
Tracking the best of many experts ?

András György1, Tamás Linder2, and Gábor Lugosi3

1 Informatics Laboratory, Computer and Automation Research Institute
of the Hungarian Academy of Sciences,

Lágymányosi u. 11, Budapest, Hungary, H-1111
gya@szit.bme.hu

2 Department of Mathematics and Statistics,
Queen’s University, Kingston, Ontario,

Canada K7L 3N6
linder@mast.queensu.ca

3 Department of Economics, Universitat Pompeu Fabra
Ramon Trias Fargas 25-27, 08005 Barcelona, Spain

lugosi@upf.es

Abstract. An algorithm is presented for online prediction that allows
to track the best expert efficiently even if the number of experts is expo-
nentially large, provided that the set of experts has a certain structure
allowing efficient implementations of the exponentially weighted average
predictor. As an example we work out the case where each expert is rep-
resented by a path in a directed graph and the loss of each expert is the
sum of the weights over the edges in the path.

1 Introduction

The basic theoretical results of prediction using expert advice were pioneered by
Hannan [7] and Blackwell [2] in the 1950’s and brought to the center of atten-
tion in learning theory in the 1990’s by Vovk [16], Littlestone and Warmuth [11],
Cesa-Bianchi, Freund, Helmbold, Haussler, Schapire, and Warmuth [4]. These
results show that it is possible to construct algorithms for online prediction that
predict an arbitrary sequence of outcomes almost as well as the best of N ex-
perts in the sense that the cumulative loss of the predictor is at most as large
as that of the best expert plus a term proportional to

√
T lnN for any bounded

loss function, where T is the number of rounds in the prediction game. The
logarithmic dependence on the number of experts makes it possible to obtain
meaningful bounds even if the pool of experts is very large. However, the ba-
sic prediction algorithms, such as the exponentially weighted average predictor,
have a computational complexity proportional to the number of experts and are
therefore infeasible when the number of experts is very large.
? This research was supported in part by the Natural Sciences and Engineering Re-

search Council (NSERC) of Canada, the NATO Science Fellowship of Canada, the
János Bolyai Research Scholarship of the Hungarian Academy of Sciences, Spanish
Ministry of Science and Technology and FEDER, grant BMF2003-03324, and by the
PASCAL Network of Excellence under EC grant no. 506778.

However, in many applications the set of experts has a certain structure that
may be exploited to construct efficient prediction algorithms. Perhaps the best
known such example is the problem of tracking the best expert. In this problem
there is a small number of “base” experts and the goal of the predictor is to
predict as well as the best of “meta” experts defined by any sequence of m + 1
base experts and any partition of the time indexes up to T into m+1 contiguous
blocks such that in block i a meta expert predicts according to the ith base expert
in its defining sequence for i = 0, . . . ,m. If there are N base experts and the
length of the prediction game is T then the total number of meta experts is∑m

k=0

(
T−1

k

)
N(N − 1)k. This problem was solved by Herbster and Warmuth [8]

who exhibited computationally efficient algorithms that predict almost as well
as the best of the meta experts and have regret bounds that depend on the
logarithm of the number of the (meta) experts. Vovk [17] has shown that the
forecasters of Herbster and Warmuth correspond to efficient implementations of
the exponentially weighted forecaster run over the set of meta experts with a
specific choice of the initial weights. We also refer to Auer and Warmuth [1],
Bousquet and Warmuth [3], Herbster and Warmuth [9], for various extensions
and powerful variants of the problem.

Another class of problems that has been investigated is when, even though
no “tracking” is performed, the class of experts is very large and has a certain
structure. Examples of structured classes of experts for which efficient algorithms
have been constructed include prunings of decision trees (Helmbold and Schapire
[5], Pereira and Singer [12]), and planar decision graphs (Takimoto and Warmuth
[13]), as well as scalar quantizers for lossy data compression (György, Linder,
and Lugosi [6]). These algorithms are all based on efficient implementations of
the exponentially weighted average predictor. A different approach was taken by
Kalai and Vempala [10] who consider Hannan’s original predictor and show that
it may be used to obtain efficient algorithms for a large class of problems that
they call “geometric experts.”

