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Lecture OutlineLecture Outline

• Readings: Sections 10.1-10.5, Mitchell; Section 21.4 Russell and Norvig

• Suggested Exercises: 10.1, 10.2 Mitchell

• This Week’s Paper Review (Last One!)

– “An Approach to Combining Explanation-Based and Neural Network Algorithms”,
Shavlik and Towell

– Due today, 11/30/1999

• Sequential Covering Algorithms

– Learning single rules by search

• Beam search

• Alternative covering methods

– Learning rule sets

• First-Order Rules

– Learning single first-order rules

– FOIL: learning first-order rule sets
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Learning Disjunctive Sets of RulesLearning Disjunctive Sets of Rules

• Method 1: Rule Extraction from Trees

– Learn decision tree

– Convert to rules

• One rule per root-to-leaf path

• Recall: can post-prune rules (drop pre-conditions to improve validation set 

accuracy)

• Method 2: Sequential Covering

– Idea: greedily (sequentially) find rules that apply to (cover) instances in D

– Algorithm

• Learn one rule with high accuracy, any coverage

• Remove positive examples (of target attribute) covered by this rule

• Repeat
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Sequential Covering:Sequential Covering:
AlgorithmAlgorithm

• Algorithm Sequential-Covering (Target-Attribute, Attributes, D, Threshold)

– Learned-Rules ? {}

– New-Rule ? Learn-One-Rule (Target-Attribute, Attributes, D)

– WHILE Performance (Rule, Examples) > Threshold DO

• Learned-Rules += New-Rule // add new rule to set

• D.Remove-Covered-By (New-Rule) // remove examples covered by New-Rule

• New-Rule ? Learn-One-Rule (Target-Attribute, Attributes, D)

– Sort-By-Performance (Learned-Rules, Target-Attribute, D)

– RETURN Learned-Rules

• What Does Sequential-Covering Do?

– Learns one rule, New-Rule

– Takes out every example in D to which New-Rule applies (every covered example)
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IF {Humidity = Normal}
THEN Play-Tennis = Yes

IF {Wind = Strong}
THEN Play-Tennis = No

IF {Wind = Light}
THEN Play-Tennis = Yes

IF {Humidity = High}
THEN Play-Tennis = No

…

LearnLearn--OneOne--Rule:Rule:
(Beam) Search for Preconditions(Beam) Search for Preconditions

IF {}
THEN Play-Tennis = Yes

…

IF {Humidity = Normal,
Outlook = Sunny}

THEN Play-Tennis = Yes

IF {Humidity = Normal,
Wind = Strong}

THEN Play-Tennis = Yes

IF {Humidity = Normal,
Wind = Light}

THEN Play-Tennis = Yes

IF {Humidity = Normal,
Outlook = Rain}

THEN Play-Tennis = Yes
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LearnLearn--OneOne--Rule:Rule:
AlgorithmAlgorithm

• Algorithm Sequential-Covering (Target-Attribute, Attributes, D)
– Pos ? D.Positive-Examples()
– Neg ? D.Negative-Examples()
– WHILE NOT Pos.Empty() DO // learn new rule

• Learn-One-Rule (Target-Attribute, Attributes, D)
• Learned-Rules.Add-Rule (New-Rule)
• Pos.Remove-Covered-By (New-Rule)

– RETURN (Learned-Rules)

• Algorithm Learn-One-Rule (Target-Attribute, Attributes, D)
– New-Rule ? most general rule possible
– New-Rule-Neg ? Neg
– WHILE NOT New-Rule-Neg.Empty() DO // specialize New-Rule

1. Candidate-Literals ? Generate-Candidates() // NB: rank by Performance()
2. Best-Literal ? argmaxL? Candidate-Literals Performance (Specialize-Rule (New-

Rule, L), Target-Attribute, D) // all possible new 
constraints

3. New-Rule.Add-Precondition (Best-Literal) // add the best one
4. New-Rule-Neg ? New-Rule-Neg.Filter-By (New-Rule)

– RETURN (New-Rule)
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LearnLearn--OneOne--Rule:Rule:
Subtle IssuesSubtle Issues

• How Does Learn-One-Rule Implement Search?

– Effective approach: Learn-One-Rule organizes H in same general fashion as ID3

– Difference

• Follows only most promising branch in tree at each step

• Only one attribute-value pair (versus splitting on all possible values)

– General to specific search (depicted in figure)

• Problem: greedy depth-first search susceptible to local optima

• Solution approach: beam search (rank by performance, always expand k best)

• Easily generalizes to multi-valued target functions (how?)

