	0
h 2	0[1	1]1	0	10	01	0

- Idea: allow crossover to produce variable-length offspring
- Procedure
 - 1. Choose crossover points for h_1 , e.g., after bits 1, 8
 - 2. Now restrict crossover points in h₂ to those that produce bitstrings with welldefined semantics, e.g., <1, 3>, <1, 8>, <6, 8>
- Example
 - Suppose we choose <1, 3>
 - Result

h 3	11 10 0		
h 4	00 01 1	11 11 0	10 01

Kansas State University Department of Computing and Information Sciences

0

GABIL Extensions

- New Genetic Operators
 - Applied probabilistically
 - 1. <u>AddAlternative</u>: generalize constraint on a_i by changing a 0 to a 1
 - 2. <u>*DropCondition*</u>: generalize constraint on a_i by changing <u>every</u> 0 to a 1
- New Field
 - Add fields to bit string to decide whether to allow the above operators

a 1	a 2	С	a 1	a 2	С	<u>AA</u>	<u>DC</u>
01	11	0	10	01	0	1	0

- So now the learning strategy also evolves!
- aka genetic wrapper

Department of Computing and Information Sciences

GABIL Results

- Classification Accuracy
 - Compared to symbolic rule/tree learning methods
 - C4.5 [Quinlan, 1993]
 - *ID5R*
 - AQ14 [Michalski, 1986]
 - Performance of GABIL comparable
 - Average performance on a set of 12 synthetic problems: 92.1% test accuracy
 - Symbolic learning methods ranged from 91.2% to 96.6%
- Effect of Generalization Operators
 - Result above is for *GABIL* without *AA* and *DC*
 - Average test set accuracy on 12 synthetic problems with AA and DC: 95.2%

Department of Computing and Information Sciences

Building Blocks (Schemas)

- Problem
 - How to characterize evolution of population in GA?
 - Goal
 - Identify basic building block of GAs
 - Describe family of individuals
- Definition: <u>Schema</u>
 - String containing 0, 1, * ("don't care")
 - Typical schema: 10**0*
 - Instances of above schema: 101101, 100000, ...
- Solution Approach
 - Characterize population by number of instances representing each possible schema
 - $m(s, t) \equiv$ number of instances of schema s in population at time t

Selection and Building Blocks

- Restricted Case: Selection Only
 - $-\bar{f}(t) \equiv$ average fitness of population at time t
 - m(s, t) = number of instances of schema s in population at time t
 - $\hat{u}(s, t) \equiv \text{average fitness of instances of schema } s \text{ at time } t$
- Quantities of Interest
 - Probability of selecting h in one selection step

$$\boldsymbol{P}(\boldsymbol{h}) = \frac{\boldsymbol{f}(\boldsymbol{h})}{\sum_{i=1}^{n} \boldsymbol{f}(\boldsymbol{h}_{i})}$$

- Probability of selecting an instance of *s* in one selection step

$$P(h \in s) = \sum_{h \in (s \cap p_t)} \frac{f(h)}{n \cdot \overline{f}(t)} = \frac{\hat{u}(s, t)}{n \cdot \overline{f}(t)} \cdot m(s, t)$$

- Expected number of instances of *s* after *n* selections

$$\boldsymbol{E}[\boldsymbol{m}(\boldsymbol{s},\boldsymbol{t}+1)] = \frac{\hat{\boldsymbol{u}}(\boldsymbol{s},\boldsymbol{t})}{\bar{\boldsymbol{f}}(\boldsymbol{t})} \cdot \boldsymbol{m}(\boldsymbol{s},\boldsymbol{t})$$

CIS 732: Machine Learning and Pattern Recognition

Department of Computing and Information Sciences

Schema Theorem

Theorem

$$\mathbf{E}[\mathbf{m}(\mathbf{s},\mathbf{t}+\mathbf{1})] \geq \frac{\hat{\mathbf{u}}(\mathbf{s},\mathbf{t})}{\bar{f}(\mathbf{t})} \cdot \mathbf{m}(\mathbf{s},\mathbf{t}) \cdot \left(1 - \mathbf{p}_c \frac{\mathbf{d}_s}{\mathbf{l}-\mathbf{1}}\right) \cdot (1 - \mathbf{p}_m)^{\mathbf{o}(s)}$$

- $m(s, t) \equiv$ number of instances of schema s in population at time t
- $\bar{f}(t) \equiv$ average fitness of population at time t
- $\hat{u}(s, t) \equiv \text{average fitness of instances of schema } s \text{ at time } t$
- $p_c \equiv$ probability of single point crossover operator
- $p_m \equiv$ probability of mutation operator
- -I = length of individual bit strings
- $o(s) \equiv$ number of defined (non "*") bits in s
- $d(s) \equiv distance between rightmost, leftmost defined bits in s$
- Intuitive Meaning
 - "The expected number of instances of a schema in the population tends toward its relative fitness"
 - A fundamental theorem of GA analysis and design

Terminology

- Evolutionary Computation (EC): Models Based on Natural Selection
- <u>Genetic Algorithm (GA) Concepts</u>
 - Individual: single entity of model (corresponds to hypothesis)
 - <u>Population</u>: collection of entities in competition for survival
 - <u>Generation</u>: single application of selection and crossover operations
 - Schema aka building block: descriptor of GA population (e.g., 10**0*)
 - <u>Schema theorem</u>: representation of schema proportional to its relative fitness
- <u>Simple Genetic Algorithm (SGA) Steps</u>
 - Selection
 - **<u>Proportionate reproduction</u>** (*aka* <u>roulette wheel</u>): *P*(*individual*) ~ *f*(*individual*)
 - <u>Tournament</u>: let individuals compete in pairs or tuples; eliminate unfit ones
 - <u>Crossover</u>
 - <u>Single-point</u>: <u>11101</u>001000 × 00001<u>010101</u> \rightarrow { 11101010101, 00001001000 }
 - <u>Two-point</u>: $11\underline{10100}1000 \times \underline{00}00101\underline{0101} \rightarrow \{ 11001011000, 00101000101 \}$
 - <u>Uniform</u>: $11101001000 \times 00001010101 \rightarrow \{ 10001000100, 01101011001 \}$
 - <u>Mutation</u>: single-point ("bit flip"), multi-point

Summary Points

- Evolutionary Computation
 - Motivation: process of natural selection
 - Limited population; individuals compete for membership
 - Method for parallelizing and stochastic search
 - Framework for problem solving: search, optimization, learning
- Prototypical (Simple) <u>Genetic Algorithm (GA)</u>
 - Steps
 - Selection: reproduce individuals probabilistically, in proportion to fitness
 - Crossover: generate new individuals probabilistically, from pairs of "parents"
 - Mutation: modify structure of individual randomly
 - How to represent hypotheses as individuals in GAs
- An Example: <u>GA-Based Inductive Learning</u> (GABIL)
- Schema Theorem: Propagation of Building Blocks
- Next Lecture: Genetic Programming, The Movie