The purpose of this paper is to develop efficient algorithms to track the best
expert in the case when the class of “base” experts is already very large and has
some structure. Thus, in a sense, we consider a combination of the two types of
problems described above. Our approach is based on a suitable modification of
the original tracking algorithm of Herbster and Warmuth that allows one to ap-
ply it in the case of large, structured expert classes for which there exist efficient
implementations of the exponentially weighted average prediction method. This
modification is described in Section 2. In Section 3 we illustrate the method on
a problem in which a base expert is associated with a path in a directed graph
and the loss of a base expert is the sum of the weights over the path (that may
change in every time instant). Another application involves “tracking the best
quantizer” in lossy zero-delay data compression which we describe elsewhere.
We also indicate how the method may be generalized to handle the tracking of
general geometric experts.

2 Tracking the best expert: a variation

The aim of this section is to modify the prediction algorithm of Herbster and
Warmuth [8] for tracking the best expert to allow efficient implementation if the
number of experts is very large. In order to handle cases in which the set of
experts is not convex, we consider randomized prediction algorithms.

The online prediction problem considered in this paper is described as follows.
Suppose we want to predict the sequence y1, . . . , yT taking values in the set Y
of outcomes using a sequential prediction scheme. We assume that the predictor
has access to a sequence U1, . . . , UT of independent random variables distributed
uniformly over the interval [0, 1]. At each time instant t = 1, . . . , T , the predictor
observes Ut, and based on Ut and the past input values yt−1 = (y1, . . . , yt−1)
produces an “estimate” ŷt ∈ Ŷ of yt, where Ŷ is the set of predictor actions
that may not be the same as Y. Then the predictor can observe the next input
symbol yt. For simplicity we assume throughout that the total number of rounds
T is fixed and known to the predictor in advance.

Formally, the prediction game is defined as follows:

Parameters: number N of base experts, outcome space Y, action
space Ŷ, loss function ` : Y × Ŷ → [0, 1], number T of rounds.
For each round t = 1, . . . , T,

(1) each (base) expert forms its prediction fi,t ∈ Ŷ, i = 1, . . . , N ;
(2) the forecaster observes the predictions of the base experts and

the random variable Ut and chooses an estimate ŷt ∈ Ŷ;
(3) the environment reveals the next outcome yt ∈ Y.

The cumulative loss of the sequential scheme at time T is given by

LT =
T∑

t=1

`(yt, ŷt) .

The goal of the predictor is to achieve a cumulative loss (almost) as small as
the best tracking of the N base experts. More precisely, to describe the loss the
predictor is compared to, consider the following “m-partition” prediction scheme:
The sequence of examples is partitioned into m+1 contiguous segments, and on
each segment the scheme assigns exactly one of the N base experts. Formally, an
m-partition P(T,m, t, e) of the T samples is given by an m-tuple t = (t1, . . . , tm)
such that t0 = 1 < t1 < · · · < tm < T + 1 = tm+1, and an (m + 1)-vector
e = (e0, . . . , em) where ei ∈ {1, . . . , N}. At each time instant t, ti ≤ t < ti+1,
expert ei is used to predict yt. The cumulative loss of a partition PT,m,t,e is

L(P(T,m, t, e)) =
m∑

i=0

ti+1−1∑
t=ti

`(yt, fei,t) =
m∑

i=0

L([ti, ti+1 − 1], ei)

where for any time interval I, L(I, i) =
∑

t∈I `(yt, fi,t) denotes the cumulative
loss of expert i in I. Here and later in the paper we adopt the convention that
in case a summation is empty, we define the sum to be zero (e.g., for a > b,
L([a, b], i) = 0 by definition).

The goal of the predictor is to perform as well as the best partition, that is,
to keep the normalized regret

1
T

(
LT −min

t,e
L(P(T,m, t, e))

)
as small as possible (with high probability) for all possible outcome sequences.

