Lecture & of 41

Scan Conversion 1 of 2:
Midpoint Algorithm for Lines and Ellipses

William H. Hsu
Department of Computing and Information Sciences, KSU

KSOL course pages: http://bit.ly/hGvXIH / http://bit.ly/eVizrE
Public mirror web site: http://www.kddresearch.org/Courses/CIS636
Instructor home page: http://www.cis.ksu.edu/~bhsu

Readings:
Today: Sections 2.5.1, 3.1, Eberly 2¢ — see http://bit.ly/ieUg45
This week: Brown CS123 slides on Scan Conversion — http://bit.ly/hfoFOD
Wayback Machine archive of Brown CS123 slides: http://bit.ly/gAhJbh

CIS 536/636

Computing & Information Sciences
Introduction to Computer Graphics Kansas State University

Lecture & of 41

Lecture Outline

Reading for Last Class: Section 2.3 (esp. 2.3.7), 2.6, 2.7, Eberly 2 ¢
Reading for Today: §2.5.1, 3.1 Eberly 2¢
Reading for Next Class: §2.3.5, 2.4, 3.1.3, Eberly 2¢
Last Time: View Volume Specification and Viewing Transformation
CG Basics: First of Three Tutorials on OpenGL (Three Parts)

* 1. OpenGL & GL Utility Toolkit (GLUT) — V. Shreiner

* 2. Basic rendering — V. Shreiner

* 3. 3-D viewing setup — E. Angel

® Today: Scan Conversion (aka Rasterization)

* Lines
> Incremental algorithm
> Bresenham’s algorithm & midpoint line algorithm
* Circles and Ellipses
® Next Time: More Scan Conversion & Intro to Clipping

Computing & Information Sciences
Introduction to Computer Graphics Kansas State University

CIS 536/636 Lecture & of 41

Where We Are

Lecture | Topic Primary Source(s)
0 Course Overview Chapter 1, Eberly 2°
1 CG Basics: Transformation Matrices; Lab 0 | Sections (§) 2.1, 2.2
2 Viewing 1: Overview, Projections §223-224,28
3 Viewing 2: Viewing Transformation §23 esp 2.3.4; FVFH slides
4 Lab 1a Flash & OpenGL Basics Ch.2, 16", Angel Primer
i Viewing 4. Cllpplng 8. CUIImg, Lab 1b §2.3.5 24, 3.1.3
8 Scan Conversion 2: Polygons, Clipping Intro §24,25esp.254,316
9 Surface Detail 1: llumination & Shading §25,26.1-26243.2 202
10 Lab 2a: Direct3D / DirectX Intro § 2.7, Direct3D handout
11 Surface Detail 2: Textures; OpenGL Shading §26.3, 203204, P
12 Surface Detail 3: Mappings; OpenGL Textures | § 20.5-20.13
13 Surface Detail 4: Pixel/Vertex Shad.; Lab 2b | § 3.1
14 Surface Detail 5. Direct3D Shading; OGLSL § 3.2 — 3.4, Direct3D handout
15 Demos 1: CGA, Fun; Scene Graphs: State §4.1-43, CGA handout
16 Lab 3a: Shading & Transparency § 2.6, 20.1, Primer
17 Animation 1: Basics, Keyframes; HW/Exam | § 5.1 -5.2
Exam 1 review; Hour Exam 1 (evening) Chapters 1-4, 20
18 Scene Graphs: Rendering; Lab 3b: Shader | §4.4-4.7
19 Demos 2: SFX; Skinning, Morphing § 5.3 — 5.5, CGA handout
20 Demos 3: Surfaces; B-reps/Volume Graphics | § 10.4, 12.7, Mesh handout

Lightly-shaded entries denote the due date of a written problem set: heavily-shaded entries, that of a -
machine problem (programming assignment); blue-shaded entries, that of a paper review; and the green- ~/
shaded entry, that of the term project. i

Green, blue and red letters denote exam review, exam, and exam solution review dates.