• Designing Evaluation Function to Guide Search

– Performance (Rule, Target-Attribute, D)

– Possible choices

• Entropy (i.e., information gain) as for ID3

• Sample accuracy (nc / n ? correct rule predictions / total predictions)

• m estimate: (nc + mp) / (n + m) where m ? weight, p ? prior of rule RHS
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Variants of Rule Learning ProgramsVariants of Rule Learning Programs

• Sequential or Simultaneous Covering of Data?

– Sequential: isolate components of hypothesis (e.g., search for one rule at a time)

– Simultaneous: whole hypothesis at once (e.g., search for whole tree at a time)

• General-to-Specific or Specific-to-General?

– General-to-specific: add preconditions, Find-G

– Specific-to-general: drop preconditions, Find-S

• Generate-and-Test or Example-Driven?

– Generate-and-test: search through syntactically legal hypotheses

– Example-driven: Find-S, Candidate-Elimination, Cigol (next time)

• Post-Pruning of Rules?

– Recall (Lecture 5): very popular overfitting recovery method

• What Statistical Evaluation Method?

– Entropy

– Sample accuracy (aka relative frequency)

– m-estimate of accuracy
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FirstFirst--Order RulesOrder Rules

• What Are First-Order Rules?

– Well-formed formulas (WFFs) of  first-order predicate calculus (FOPC)

– Sentences of first-order logic (FOL)

– Example (recursive)

• Ancestor (x, y) ? Parent (x, y).

• Ancestor (x, y) ? Parent (x, z) ? Ancestor (z, y).

• Components of FOPC Formulas: Quick Intro to Terminology

– Constants: e.g., John, Kansas, 42

– Variables: e.g., Name, State, x

– Predicates: e.g., Father-Of, Greater-Than

– Functions: e.g., age, cosine

– Term: constant, variable, or function(term)

– Literals (atoms): Predicate(term) or negation (e.g., ? Greater-Than (age(John), 42))

– Clause: disjunction of literals with implicit universal quantification

– Horn clause: at most one positive literal (H ? ? L1 ? ? L2 ? … ? ? Ln)
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Learning FirstLearning First--Order RulesOrder Rules

• Why Do That?

– Can learn sets of rules such as

• Ancestor (x, y) ? Parent (x, y).

• Ancestor (x, y) ? Parent (x, z) ? Ancestor (z, y).

– General-purpose (Turing-complete) programming language PROLOG

• Programs are such sets of rules (Horn clauses)

• Inductive logic programming (next time): kind of program synthesis

• Caveat

– Arbitrary inference using first-order rules is semi-decidable

• Recursive enumerable but not recursive (reduction to halting problem LH)

• Compare: resolution theorem-proving; arbitrary queries in Prolog

– Generally, may have to restrict power

• Inferential completeness

• Expressive power of Horn clauses

• Learning part
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FirstFirst--Order Rule:Order Rule:
ExampleExample

• Prolog (FOPC) Rule for Classifying Web Pages

– [Slattery, 1997]

– Course (A) ?

• Has-Word (A, “instructor”),

• not Has-Word (A, “good”),

• Link-From (A, B),

• Has-Word (B, “assign”),

• not Link-From (B, C).

– Train: 31/31, test: 31/34

• How Are Such Rules Used?

– Implement search-based (inferential) programs

– References

• Chapters 1-10, Russell and Norvig

• Online resources at http://archive.comlab.ox.ac.uk/logic-prog.html
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FFirstirst--OOrder rder IInductive nductive LLearning (FOIL):earning (FOIL):
AlgorithmAlgorithm

• Algorithm FOIL (Target-Predicate, Predicates, D)
– Pos ? D.Filter-By(Target-Predicate) // examples for which it is true
– Neg ? D.Filter-By(Not (Target-Predicate)) // examples for which it is false
– WHILE NOT Pos.Empty() DO // learn new rule

• Learn-One-First-Order-Rule (Target-Predicate, Predicates, D)
• Learned-Rules.Add-Rule (New-Rule)
• Pos.Remove-Covered-By (New-Rule)

– RETURN (Learned-Rules)

• Algorithm Learn-One-First-Order-Rule (Target-Predicate, Predicate, D)
– New-Rule ? the rule that predicts Target-Predicate with no preconditions
– New-Rule-Neg ? Neg
– WHILE NOT New-Rule-Neg.Empty() DO // specialize New-Rule

1. Candidate-Literals ? Generate-Candidates() // based on Predicates
2. Best-Literal ? argmaxL? Candidate-Literals FOIL-Gain (L, New-Rule, Target-

Predicate, D) // all possible new literals
3. New-Rule.Add-Precondition (Best-Literal) // add the best one
4. New-Rule-Neg ? New-Rule-Neg,Filter-By (New-Rule)

– RETURN (New-Rule)
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Specializing Rules in FOILSpecializing Rules in FOIL

• Learning Rule: P(x1, x2, …, xk) ? L1 ? L2 ? … ? Ln.