Next we present a variation of the “fixed-share” share update algorithm of
Herbster and Warmuth [8].

Algorithm 1 Fix the positive numbers η and α < 1, and initialize
weights ws

1,i = 1/N for i = 1, . . . , N . At time instants t = 1, 2, . . . , T

let v
(i)
t = ws

t,i/Wt where Wt =
∑N

i=1 ws
t,i, and predict ŷt randomly

according to the distribution

P{ŷt = fi,t} = v
(i)
t . (1)

After observing yt, for all i = 1, . . . , N , let

wm
t,i = ws

t,ie
−η`(yt,fi,t) (2)

and
ws

t+1,i =
αWt+1

N
+ (1− α)wm

t,i (3)

where Wt+1 =
∑N

i=1 wm
t,i.

Observe that
∑N

i=1 ws
t+1,i =

∑N
i=1 wm

t,i = Wt+1, thus there is no ambiguity in
the definition of Wt+1. Note that equation (3) is slightly changed compared to
the original algorithm of [8].

First we present a bound on the loss of the algorithm. The proof is a straight-
forward adaptation of the proof of [8] and therefore it is omitted.

Theorem 1. For any positive integers m,T , real numbers 0 < α < 1, η > 0,
and δ ∈ (0, 1), and for any sequence y1, . . . , yT taking values from [0, 1], with
probability at least 1− δ, the regret LT of Algorithm 1 can be bounded as

LT −min
t,e

L(P(T,m, t, e))

≤ 1
η

ln
(

Nm+1

αm(1− α)T−m−1

)
+

Tη

8
+

√
T ln(1/δ)

2
. (4)

In particular, if α = m
T−1 and η =

√
8 ln

(
Nm+1

αm(1−α)T−m−1

)
/T is chosen to mini-

mize the above bound, we have

LT −min
t,e

L(P(T,m, t, e))

≤
√

T

2

√
(m + 1) lnN + m ln

T − 1
m

+ m +

√
T ln(1/δ)

2
. (5)

Remark. If the number of experts N is proportional to T γ for some γ > 0,
then, for any fixed δ > 0, the bound in (5) is of order

√
(mT) lnT for large T ,

and so the normalized regret is

1
T

(
LT −min

t,e
L(P(T,m, t, e))

)
= O

(√
(m/T) lnT

)
with probability at least 1− δ. That is, the rate of convergence is the same (up
to a constant factor) as if we competed with the best static expert on a segment
of average length.

2.1 Implementation of Algorithm 1

If the number of experts N is large, for example, N = T γ for some large γ > 1,
then the implementation of Algorithm 1 may become computationally very hard.
As it is mentioned in the introduction, for several large classes of (base) experts,
efficient algorithms are known to compute the exponentially weighted average
predictor when no tracking is performed. The purpose of this section is to show
that, whenever such an efficient algorithm is available, the tracking forecaster can
also be computed efficiently by implementing Algorithm 1 in a computationally
feasible way.

The main step to this direction is an alternative expression of the weights in
Algorithm 1.

Lemma 1. For any t = 2, . . . , T , the probability v
(i)
t and the corresponding

normalization factor Wt can be obtained as

v
(i)
t =

(1−α)t−1

NWt
e−ηL([1,t−1],i)+

α

NWt

t−1∑
t′=2

(1−α)t−t′Wt′e
−ηL([t′,t−1],i)+

α

N
(6)

Wt =
α

N

t−1∑
t′=2

(1− α)t−1−t′Wt′Zt′,t−1 +
(1− α)t−2

N
Z1,t−1 (7)

where Zt′,t−1 =
∑N

i=1 e−ηL([t′,t−1],i) is the sum of the (unnormalized) weights
assigned to the experts by the exponentially weighted prediction method for the
input samples (yt′ , . . . , yt−1).