CIS 536/636 Computing & Information Sciences

Lecture & of 41

Introduction to Computer Graphics Kansas State University

‘ Review:
CTM for “Polygons-to-Pixels” Pipeline

« Entire problem can be reduced to a composite
matrix multiplication of vertices, clipping, and a
final matrix multiplication to produce screen
coordinates.

- Final composite matrix (CTM) is composite of all
modeling (instance) transformations (CMTM)
accumulated during scene graph traversal from
root to leaf, composited with the final composite
normalizing transformation N applied to the
root/world coordinate system:

vy N=D,_S,SM._T

persp~ far rot™ trans
2) CTM =N-CMITM
P for every vertex P defined in
3) P'=CIM-P its own coordinate system
4) P;awn =512.P' +1 forall clipped P’
Adapted from slides © 1997 — 2010 van Dam et al., Brown University rpj
http://bit.ly/hiSt0f Reused with permission. &

CIS 536/636 Computing & Information Sciences

Lecture & of 41

Introduction to Computer Graphics Kansas State University

s Review:
Lab 1a & NeHe Tutorials on GameDev

References

NeonHelium tutorials: http://nehe.gamedev.net
Mesa home page: http://www.mesa3d.org

1. (20%) Mesa setup. Log into your Gentoo Linux account in Nichols 128, the Linux Lab.
Go to the NeHe site and follow the “Setting up OpenGL in MacOS" to create a GL
window. As in MacOS X, Gentoo keeps its GL include files in /usr/include/GL.
Name your program labl 1.c and include it in your lab assignment submission. Take
a screen shot of the window and save itin GIMP as 1abl _1.7jpg.

2. (20%) Polygon rasterization (scan conversion). Follow Lesson 02 to draw a 2-D
polygon and shade it using smooth (Gouraud) and constant (flat) shading. Turn in
labl 2.c andlabl 2.jpg.

3. (20%) Modelview transformation: 3-D Rotation of 2-D objects. Follow Lesson 03 to
rotate the flat polygons and then render them. Turnin 1abl 3.c and 1abl_ 3.jpg.

4. (20%) Modelview transformation: 3-D Rotation of 3-D objects. Follow Lesson 04 to
draw 3-D polyhedra and rotate them. Turn in 1abl 4.c and labl 4.jpg.

5. (20%) XWindows. Repeat Lesson 04 from a notebook computer or PC running Mac OS

X, Windows XP or Windows Vista. Turnin labl 5.jpg.

CIS 536/636

Computing & Information Sciences
Introduction to Computer Graphics Kansas State University

Lecture & of 41

Review: Coordinate Spaces &
Transformation Matrices

(See Eberly 2e § 2.3.2 - 2.3.7, pp. 48-66, especially p. 58)

1. model coordinates / object coordinates Kriodal » (Hworid)

2. world coordinates / scene coordinates Koworid > (Hiiow)

3. camera coordinates / eye coordinates Kiiew » (Hprgj)

4. (optional) view coordinates / clip coordinates Xeiip » (perspective division)
5. normalized device coordinates (NDC) y, ¢ -]

6. screen coordinates b, ST

Huworig: modelview transformation

Hiew: “view matrix” (really NT!)
Ho: projection matrix

Normalizing transformation: Xuoia — Xnde { s perspective division

Huindow: Window matrix
(aka viewport transformation)

CIS 536/636 Lecture & of 41 Computing & Information Sciences

Introduction to Computer Graphics Kansas State University

Scan Converting Lines

Line Drawing

» Draw aline on a raster screen between two points

» Why is this a difficult problem? i
» What is “drawing” on a raster display? - ps_ o
¥ Whatis a “line” in raster world? F Y 3] ik 7
» Efficiency and appearance are both important e /{”{9 '
b
e~

Problem Statement

» Given two points P and @ in XY plane, both with integer coordinates,
determine which pixels on raster screen should be on in order to make
picture of a unit-width line segment starting at P and ending at Q

Adapted from slides © 1997 — 2010 van Dam et al., Brown University .
http://bit.ly/hiSt0f Reused with permission. & =

CIS 536/636 Computing & Information Sciences

Lecture & of 41

Introduction to Computer Graphics Kansas State University

What Is Scan Conversion?