• Candidate Specializations

– Add new literal to get more specific Horn clause

– Form of literal

• Q(v1, v2, …, vr), where at least one of the vi in the created literal must already 

exist as a variable in the rule 

• Equal(xj, xk), where xj and xk are variables already present in the rule

• The negation of either of the above forms of literals
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Information Gain in FOILInformation Gain in FOIL

• Function FOIL-Gain (L, R, Target-Predicate, D)

• Where

– L ? candidate predicate to add to rule R

– p0 ? number of positive bindings of R

– n0 ? number of negative bindings of R

– p1 ? number of positive bindings of R + L

– n1 ? number of negative bindings of R + L

– t ? number of positive bindings of R also covered by R + L

• Note

– - lg (p0 / p0 + n0) is optimal number of bits to indicate the class of a positive 
binding covered by R

– Compare: entropy (information gain) measure in ID3
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FOIL:FOIL:
Learning Recursive Rule SetsLearning Recursive Rule Sets

• Recursive Rules

– So far: ignored possibility of recursive WFFs

• New literals added to rule body could refer to target predicate itself

• i.e., predicate occurs in rule head

– Example

• Ancestor (x, y) ? Parent (x, z) ? Ancestor (z, y).

• Rule: IF Parent (x, z) ? Ancestor (z, y) THEN Ancestor (x, y)

• Learning Recursive Rules from Relations

– Given: appropriate set of training examples

– Can learn using FOIL-based search

• Requirement: Ancestor ? Predicates (symbol is member of candidate set)

• Recursive rules still have to outscore competing candidates at FOIL-Gain

– NB: how to ensure termination? (well-founded ordering, i.e., no infinite recursion)

– [Quinlan, 1990; Cameron-Jones and Quinlan, 1993]
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FOIL:FOIL:
SummarySummary

• Extends Sequential-Covering Algorithm

– Handles case of learning first-order rules similar to Horn clauses

– Result: more powerful rules for performance element (automated reasoning)

• General-to-Specific Search

– Adds literals (predicates and negations over functions, variables, constants)

– Can learn sets of recursive rules

• Caveat: might learn infinitely recursive rule sets

• Has been shown to successfully induce recursive rules in some cases

• Overfitting

– If no noise, might keep adding new literals until rule covers no negative examples

– Solution approach: tradeoff (heuristic evaluation function on rules)

• Accuracy, coverage, complexity

• FOIL-Gain: an MDL function

• Overfitting recovery in FOIL: post-pruning
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TerminologyTerminology

• Disjunctive Rules

– Learning single rules by search

• Beam search: type of heuristic search that maintains constant-width frontier

– Learning rule sets

• Sequential covering versus simultaneous covering

• First-Order Rules

– Units of first-order predicate calculus (FOPC): constants, variables, predicates, 

functions, terms, literals (atoms), well-formed fomulas (wffs, clauses)

– FOPC quantifiers: universal (? ), existential (? )

– Horn clauses

• Sentences of Prolog (clauses with ? 1 positive literal)

• Of the form: H ? ? L1 ? ? L2 ? … ? ? Ln (implicit ? ), Prolog form H :- L1, L2, …, Ln.

– FOIL: algorithm for learning Horn clauses (including recursive rule sets)
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Summary PointsSummary Points

• Learning Rules from Data

• Sequential Covering Algorithms
– Learning single rules by search

• Beam search

• Alternative covering methods

– Learning rule sets

• First-Order Rules
– Learning single first-order rules

• Representation: first-order Horn clauses

• Extending Sequential-Covering and Learn-One-Rule: variables in rule 
preconditions

– FOIL: learning first-order rule sets

• Idea: inducing logical rules from observed relations

• Guiding search in FOIL

• Learning recursive rule sets

• Next Time: Inductive Logic Programming (ILP)