Proof. The expressions in the lemma follow directly from the recursive defini-
tion of the weights {ws

t,i}. First we show that for t = 1, . . . , T ,

wm
t,i =

α

N

t∑
t′=2

(1− α)t−t′Wt′e
−ηL([t′,t],i) +

(1− α)t−1

N
e−ηL([1,t],i) (8)

ws
t+1,i =

α

N
Wt+1+

α

N

t∑
t′=2

(1−α)t+1−t′Wt′e
−ηL([t′,t],i)+

(1−α)t

N
e−ηL([1,t],i). (9)

Clearly, for a given t, (8) implies (9) by the definition (3). Since ws
1,i = 1/N for

every expert i, (8) and (9) hold for t = 1 and t = 2 (for t = 1 the summations
are 0 in both equations). Now assume that they hold for some t ≥ 2. We show
that then (8) holds for t + 1. By definition,

wm
t+1,i = ws

t+1,ie
−η`(yt+1,fi,t+1)

=
α

N
Wt+1e

−η`(yt+1,fi,t+1) +
α

N

t∑
t′=2

(1− α)t+1−t′Wt′e
−ηL([t′,t+1],i)

+
(1− α)t

N
e−ηL([1,t+1],i)

=
α

N

t+1∑
t′=2

(1− α)t+1−t′Wt′e
−ηL([t′,t+1],i) +

(1− α)t

N
e−ηL([1,t+1],i)

thus (8) and (9) hold for all t = 1, . . . , T . Now (6) follows from (9) by normal-
ization for t = 2, . . . , T +1. Finally, (7) can easily be proved from (8), as for any
t = 2, . . . , T ,

Wt =
N∑

i=1

wm
t−1,i

=
N∑

i=1

(
α

N

t−1∑
t′=2

(1− α)t−1−t′Wt′e
−ηL([t′,t−1],i) +

(1− α)t−2

N
e−ηL([1,t−1],i)

)

=
α

N

t−1∑
t′=2

(1− α)t−1−t′Wt′

N∑
i=1

e−ηL([t′,t−1],i) +
(1− α)t−2

N

N∑
i=1

e−ηL([1,t−1],i)

=
α

N

t−1∑
t′=2

(1− α)t−1−t′Wt′Zt′,t−1 +
(1− α)t−2

N
Z1,t−1.

�

Examining formula (6), one can see that the t′-th term in the summation
(including the first and last individual terms) is some multiple of e−ηL([t′,t−1],i).
The latter expression is the weight assigned to expert i by the exponentially
weighted prediction method for the last t − t′ samples of the sequence, that is,

for (yt′ , . . . , yt−1) (the last term in the summation corresponds to the case where
no previous samples of the sequence are taken into consideration). Therefore, for
t ≥ 2, the random choice (1) of a predictor can be performed in two steps. First
we choose a random time τt, which specifies how many most recent samples we
are going to use for the prediction. Then we choose the predictor according to
the exponentially weighted prediction for these samples. Thus, P{τt = t′} is the
sum of the t′-th terms with respect to the index i in the expressions for v

(i)
t ,

and given τt = t′, the probability that ŷt = fi,t is just the probability assigned
to expert i using the exponentially weighted average prediction based on the
samples (yt′ , . . . , yt−1). Hence we obtain the following algorithm.

Algorithm 2 For t = 1, choose ŷ1 uniformly from the set
{f1,1, . . . , fN,1}. For t ≥ 2, choose τt randomly according to the dis-
tribution

P{τt = t′} =

(1−α)t−1Z1,t−1

NWt
for t′ = 1

α(1−α)t−t′Wt′Zt′,t−1
NWt

for t′ = 2, . . . , t
(10)

where we define Zt,t−1 = N . Given τt = t′, choose ŷt randomly
according to the probabilities

P{ŷt = fi,t|τt = t′} =

{
e−ηL([t′,t−1],i)

Zt′,t−1
for t′ = 1, . . . , t− 1

1
N for t′ = t

(11)

The discussion preceding the algorithm shows that Algorithm 2 provides an
alternative implementation of Algorithm 1.

Theorem 2. Algorithm 1 and Algorithm 2 are equivalent in the sense that the
generated predictor sequences have the same distribution. In particular, the se-
quence (ŷ1, . . . , ŷT) generated by Algorithm 2 satisfies

P{ŷt = fi,t} = v
(i)
t (12)

for all t and i, where v
(i)
t are the normalized weights generated by Algorithm 1.