» Final step of rasterisation (process of taking geometric shapes and
converting them into an array of pixels stored in the framebuffer to be

displayed)

» Takes place after clipping occurs
» All graphics packages do this at the end of the rendering pipeline

» Takes triangles and maps them to pixels on the screen

» Also takes into account other properties like lighting and shading, but
we'll focus first on algorithms for line scan conversion

Adapted from slides © 1997 — 2010 van Dam et al., Brown University ,
http://bit.ly/hiSt0f Reused with permission. & &

CIS 536/636 Lecture & of 41 Computing & Information Sciences

Introduction to Computer Graphics Kansas State University

Finding Next Pixel

Special case:
» Horizontal Line:

Draw pixel P and increment x coordinate value by 1 to get next pixel.

» Vertical Line:

Draw pixel P and increment y coordinate value by 1 to get next pixel.

» Diagonal Line:

Draw pixel P and increment both x and y coordinate by 1 to get next pixel.

» What should we do in general case?
» Increment x coordinate by 1 and choose point closest to line.

» But how do we measure “closest”?

Adapted from slides © 1997 — 2010 van Dam et al., Brown University
http://bit.ly/hiSt0f Reused with permission. & =

CIS 536/636 Computing & Information Sciences

Lecture & of 41

Introduction to Computer Graphics Kansas State University

10

Vertical Distance

» Why can we use vertical distance as measure of which point is closer?
» ...because vertical distance is proportional to actual distance

-

-

L

> 2%
, \ (x2,¥5)

» Similar triangles show that true distances to line (in blue) are directly
proportional to vertical distances to line (in black) for each point

» Therefore, point with smaller vertical distance to line is closest to line

Adapted from slides © 1997 — 2010 van Dam et al., Brown University
http://bit.ly/hiSt0f Reused with permission. & =

CIS 536/636 Computing & Information Sciences

Lecture & of 41

Introduction to Computer Graphics Kansas State University

kit

Strategy 1: Incremental Algorithm [1]

Basic Algorithm
» Find equation of line that connects two points P and @

» Starting with leftmost point, increment x; by 1 to calculate y; =m * x; + B
where m = slope, B = y intercept

» Draw pixel at (x;, Round(y;)) where
Round (y;) = Floor (0.5 + y;)

Incremental Algorithm:
» Each iteration requires a floating-point multiplication
» Modify algorithm to use deltas
» it —yi)=m* (41 — %) + B
Y Virr =Y tmox (X —x5)
» fAx=1,theny;;=y;+m
» At each step, we make incremental calculations based on preceding step
to find next y value

Adapted from slides © 1997 — 2010 van Dam et al., Brown University
http://bit.ly/hiSt0f Reused with permission. & =

Computing & Information Sciences
Kansas State University

CIS 536/636 Lecture & of 41

Introduction to Computer Graphics

12

Strategy 1: Incremental Algorithm [2]

(x;, ;) (x, +1, Round (v, + m))

\ /

)
17
A
W
N
7

(x,, Round(v,)) (x, +L v, +m)
Adapted from slides © 1997 — 2010 van Dam et al., Brown University ""j
http://bit.ly/hiSt0f Reused with permission. &

CIS 536/636 Computing & Information Sciences

Lecture & of 41

Introduction to Computer Graphics Kansas State University

2 Strategy 1: Incremental Algorithm [3]
Example Code & Problems

void Line(int x0, int y0, int x1, int y1) {

int X, V; Since slope is fl'act_ional, _
float dy = y1 - y0; need special case for vertical lines (dx = 0)

float dx = x1 - x0; /

float m=dy / dx;

Rounding takes time

¥ = YO- /
for (x=x0; x<x1; ++x){

WritePixel(x, Round(y));

