Lecture 26

Rule Learning and Extraction

Tuesday, November 27, 2001

William H. Hsu

Department of Computing and Information Sciences, KSU
http://www. cis.ksu.edu/~bhsu

Readings:
Sections 10.1-10.5, Mitchell
Section 21.4, Russell and Norvig
Section 5.4.5, Shavlik and Dietterich (Shavlik and Towell) Ks“
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Lecture Outline

« Readings: Sections 10.1-10.5, Mitchell; Section 21.4 Russell and Norvig
 Suggested Exercises: 10.1, 10.2 Mitchell
« This Week’s Paper Review (Last One!)

— “An Approach to Combining Explanation-Based and Neural Network Algorithms”,
Shavlik and Towell

— Due today, 11/30/1999
 Sequential Covering Algorithms

— Learning single rules by search
e Beam search
o Alternative covering methods

— Learning rule sets
 First-Order Rules
— Learning single first-order rules

— FOIL: learning first-order rule sets
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Learning Disjunctive Sets of Rules

e Method 1: Rule Extraction from Trees

— Learn decision tree
— Convert to rules
* Onerule per root-to-leaf path
 Recall: can post-prune rules (drop pre-conditions to improve validation set

accuracy)

e Method 2: Sequential Covering

— Idea: greedily (sequentially) find rules that apply to (cover) instances in D

— Algorithm
 Learn one rule with high accuracy, any coverage

« Remove positive examples (of target attribute) covered by this rule

 Repeat
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Sequential Covering:

Algorithm

o Algorithm Sequential-Covering (Target-Attribute, Attributes, D, Threshold)

Learned-Rules ? {}
New-Rule ? Learn-One-Rule (Target-Attribute, Attributes, D)
WHILE Performance (Rule, Examples) > Threshold DO
e Learned-Rules += New-Rule /[ add new rule to set
« D.Remove-Covered-By (New-Rule) //remove examples covered by New-Rule
« New-Rule ? Learn-One-Rule (Target-Attribute, Attributes, D)
Sort-By-Performance (Learned-Rules, Target-Attribute, D)
RETURN Learned-Rules

« What Does Sequential-Covering Do?

Learns one rule, New-Rule

Takes out every example in D to which New-Rule applies (every covered example)
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Learn-One-Rule:

(Beam) Search for Preconditions

IF {}
THEN Play-Tennis = Yes

IF {Wind = Light}
THEN Play-Tennis = Yes

IF {Wind = Strong}
THEN Play-Tennis = No

THEN Play-Tennis = No J [

IF {Humidity = Normal}
THEN Play-Tennis = Yes

[ IF {Humidity = High}

a

IF {Humidity = Normal,
Wind = Light}
THEN Play-Tennis = Yes

IF {Humidity = Normal,
Outlook = Rain}
IF {Humidity = Normal, || THEN Play-Tennis = Yes
Outlook = Sunny}

THEN Play-Tennis = Yes Ks“
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IF {Humidity = Normal,
Wind = Strong}
THEN Play-Tennis = Yes




Learn-One-Rule:

Algorithm

 Algorithm Sequential-Covering (Target-Attribute, Attributes, D)

— Pos ? D.Positive-Examples()

— Neg ? D.Negative-Examples()

— WHILE NOT Pos.Empty() DO /[ learn new rule
 Learn-One-Rule (Target-Attribute, Attributes, D)
 Learned-Rules.Add-Rule (New-Rule)

e Pos.Remove-Covered-By (New-Rule)
— RETURN (Learned-Rules)
 Algorithm Learn-One-Rule (Target-Attribute, Attributes, D)

— New-Rule ? most general rule possible

— New-Rule-Neg ? Neg

— WHILE NOT New-Rule-Neg.Empty() DO /] specialize New-Rule
1. Candidate-Literals ? Generate-Candidates() // NB: rank by Performance()

2. Best-Literal ? argmaxX,, candidate-Literals P€rformance (Specialize-Rule (New-
Rule, L), Target-Attribute, D) /[ all possible new
constraints

3. New-Rule.Add-Precondition (Best-Literal) /l add the best one

4. New-Rule-Neg ? New-Rule-Neg.Filter-By (New-Rule) Ksu
RETURN (New-Rule) :
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Learn-One-Rule:

Subtle Issues

e How Does Learn-One-Rule Implement Search?
— Effective approach: Learn-One-Rule organizes H in same general fashion as ID3
— Difference
 Follows only most promising branch in tree at each step
* Only one attribute-value pair (versus splitting on all possible values)
— General to specific search (depicted in figure)
 Problem: greedy depth-first search susceptible to local optima

e Solution approach: beam search (rank by performance, always expand k best)

 Easily generalizes to multi-valued target functions (how?)
 Designing Evaluation Function to Guide Search
— Performance (Rule, Target-Attribute, D)
— Possible choices
 Entropy (i.e., information gain) as for ID3

« Sample accuracy (n./ n ? correct rule predictions / total predictions)
 m estimate: (n.+ mp)/(n + m) where m ? weight, p ? prior of rule RHS Ksu
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Variants of Rule Learning Programs

 Sequential or Simultaneous Covering of Data?

— Seguential: isolate components of hypothesis (e.g., search for one rule at a time)

— Simultaneous: whole hypothesis at once (e.g., search for whole tree at a time)

 General-to-Specific or Specific-to-General?

— General-to-specific: add preconditions, Find-G

— Specific-to-general: drop preconditions, Find-S

« Generate-and-Test or Example-Driven?

— Generate-and-test: search through syntactically legal hypotheses

— Example-driven: Find-S, Candidate-Elimination, Cigol (next time)

 Post-Pruning of Rules?

— Recall (Lecture 5): very popular overfitting recovery method

e What Statistical Evaluation Method?
— Entropy

— Sample accuracy (aka relative frequency)

— m-estimate of accuracy Ksu
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First-Order Rules

e What Are First-Order Rules?

Well-formed formulas (WEEs) of first-order predicate calculus (EOPC)
Sentences of first-order logic (EOL)
Example (recursive)

 Ancestor (x,y)? Parent (X, y).

 Ancestor (x,y)? Parent (x, z) ? Ancestor (z, y).

e Components of FOPC Formulas: Quick Intro to Terminology

Constants: e.g., John, Kansas, 42

Variables: e.g., Name, State, x

Predicates: e.g., Father-Of, Greater-Than

Functions: e.g., age, cosine

Term: constant, variable, or function(term)

Literals (atoms): Predicate(term) or negation (e.g., ? Greater-Than (age(John), 42))

Clause: disjunction of literals with implicit universal quantification
Horn clause: at most one positive literal (H? ?L,? ?L,? ... ? ?L,) Ksu

CIS 732: Machine Learning and Pattern Recognition Kansas State University

Department of Computing and Information Sciences



Learning First-Order Rules

« Why Do That?
— Can learn sets of rules such as
 Ancestor (x,y)? Parent (X, y).
 Ancestor (x,y)? Parent (x, z) ? Ancestor (z, y).
— General-purpose (Turing-complete) programming language PROLOG
 Programs are such sets of rules (Horn clauses)
e Inductive logic programming (next time): kind of program synthesis
« Caveat
— Arbitrary inference using first-order rules is semi-decidable
 Recursive enumerable but not recursive (reduction to halting problem L))
« Compare: resolution theorem-proving; arbitrary queries in Prolog
— Generally, may have to restrict power
* Inferential completeness

 Expressive power of Horn clauses

 Learning part Ksu
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First-Order Rule:
Example

 Prolog (FOPC) Rule for Classifying Web Pages
— [Slattery, 1997]
— Course (A) ?
« Has-Word (A, “instructor”),
* not Has-Word (A, “good”),
 Link-From (A, B),
« Has-Word (B, “assign”),
 not Link-From (B, C).
— Train: 31/31, test: 31/34
e How Are Such Rules Used?

— Implement search-based (inferential) programs

— References
 Chapters 1-10, Russell and Norvig

e Online resources at http://archive.comlab.ox.ac.uk/logic-prog.html
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First-Order Inductive Learning (FOIL):

Algorithm
 Algorithm FOIL (Target-Predicate, Predicates, D)
— Pos ? D.Filter-By(Target-Predicate) /[ examples for which it is true
— Neg ? D.Filter-By(Not (Target-Predicate)) /[ examples for which it is false
— WHILE NOT Pos.Empty() DO /[ learn new rule

 Learn-One-First-Order-Rule (Target-Predicate, Predicates, D)
 Learned-Rules.Add-Rule (New-Rule)
e Pos.Remove-Covered-By (New-Rule)
— RETURN (Learned-Rules)
 Algorithm Learn-One-First-Order-Rule (Target-Predicate, Predicate, D)
— New-Rule ? the rule that predicts Target-Predicate with no preconditions
— New-Rule-Neg ? Neg
— WHILE NOT New-Rule-Neg.Empty() DO /] specialize New-Rule
1. Candidate-Literals ? Generate-Candidates() // based on Predicates