It is not immediately obvious why Algorithm 2 is more efficient than Al-
gorithm 1. However, in many cases the probabilities P{ŷt = fi,t|τt = t′} and
normalization factors Zt′,t−1 may be computed efficiently, and in all those cases,
since Wt can be obtained via the recursion formula (7), Algorithm 2 becomes
feasible.

We need the following assumptions: For a given set of N (base) experts,

(a) the exponentially weighted average prediction method can be implemented in
O(g(T)) time, that is, for time instants t = 1, . . . , T , predictions ŷ1, . . . , ŷT

can be chosen sequentially according to the probabilities P{ŷt = fi,t} =
e−ηL([1,t−1],i) in O(g(T)) time for any η > 0;

(b) the sums of the weights Zt−1 =
∑N

i=1 e−ηL([1,t−1],i) can be computed in
O(g(T)) time for t = 1, . . . , T .

Note that condition (b) is implied by the following two natural assumptions,
which are often satisfied as byproducts of the efficient implementation of the
exponentially weighted prediction method according to (a): for t = 1, . . . , T ,

(c1) P{ŷt = fit,t} can be computed for the chosen expert it (that is, ŷt = fit,t)
in O(g(T)) time;

(c2) the cumulative losses L([1, t−1], it) of the chosen experts it can be computed
in O(g(T)) time.

Then Zt−1 can be calculated as Zt−1 = e−ηL([1,t−1],it)/P{ŷt = fit,t}.
The next theorem shows that, under assumptions (a) and (b) on the class of

the base experts, Algorithm 2 can be implemented efficiently, and thus tracking
can be performed with low computational complexity.

Theorem 3. Assume that for the set of base experts conditions (a) and (b) are
satisfied. Then Algorithm 2 can be implemented in O

(
T 2 +

∑T
t=1 g(t)

)
time for

T rounds.

Proof. For t = 1 choose ŷ1 uniformly from {f1,1, . . . , fN,1}, and set W1 = 1.
For each t = 2, . . . , T , run the exponentially weighted prediction algorithm for
the base experts with the reverse set of examples yt−1, . . . , y1 as input data and
compute the constants Zt′,t−1 for all t′ = 1, . . . , t − 1 in O(g(t)) time. Then
compute Wt from Z1,t−1, . . . , Zt,t−1 (recall that Zt,t−1 = N) and W1, . . . ,Wt−1

according to (7) in O(t) time. Then the choice of τt according to (10) can be
performed in O(t) time, and the prediction according to (11) can be chosen in
O(g(t)) time. Thus, at time instant t, O(g(t))+O(t) computations are required,
giving overall computational complexity O(T 2 +

∑T
t=1 g(t)). �

We illustrate the use of this algorithm in just one special case when the
losses of the base experts are given by weights of a path in a directed graph. This
application, that is, in a sense, a generic example, should serve as an illustration.
In the full version of the paper other examples will be given.

3 Minimum weight path in a directed graph

In this section we present an application of Algorithm 2 where the constants
Zt′,t can be computed efficiently as discussed at the end of the previous section.
We consider the problem of tracking the minimum-weight path of a given length
in a weighted directed graph. Other efficient implementations of exponentially

weighted prediction methods, such as for finding the minimum weight path (of
unrestricted length) in a weighted directed acyclic graph in Takimoto and War-
muth [14],[15], can also be combined with our tracking method in a similar way.