Y=y +m;
}
¥
Adapted from slides © 1997 — 2010 van Dam et al., Brown University rikj
http://bit.ly/hiSt0f Reused with permission. & =

CIS 536/636 Computing & Information Sciences

Lecture & of 41

Introduction to Computer Graphics Kansas State University

14

Strategy 2: Midpoint Line Algorithm [1]

» Assume thatline’s slope is shallow and positive (0 < slope < 1); other
slopes can be handled by suitable reflections about principle axes

» Call lower left endpoint (xo, yo) and upper right endpoint (x;, y;)

» Assume that we have just selected pixel P at (xp, yp)

» Next, we must choose between pixel to right (E pixel), or one right and
one up (NE pixel)

» Let Q be intersection point of line being scan-converted and vertical line

x=xp +1
Adapted from slides © 1997 — 2010 van Dam et al., Brown University "pj
http://bit.ly/hiSt0f Reused with permission. & &

CIS 536/636 Computing & Information Sciences

Lecture & of 41 yo—-
Introduction to Computer Graphics Kansas State University

1s

Strategy 2: Midpoint Line Algorithm [2]

P Jn
L/]

an D N

“t’ NE pixel 't e

_..-l/’ Midpoint M

2
e
|
&

R i i
i “E pixel \‘T} e
P=(2. ¥ =t :
(Xp-Vp) =2+l Choices for
Previous pixel ~ Choices for next pixel
current pixel
Adapted from slides © 1997 — 2010 van Dam et al., Brown University 1"—7_
http://bit.ly/hiSt0f Reused with permission. &

CIS 536/636 Lecture & of 41 Computing & Information Sciences

Kansas State University

Introduction to Computer Graphics

1o

Strategy 2: Midpoint Line Algorithm [3]

» Line passes between E and NE
» Point that is closer to intersection point ¢ must be chosen
» Observe on which side of line midpoint M lies:

» Eis closer to line if midpoint M lies above line, i.e., line crosses bottom half

» NEis closer to line if midpoint M lies below line, i.e., line crosses top half

» Error (vertical distance between chosen pixel and actual line) is always
% 3

NE pixel

+ Algorithm chooses NE as next pixel for
line shown

+ Now;, need to find a way to calculate on

which side of line midpoint lies | { ——
[E pixel
Adapted from slides © 1997 — 2010 van Dam et al., Brown University "pj
http://bit.ly/hiSt0f Reused with permission. & &

CIS 536/636 Computing & Information Sciences

Lecture & of 41

Introduction to Computer Graphics Kansas State University

17

Line Equations and Properties

. : g dy
Line equation as function f{x): y =mx+8=-"x+B

Line equation as implicit function: f(x,y)=ax+by+c=0

for coefficients a, b, ¢, where a, b # 0

So from above, yedx=dy-x+B-d

dy-x—y-dx+B-dx=0
sa=dy,b=—dx,c=B-dx

Properties (proof by case analysis):

¥ f(Xm Vm) = 0 when any point M is on line

» f(xm, Vi) < 0 when any point M is above line
» f(xm Vm) = 0 when any point M is below line
b

Qur decision will be based on value of function at midpoint M at
(xp + 1,yp + 5)

Adapted from slides © 1997 — 2010 van Dam et al., Brown University .
http://bit.ly/hiSt0f Reused with permission. & =

CIS 536/636 Computing & Information Sciences

Lecture & of 41

Introduction to Computer Graphics Kansas State University

18

Decision Variable

Decision Variable d :

» We only need sign of f(xp + 1,yp + .5) to see where line lies, and then pick
nearest pixel

» d=f(xp+1,yp +.5)
-ifd > 0 choose pixel NE
-if d < 0 choose pixel E

- if d = 0 choose either one consistently

How do we incrementally update d?