2. Best-Literal ? argmax,, candidate-Literals FOIL-Gain (L, New-Rule, Target-
Predicate, D) /[ all possible new literals

3. New-Rule.Add-Precondition (Best-Literal) /[ add the best one
4. New-Rule-Neg ? New-Rule-Neg,Filter-By (New-Rule)

— RETURN (New-Rule) Ksu
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Specializing Rules in FOIL

* Learning Rule: P(Xy, X5, ..., X,)? L;?L,?...7L,.
 Candidate Specializations
— Add new literal to get more specific Horn clause

— Form of literal
* Q(vqy, Vo, ..., V,), Where at least one of the v; in the created literal must already
exist as a variable in the rule

« Equal(x;, x), where x; and x are variables already present in the rule

« The negation of either of the above forms of literals

KU
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Information Gain in FOIL

 Function FOIL-Gain (L, R, Target-Predicate, D)

) 2 9 27

pl po P

Foil -Gain ?t ?1 3,,
ggép ?n, :'3) gfg)po 7Ny 29

e Where

L ? candidate predicate to add to rule R
Po ? number of positive bindings of R

Ny ? number of negative bindings of R

p, ? number of positive bindings of R + L
n, ? number of negative bindings of R + L

t 7 number of positive bindings of R also covered by R+ L

 Note

-1g (po/ po + Ng) is optimal number of bits to indicate the class of a positive
binding covered by R

Compare: entropy (information gain) measure in ID3
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FOIL:

Learning Recursive Rule Sets

 Recursive Rules
— So far: ignored possibility of recursive WFFs
 New literals added to rule body could refer to target predicate itself
* |.e., predicate occurs in rule head
— Example
 Ancestor (x,y)? Parent (x, z) ? Ancestor (z, y).
* Rule: IF Parent (x, z) ? Ancestor (z, y) THEN Ancestor (X, y)
 Learning Recursive Rules from Relations
— Given: appropriate set of training examples
— Can learn using FOIL-based search
 Requirement: Ancestor ? Predicates (symbol is member of candidate set)
* Recursive rules still have to outscore competing candidates at FOIL-Gain

— NB: how to ensure termination? (well-founded ordering, i.e., no infinite recursion)

— [Quinlan, 1990; Cameron-Jones and Quinlan, 1993]
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FOIL:

Summary

 Extends Sequential-Covering Algorithm
— Handles case of learning first-order rules similar to Horn clauses
— Result: more powerful rules for performance element (automated reasoning)
 General-to-Specific Search
— Adds literals (predicates and negations over functions, variables, constants)
— Can learn sets of recursive rules
o Caveat: might learn infinitely recursive rule sets

« Has been shown to successfully induce recursive rules in some cases

« Overfitting
— If no noise, might keep adding new literals until rule covers no negative examples
— Solution approach: tradeoff (heuristic evaluation function on rules)
« Accuracy, coverage, complexity
 FOIL-Gain: an MDL function

e Overfitting recovery in FOIL: post-pruning
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Terminology

e Disjunctive Rules

Learning single rules by search

« Beam search: type of heuristic search that maintains constant-width frontier

Learning rule sets

e Sequential covering versus simultaneous covering

e First-Order Rules

Units of first-order predicate calculus (EOPC): constants, variables, predicates,
functions, terms, literals (atoms), well-formed fomulas (wffs, clauses)

FOPC gquantifiers: universal (?), existential (?)

Horn clauses

e Sentences of Prolog (clauses with ? 1 positive literal)
« Oftheform: H? ?L,??L,? ...? ?L,(implicit ?), Prolog form H:- L4, Lo, ..., L.

FOIL: algorithm for learning Horn clauses (including recursive rule sets)
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Summary Points

 Learning Rules from Data

 Sequential Covering Algorithms
— Learning single rules by search
« Beam search
» Alternative covering methods
— Learning rule sets

e First-Order Rules
— Learning single first-order rules
 Representation: first-order Horn clauses

 Extending Sequential-Covering and Learn-One-Rule: variables in rule
preconditions

— EOIL: learning first-order rule sets
e Idea: inducing logical rules from observed relations
e Guiding search in FOIL
e Learning recursive rule sets

« Next Time: Inductive Logic Programming (ILP) Ksu
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