Formally, we have a directed graph (V, E), where V and E denote the set
of nodes and edges, respectively. Given a fixed pair of nodes s and u, let RM

denote the set of all directed paths of length M from s to u, let N = |RM |
denote the number of such paths, and assume that RM is not empty (that is,
N > 0). We also assume that for all z 6= u, z ∈ V, there is an edge starting
from z. (Otherwise node z is of no use in finding a path from s to u, and all
such nodes can be removed from the graph at the beginning of the algorithm in
O(|V|)+O(|E|) time, parallel with reading the description of the graph.) At time
instants t = 1, 2, . . . the predictor picks a path ŷt ∈ RM . The cost of this path is
the sum of the weights δt(a) on the edges a of the path (the weights are assumed
to be nonnegative real numbers), which are revealed for each a ∈ E only after
the path has been chosen. To use our previous definition for prediction, we may
define yt = {δt(a)}a∈E , and the loss function as

`(yt, ŷt) =
∑
a∈ŷt

δt(a)

for each pair (yt, ŷt). The cumulative loss at time instant T is given as

LT =
T∑

t=1

`(yt, ŷt).

Our goal is to perform as well as the best combination of paths (base experts)
which is allowed to change the path m times during time instants t = 1, . . . , T .
As in the prediction context, such a combination is given as an m-partition
P(T,m, t, e), where t = (t1, . . . , tm) such that t0 = 1 < t1 < · · · < tm < tm+1 =
T + 1, and e = (e0, . . . , em), where ei ∈ RM (that is, expert e ∈ RM predicts
fe,t = e). The cumulative loss of a partition P(T,m, t, e) is

L(P(T,m, t, e)) =
m∑

i=0

ti+1−1∑
t=ti

`(yt, ei) =
m∑

i=0

ti+1−1∑
t=ti

∑
a∈ei

δt(a).

Now Algorithms 1 and 2 can be used to choose the path ŷt randomly at each
time instant t = 1, . . . , T , and the regret

LT −min
t,e

L(P(T,m, t, e))

can be bounded by Theorem 1. The question is whether in this setup we can com-
pute efficiently a path based on the exponentially weighted prediction method
and the constants Zt′,t. The following theorem gives a positive answer.

Theorem 4. For the minimum weight path problem described in this section,
Algorithm 2 can be implemented in O(T 2M |E|) time. If α = m/(T − 1), δt(a) <

1/M for all time instants t and edges a ∈ E, and η =
√

8 ln
(

Nm+1

αm(1−α)T−m−1

)
/T ,

then the regret of the algorithm can be bounded from above, with probability at
least 1− δ, as

LT −min
t,e

L(P(T,m, t, e))

≤
√

T

2

√
(m + 1) lnN + m ln

T − 1
m

+ m +

√
T ln(1/δ)

2
.

Proof. The bound in the theorem follows trivially from the optimized bound
(5) in Theorem 1. All we need to show is that the algorithm can be implemented
in O(T 2M |E|) time. To do this, we show that the exponentially weighted average
prediction method for T rounds can be implemented in O(TM |E|) time for the
above described minimum weight path problem. Then the result follows by The-
orem 3. In the following we modify the algorithm of György, Linder, and Lugosi
[6] to choose a path ŷt randomly based on (y1, y2, . . . , yt−1) (that is, based on
the weights {δj(a)}a∈E , j ∈ [1, t− 1]) according to the probabilities

P{ŷt = r} =
e−η

P
a∈r ∆t−1(a)∑

r′∈RM
e−η

P
a∈r′ ∆t−1(a)

(13)

where ∆t−1(a) =
∑t−1

j=1 δj(a), and compute

Zt−1 =
∑

r∈RM

e−η
P

a∈r ∆t−1(a).

We show that for t = 1, . . . , T , this can be done in O(TM |E|) time, yielding that
the problem satisfies conditions (a) and (b) with g(T) = TM |E|.

For any z ∈ V and k = 1, . . . ,M , let Rz
k denote the set of paths of length

k from z to u, and let Gt−1(z, k) denote the sum of the exponential cumulative
losses in the interval [1, t− 1] of all paths in Rz

k. Formally, if Rz
k is empty then

we define Gt−1(z, k) = 0, otherwise

Gt−1(z, k) =
∑

r∈Rz
k

e−η
P

a∈r ∆t′,t−1(a). (14)

The function Gt−1(z, k) will prove useful in computing Zt−1, as Zt−1 = Gt−1(s,M),
and in drawing ŷt randomly for a given τt: Instead of computing the cumulative
losses