» On basis of picking E or NE, figure out location of M for that pixel, and
corresponding value d for next grid line

» We can derive d for the next pixel based on our current decision

Adapted from slides © 1997 — 2010 van Dam et al., Brown University
http://bit.ly/hiSt0f Reused with permission. & &

CIS 536/636 Computing & Information Sciences

Lecture & of 41

Introduction to Computer Graphics Kansas State University

14a

East Neighbor (E) Case

Increment M by one in x direction

dnew = f(xP £ 2JyP iy 5)
=alxp+2)+b(yp+.5) +c

dyg =alxp+1)+b(yp +.5) +c

b d,ew — dorg is the incremental difference AE

lf’-']'llrie?".a-f = dol’d +a
AE = a = dy (2 slides back)

» We can compute value of decision variable at next step incrementally
without computing F(M) directly

dnew = dold + AE = dol‘d £ 3 dy

» AE can be thought of as correction or update factor to take d ;4 to d,, o0
» Itis referred to as forward difference

Adapted from slides © 1997 — 2010 van Dam et al., Brown University
http://bit.ly/hiSt0f Reused with permission. & &

CIS 536/636 Computing & Information Sciences

Lecture & of 41

Introduction to Computer Graphics Kansas State University

20

Northeast Neighbor (NE) Case

Increment M by one in both x and y directions

dnew = f(xp + Z,yp + 1.5)
=alxp +2)+b(yp +1.5) + ¢

4 ANE = dnew - dold

dTIE‘W = dﬂEd +a+b

ANE =a+b =dx—dy

» Thus, incrementally,

Apew = doig + ANE = dOld + dx —dy

Adapted from slides © 1997 — 2010 van Dam et al., Brown University
http://bit.ly/hiSt0f Reused with permission. & &

CIS 536/636 Computing & Information Sciences

Lecture & of 41

Introduction to Computer Graphics Kansas State University

2 Midpoint Algorithm [1]:
Forward Differences

» At each step, algorithm chooses between 2 pixels based on sign of
decision variable calculated in previous iteration.

» It then updates decision variable by adding either AE or ANE to old
value depending on choice of pixel. Simple additions only!

» First pixel is first endpoint (x,, yp), so we can directly calculate initial
value of d for choosing between E and NE

Adapted from slides © 1997 — 2010 van Dam et al., Brown University "pj
http://bit.ly/hiSt0f Reused with permission. & &

CIS 536/636 Lecture & of 41 Computing & Information Sciences

Introduction to Computer Graphics Kansas State University

22 Midpoint Algorithm [2]:
Initialization and Normalization

» First midpoint for first d = dgpq.¢ isat (xo + 1,y +.5)
» f(xy,+ 1,y +.5)

» =a(xo+ 1)+ b(y,+.5) +¢
’ :a*xn+b*yg—l—a+g+c
> =f (X0, o) +a +

» But (xg,¥,) is point on line and f (x4, y,) = 0

» Therefore, dgpqrr = @ .|_§ =dy — d_:

¥ use dgpq+10 choose second pixel, etc.

» To eliminate fraction in d;4,+:
» redefine f by multiplying it by 2; f(x,y) = 2(ax + by +¢)
» This multiplies each constant and decision variable by 2, but does not change sign

Adapted from slides © 1997 — 2010 van Dam et al., Brown University .
http://bit.ly/hiSt0f Reused with permission. & =

CIS 536/636 Computing & Information Sciences

Lecture & of 41

Introduction to Computer Graphics Kansas State University

2 Bresenham’s Midpoint Line Algorithm:
Pseudocode

void MidpointLine(int x0, int y0, int x1, int y1) {
int dx = (x1 - x0), dy = (y1 - y0);
intd =2 *dy - dx;
intincrE = 2 * dy;
intincrNE = 2 * (dy - dx);
intx=x0,y=y0;
writePixel(x, v);

while (x <x1) {

if (d<=0) d=d + incrE; // East Case

else d =d +incrNE, ++y; // Northeast Case

++X;

writePixel(x, v);

}
}

Adapted from slides © 1997 — 2010 van Dam et al., Brown University rﬁj__
http://bit.ly/hiSt0f Reused with permission. =

