Two SVM tutorials linked in class website

(please, read both):

= High-level presentation with applications (Hearst 1998)
= Detailed tutorial (Burges 1998)

SVMs, Duality and

the Kernel Trick

Machine Learning — 10701/15781
Carlos Guestrin
Carnegie Mellon University

February 27t, 2006
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Announcements
" JdE
m Third homework

Is out 5}%,4, (o,vb )’
U

Due March 1st

m Final assigned by registrar:

May 12, 1-4p.m @;/(Wj
Location TBD

m Midterm
March 8, a week from Wednesday
Open book, notes, papers, etc. No computers
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SVMs reminder
" A

Mminimizew wW.w —+ CZ]- §j

Pt L )y 214, )
+ 4 ¥ b = - 53207 \V/j
+ ;4}3* _-:

©2006 Carlos Guestrin 3



Today's lecture
"
m Learn one of the most interesting and exciting
recent advancements in machine learning

The “kernel trick”
High dimensional feature spaces at no extra cost!

m But first, a detour
Constrained optimization!
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Constrained optimization
" J

min, x2
S.t. x>0b
T\ /
1\ /-
1\ yan
| .\\. | /. |
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Lagrange multipliers — Dual variables
" S ming 2
s.t. =>0b

{ Moving the constraint to objective function
{ Lagrangian:

L(z,a) = 22 — a(x — b)
s.t. >0

Solve:
Mingy Maxa L(x, o)
s.t. aa>0
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Lagrange multipliers — Dual variables
S

Solving: Min, MaXy T2 — a(x —b)
s.t. >0
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Dual SVM derivation (1) —

the Imearl¥ separable case

minimizew 2WW
(wx;+b)y; > 1, Vj

©2006 Carlos Guestrin



Dual SVM derivation (2) —

_ the Iinearl¥ separable case

L(w,a) = %W.W — 25 O [(W.Xi —+ b) Yj — 1}
87 > O, \V/j -

W = Z Y Xy

(2

minimizew %w.w

(w.xj + b) yi > 1, Vj

b=y — W.Xp

for any k£ where o > 0
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Dual SVM interpretation
"

S
]

QO
+ — E N -
= i
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Dual SVM formulation —

_ the Iinearl¥ separable case

Ce 1
MINIMIZEy ZZ Q; — 5 ZZ)J Q05 Y; Y XX

2. oy; = 0
a; > 0 W — Z oYX,

(2

b=y — W.Xp

for any k£ where a;. > 0
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Dual SVM derivation —

_ the non-segarable case

Mminimizew w.w—I—CZj §j
(W-Xj + b) yi =21 -6, Vj
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Dual SVM formulation —

_ the non-segarable case

L 1
minimizeq ) ; o — 5 Zi,j Q0 Y Y XX

>iozy; = 0
CZO&Z'>O

W= ) oYX

(2

b=y — W.Xp
for any k where C > a5 >0
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Why did we learn about the dual
SVM?

m [here are some quadratic programming
algorithms that can solve the dual faster than the
primal

m But, more importantly, the “kernel trick”!!!

Another little detour...
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Reminder from last time: What if the
data is not linearly separable?
R

Use features of features
% of features of features....

* - P(x): R"— F

Feature space can gej really large really quickly!
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d4+m—1 ) _ (d+m—1)!

d d'(m—1)!

m — input features
d — degree of polynomial

grows fast!
d=6,m=100

about 1.6 billion terms
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Dual formulation only depends on

] dot-groducts, not on w!

Co 1
minimizeq ZZ Qa; — 5 Zi,j QO 5YY XX

>y =0
CZO{Q;ZO

minimizeq, > ; o; — %Zz’,j ;oYY K (X4, X5)
K(x;,x;) = P(x;) - P(x5)

>iouy; =0
CZC\%>O

©zUUb Larios suestrin
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Dot-product of polynomials

" A
d(u) - P(v) = polynomials of degree d

©2006 Carlos Guestrin

18



Finally: the “kernel trick™
" J
minimizeg Zz o — %Zl,j aiozjyz-yjK(Xi, X])

K(x;,x5) = P(x5) - P(x5)

> 05Yy; = 0
C>a;>0 w = > a;y;P(x;)
= Never represent features explicitly v
Compute dot products in closed form h —
TS | = — w.P(x
m Constant-time high-dimensional dot- Yk ( k)
products for many classes of features for any k where C > o >0

m Very interesting theory — Reproducing
Kernel Hilbert Spaces

Not covered in detail in 10701/15781,
more in 10702
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Polynomial kernels
" A
m All monomials of degree d in O(d) operations:

d(u)-P(v) = (u-v)? = polynomials of degree d

m How about all monomials of degree up to d?
Solution 0:

Better solution:
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Common kernels

m Polynomials of degree d
K(u,v) = (u-v)“

m Polynomials of degree up to d
Ku,v)=(u-v+ 1)

K(u,v) = exp

m Gaussian kernels u— v

m Sigmoid
K(u,v) =tanh(nu-v +v)

©2006 Carlos Guestrin
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Overfitting?
"
m Huge feature space with kernels, what about
overfitting???
Maximizing margin leads to sparse set of support
vectors

Some interesting theory says that SVMs search for
simple hypothesis with large margin

Often robust to overfitting

©2006 Carlos Guestrin
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What about at classification time
" A
m For a new input X, if we need to represent ®d(x),
we are in trouble!

m Recall classifier: sign(w.®(x)+b)
m Using kernels we are cool!

K(u,v) =®(u) - d(v)

w = > o;y;P(x;)
i

b=y — W.P(xg)

for any k where C > a5 >0
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SVMs with kernels
" A
m Choose a set of features and kernel function

m Solve dual problem to obtain support vectors a.
m At classification time, compute:

w - P(x) = Z oy K (%, X;)

b=y, — )y K (xp,%;) sign (W - ®(x) +b)

{
for any k where C > o, > 0
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What's the difference between
SVMs and Logistic Regression?
SR

SVMs Logistic
Regression

Loss function

High dimensional
features with
kernels
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Kernels In logistic regression

" J
1

P =1]z,w) = - T o (W) +b)

m Define weights in terms of support vectors:

w =) o;P(x;)
;

1
PY=1|z,w) =

1 4 e~ (i ai®(x:)-P(x)+b)
1

1 4 e~ (2 i K(xx)+b)

m Derive simple gradient descent rule on «.
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What's the difference between SVMs
_ and Logistic Regression? (Revisited)

SVMs Logistic
Regression
Loss function Hinge loss Log-loss
High dimensional Yes! Yes!

features with
kernels
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What you need to know
" J
m Dual SVM formulation
How it's derived
m The kernel trick
m Derive polynomial kernel
m Common kernels
m Kernelized logistic regression
m Differences between SVMs and logistic regression
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Acknowledgment
"

m SVM applet:

O http://www.site.uottawa.ca/~qgcaron/applets.htm
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