∑
a∈r ∆t−1(a) for all r ∈ RM (needed by (13)), following the algorithm

of [6], we can draw the path ŷt by drawing its edges successively. Denote the
jth node along a path r ∈ RM by zr,j for j = 0, . . . ,M , where zr,0 = s and
zr,M = u. Then, for any k = 1, . . . ,M − 1, the probability that the kth node in

the path ŷt is zk given that the previous nodes are z0, z1, . . . , zk−1 is given by

P{zŷt,k = zk|zŷt,j = zj , j = 0, . . . , k − 1}

=
P{zŷt,j = zj , j = 0, . . . , k}

P{zŷt,j = zj , j = 0, . . . , k − 1}

=

∑
r:zr,i=zi,i=0,...,k e−η

PM
j=1 ∆t−1((zr,j−1,zr,j))∑

r:zr,i=zi,i=0,...,k−1 e−η
PM

j=1 ∆t−1((zr,j−1,zr,j))

= e−η∆t−1((zk−1,zk)) Gt−1(zk,M − k)
Gt−1(zk−1,M − k + 1)

. (15)

Therefore, given the functions ∆t−1 and Gt−1, ŷt and its probability can be
computed in O(M |V|) steps using the exponentially weighted average prediction
method.

Next we show how to compute Gt−1. For any node z ∈ V, let E(z) denote
the set of edges starting at z. As any path of length k ≥ 2 can be decomposed
as the first edge in the path and the remaining path of length k − 1, it is easy
to see that for any M ≥ k ≥ 2, Gt−1(z, k) can be computed recursively as

Gt−1(z, k) =
∑

ẑ:(z,ẑ)∈E(z)

Gt−1(ẑ, k − 1)e−η∆t−1((z,ẑ)) (16)

and

Gt−1(z, 1) =

{
e−η∆t−1((z,u)) if (z, u) ∈ E ;
0 otherwise.

When calculating (16) for a given k, each edge is taken into consideration exactly
once (and we have to do the update of G for each node). Thus, assuming that the
cumulative weights ∆t−1(a) are known for each edge a ∈ E , the computational
cost of calculating Gt−1(z, k) for a given k is O(|E|) + O(|V|) = O(|E|) (as by
assumption, |E| ≥ |V|−1). Therefore, the computational complexity of calculat-
ing Gt−1(z, k) for all z and k, given the cumulative weights ∆t−1(a) are known,
is O(M |E|). Now as t increases from 1 to T , if we store the cumulative weights
∆t−1(a) for each edge a, then only O(|E|) computations are needed to update
the cumulative weights at the edges for each value of t. Therefore, calculating
Gt−1(z, k) for all z ∈ V, 1 ≤ k ≤ M , and t = 1, . . . , T requires O(TM |E|) com-
putations. This shows that conditions (a) and (b) are satisfied for this problem
with g(T) = TM |E|. Applying Theorem 3 finishes the proof. �

Remarks.
(i) If we assume that the graph contains no cycle with a negative weight

at any time instant, then the minimum weight path (of unrestricted length) is
of length at most |V − 1|. Therefore, the algorithm can easily be modified to
compete with paths of unrestricted length. All we require is an additional cycle
in which M goes from 1 to |V| − 1 to examine all possible paths. Then, in the
random choice of the path, after choosing τt, we randomly decide the length
of the path and choose a path of that length using exponential weighting. The

bound on the regret remains the same as in Theorem 4; the price we pay is an
increase in the complexity of the algorithm which becomes O(T 2|V|2|E|).

(ii) If the graph is acyclic, then the above algorithm can be simplified as
there is no need to keep track the second parameter of the function Gt−1 (this
is basically an application of the weight pushing algorithm of Takimoto and
Warmuth [14],[15] to the graph for the time interval [1, t−1]). Then the minimum
weight path (of unrestricted length) can be tracked in O(T 2|E|) time, while the
bound on the regret still holds.