CIS 536/636 Computing & Information Sciences

Lecture & of 41

Introduction to Computer Graphics Kansas State University

2 Preview:
Drawing Circles, Versions1 & 2

Version 1: really bad omy

For x from —R to R: (W

y=vR*R —x*x;
Pixel (round(x), round(y));
Pixel (round(x), round(—y)); ATETRItRINTIN g_’

(17.0)

°
°

TTTITTTTIITTTITT

Version 2: slightly less bad o Iu,_.n
For x from 0 to 360: g ~

Pixel (round (R * cos(x)),
round (R * sin(x)));

L)

TTTTTTTTIT 1T
.0

%
IIIIIIIIIIIIIII‘_,

(17,0)

Adapted from slides © 1997 — 2010 van Dam et al., Brown University f
http://bit.ly/hiSt0f Reused with permission. &

CIS 536/636 Computing & Information Sciences

Lecture & of 41

Introduction to Computer Graphics Kansas State University

= Preview:
Drawing Circles, Version 3

« Symmetry: If (x¢ + @,y + b) is on circle
— also (xy + a,y, + b) and (x, + b, ¥, + a), hence 8-way symmetry.

* Reduce the problem to finding the pixels for 1/8 of the circle

(x,+a,y,+b)
! sl
I' (%o ¥o) *I

(xxP + vy =R2

Adapted from slides © 1997 — 2010 van Dam et al., Brown University
http://bit.ly/hiSt0f Reused with permission. & =

CIS 536/636 Computing & Information Sciences

Lecture & of 41

Introduction to Computer Graphics Kansas State University

= Preview:
Using The Symmetry

» Scan top right 1/8 of circle of radius R

» Circle starts at (xg, yo + R) }

’ - |
» Let's use another incremental | é , |
> : S . ||I (1’0_ 1,-0) |
algorithm with decision variable : /
evaluated at midpoint
Adapted from slides © 1997 — 2010 van Dam et al., Brown University "pj
http://bit.ly/hiSt0f Reused with permission. & &

CIS 536/636 Computing & Information Sciences

Lecture & of 41

Introduction to Computer Graphics Kansas State University

27

Summary

® Lab 1a: Based on First of Three Tutorials on OpenGL (Three Parts)
® |ecture 5: Viewing 3 of 4 — Graphics Pipeline (§2.3.2 - 2.3.7, pp. 48-66)
® See Also: CG Basics 1-2
* CG Basics 1: Mathematical Foundations
* CG Basics 2: OpenGL Primer 1 of 3 (in greater detail)
® Today: Scan Conversion (aka Rasterization)
* Lines
> Incremental algorithm
» Symmetries (8) and reduction to two-case analysis: E vs. NE
> Decision variable and method of forward differences
> (Bresenham'’s) midpoint line algorithm
* Circles and Ellipses
® Next Time: More Scan Conversion & Intro to Clipping
* Polygons: scan line interpolation
* Clipping basics: 2-D problem definition and examples /—

CIS 536/636 Computing & Information Sciences

Lecture & of 41

Introduction to Computer Graphics Kansas State University

28

Terminology

Picture elements (pixels)
Scan Conversion (aka Rasterization)

* Given: geometric object (e.g., line segment, projected polygon)
* Decide: what pixels to light (turn on; later, color/shade)
* Basis: what part of pixels crossed by object
® Issues (Reasons why Scan Conversion is Nontrivial Problem)
* Aliasing (e.g., jaggies) — discontinuities in lines
* Cracks: discontinuities in “polygon” mesh
® Line Drawing
* Incremental algorithm — uses rounding, floating point arithmetic
* Forward differences — precalculated amounts to add to running total

* Midpoint line algorithm — uses forward differences
» For lines: Bresenham'’s algorithm

» For circles and ellipses

CIS 536/636

Computing & Information Sciences
Introduction to Computer Graphics Kansas State University

Lecture & of 41