(iii) It is also possible to apply the above algorithm for tracking the best
geometric expert. A geometric expert is a combination of “sub-experts” from a
given set, such that the loss of a geometric expert equals the sum of the losses of
its “sub-experts”; however, not all possible combinations of the “sub-experts” are
allowed (for a formal definition of the problem, see Kalai and Vempala [10]). An
example of the geometric expert problem is the minimum weight path problem
in a graph, where the “sub-experts” are the edges and the allowed geometric
(combined) experts are the paths. However, the geometric expert problem can
also be treated as a special case of the minimum weight path problem, as one can
easily construct a graph such that there is a one-to-one correspondence between
paths of the graph (between to given nodes) and the allowed geometric experts:
each edge of the graph corresponds to a “sub-expert”, and each path corresponds
to the geometric expert combined from the “sub-experts” corresponding to its
edges. Note that usually several edges correspond to each “sub-expert”. In this
way it is possible to track the best geometric expert using the graph algorithms
of this section. However, the complexity of the algorithm depends heavily on the
number of edges of the graph, and it is not clear at all how one can create a
graph with a minimum number of edges for a given set of geometric experts.

References

1. P. Auer and M.K. Warmuth. Tracking the best disjunction. Machine Learning,
32(2):127–150, 1998.

2. D. Blackwell. An analog of the minimax theorem for vector payoffs. Pacific Journal
of Mathematics, 6:1–8, 1956.

3. O. Bousquet and M. K. Warmuth. Tracking a small set of experts by mixing past
posteriors. Journal of Machine Learning Research, 3:363–396, Nov. 2002.

4. N. Cesa-Bianchi, Y. Freund, D. P. Helmbold, D. Haussler, R. Schapire, and M. K.
Warmuth. How to use expert advice. Journal of the ACM, 44(3):427–485, 1997.

5. R.E. Schapire D.P. Helmbold. Predicting nearly as well as the best pruning of a
decision tree. Machine Learning, 27:51–68, 1997.

6. A. György, T. Linder, and G. Lugosi. Efficient algorithms and minimax bounds
for zero-delay lossy source coding. IEEE Transactions on Signal Processing, pages
2337–2347, Aug. 2004.

7. J. Hannan. Approximation to Bayes risk in repeated plays. In M. Dresher,
A. Tucker, and P. Wolfe, editors, Contributions to the Theory of Games, volume 3,
pages 97–139. Princeton University Press, 1957.

8. M. Herbster and M. K. Warmuth. Tracking the best expert. Machine Learning,
pages 1–29, 1998.

9. M. Herbster and M.K. Warmuth. Tracking the best linear predictor. Journal of
Machine Learning Research, 1:281–309, 2001.

10. A. Kalai and S. Vempala. Efficient algorithms for online decision problems. In
B. Schölkopf and M. K. Warmuth, editors, COLT 2003, LNAI 2777, pages 26–40,
Berlin–Heidelberg, 2003. Springer-Verlag.

11. N. Littlestone and M. K. Warmuth. The weighted majority algorithm. Information
and Computation, 108:212–261, 1994.

12. F. Pereira and Y. Singer. An efficient extension to mixture techniques for prediction
and decision trees. Machine Learning, 36:183–199, 1999.

13. E. Takimoto and M. Warmuth. Predicting nearly as well as the best pruning of a
planar decision graph. Theoretical Computer Science, 288:217–235, 2002.

14. E. Takimoto and M. K. Warmuth. Path kernels and multiplicative updates. In
J. Kivinen and R. H. Sloan, editors, COLT 2002, LNAI 2375, pages 74–89, Berlin–
Heidelberg, 2002. Springer-Verlag.

15. E. Takimoto and M. K. Warmuth, “Path kernels and multiplicative updates,”
Journal of Machine Learning Research, vol. 4, pages 773–818, 2003.

16. V. Vovk. Aggregating strategies. In Proceedings of the Third Annual Workshop
on Computational Learning Theory, pages 372–383, New York, 1990. Association
of Computing Machinery.

17. V. Vovk. Derandomizing stochastic prediction strategies. Machine Learning,
35(3):247–282, 1999.

