CIS 536/636

Lecture 7 of 41

Viewing 4 of 4: Culling and Clipping
Lab 1b: Flash Intro

William H. Hsu
Department of Computing and Information Sciences, KSU

KSOL course pages: http://bit.ly/hGvXIH / http://bit.ly/eVizrE
Public mirror web site: http://www.kddresearch.org/Courses/CIS636
Instructor home page: http://www.cis.ksu.edu/~bhsu

Readings:
Today: Sections 2.3.5, 2.4, 3.1.3, Eberly 2¢ — see http://bit.ly/lieUq45
Next class: Sections 2.4, 2.5, 3.1.6, Eberly 2¢
Brown CS123 slides on Clipping — http://bit.ly/eWU7i1
Wayback Machine archive of Brown CS123 slides: http://bit.ly/gAhJbh ?‘Af/?

Lecture 7 of 41 Computing & Information Sciences

Introduction to Computer Graphics Kansas State University

Lecture Outline

Reading for Last Class: Sections 2.5.1, 3.1 Eberly 2¢

Reading for Today: §2.3.5, 2.4, 3.1.3, Eberly 2¢

Reading for Next Class: §2.4, 2.5 (Especially 2.5.4), 3.1.6, Eberly 2¢
Last Time: Scan Conversion (aka Rasterization) of Lines

* Incremental algorithm

* Bresenham’s algorithm & midpoint line algorithm

* Preview: Circles and Ellipses (Lecture 8)

® Today: Intro to Clipping and Culling

* Clipping
> 2-D derivation: clip edges
> Algorithms: Cohen-Sutherland, Liang-Barsky/Cyrus-Beck
> 3-D derivation: clip faces

* Culling
> Back face culling

> Occlusion culling Ve

CIS 536/636 Computing & Information Sciences

Lecture 7 of 41

Introduction to Computer Graphics Kansas State University

Where We Are

Lecture | Topic Primary Source(s)
0 Course Overview Chapter 1, Eberly 2°
1 CG Basics: Transformation Matrices; Lab 0 | Sections (§) 2.1, 2.2
2 Viewing 1: Overview, Projections §223-224,28
3 Viewing 2: Viewing Transformation 8§23 esp 2.34; FVFH slides
4 Lab 1a: Flash & OpenGL Basics Ch. 2, 16", Angel Primer
5 Viewing 3. Graphics Pipeline_ § 2.3 esp. 2 3. 7 26,27
6 5.1, 3.
9 Surface Detail l IIIummamn & Shaﬂlng § 2 5 2 6.1-— 2 B 2 4 3 2 202
10 Lab 2a: Direct3D / DirectX Intro § 2.7, Direct3D handout
11 Surface Detail 2: Textures; OpenGL Shading §2.6.3, 20.3 — 204, Primer
12 Surface Detail 3: Mappings; OpenGL Textures | § 20.5-20.13
13 Surface Detail 4: Pixel/Vertex Shad., Lab 2b | § 3.1
14 Surface Detail 5. Direct3D Shading; OGLSL § 3.2 — 3.4, Direct3D handout
15 Demos 1: CGA, Fun; Scene Graphs: State §4.1-43, CGA handout
16 Lab 3a: Shading & Transparency § 2.6, 20.1, Primer
17 Animation 1: Basics, Keyframes; HW/Exam | § 5.1 -5.2
Exam 1 review; Hour Exam 1 (evening) Chapters 1-4, 20
18 Scene Graphs: Rendering: Lab 3b: Shader | §4.4-4.7
19 Demos 2: SFX; Skinning, Morphing § 5.3 - 5.5, CGA handout
20 Demos 3: Surfaces; B-reps/Volume Graphics | § 10.4, 12.7, Mesh handout

Lightly-shaded entries denote the due date of a written problem set: heavily-shaded entries, that of a -
machine problem (programming assignment); blue-shaded entries, that of a paper review; and the green- ~/
shaded entry, that of the term project. i

Green, blue and red letters denote exam review, exam, and exam solution review dates.

CIS 536/636 Computing & Information Sciences

Lecture 7 of 41

Introduction to Computer Graphics Kansas State University

Clipping

Adapted from slides © 1997 — 2010 van Dam et al., Brown University

http://bit.ly/hiSt0f Reused with permission.

CIS 536/636 Lecture 7 of 41 Computing & Information Sciences
Introduction to Computer Graphics Kansas State University

Line Clipping

» Clipping endpoints (X Yima)

[]
=¥

(me neVm r'n}
P X <X S Xpax and ¥aiin =¥ =Nz l:> point inside

» Endpoint analysis for lines:

» ifboth endpoints in, do “trivial acceptance” ./
» if one endpoint inside, one outside, must clip

» if both endpoints out, don't know

» Brute force clip: solve simultaneous equations using y = mx + b for line
and four clip edges

» slope-intercept formula handles infinite lines only
» doesn't handle vertical lines

Adapted from slides © 1997 — 2010 van Dam et al., Brown University .
http://bit.ly/hiSt0f Reused with permission. & =

CIS 536/636 Computing & Information Sciences

Lecture 7 of 41

Introduction to Computer Graphics Kansas State University

¢ Parametric Line Formulation
For Clipping

» Parametric form for line segment

(x1,y1)
X=x +t{x.—x,] UO=tzl (=1
Y=y, +t(y;- yo
— Xpn.
P(t) =P, +t(P,~ P,) (Xg:Yo)
t=0
» “true,’ i.e, interior intersection, if s, and t;;,. in [0,1]
» (hard to compute)
t=1.3
-
=1 / t=1
s=1
s=0
=0
Adapted from slides © 1997 — 2010 van Dam et al., Brown University "pj :
http://bit.ly/hiSt0f Reused with permission. & &

CIS 536/636 Computing & Information Sciences

Lecture 7 of 41

Introduction to Computer Graphics Kansas State University

7 Cohen-Sutherland 2-D Clipping:
Outcodes [1]

+ Divide plane into 9 regions

» Compute the sign bit of 4 comparisons between a vertex and an edge
b ¥max-y; y¥-ymin; xmax - x; X - Xxmin
b peintlies inside only if all four sign bits are 0, otherwise exceeds edge

’| — =

1001/ 1 1000 § 1010

-
001 | 0000 |~ 0010
Clip Rectangle—-jhp :

v .
-
01
/ 0101 [H[JL.I/E“ 0110

» 4 bit outcode records results of four bounds tests:
b First bit: outside halfplane of top edge, above top edge
b Second bit: outside halfplane of bottom bottom edge
b Third bit: outside halfplane of right edge, to edge, below right of right edge
b Fourth bit: outside halfplane of left edge, to left of left edge

» Compute outcodes for both vertices of each edge (denoted OC;, and OC,)
v Lineswith OC; = 0 and OC, = 0 can be trivially accepted (i.e., outcode 0000)
» Lines lying entirely in a half plane outside an edge can be trivially refected: 0CO AND OC1
0 (i.e, they share an “outside” bit)
Adapted from slides © 1997 — 2010 van Dam et al., Brown University
http://bit.ly/hiSt0f Reused with permission. &a

CIS 536/636 Computing & Information Sciences

Lecture 7 of 41

Introduction to Computer Graphics Kansas State University

: Cohen-Sutherland 2-D Clipping:
Outcodes [2]

b Very similar to 2D
b Divide volume into 27 regions (Picture a Rubik’s cube)
b 6-bit outcode records results of 6 bounds tests

Back plane Front plane Top plane
000000 (in front) 010000 (in front) 001000 (above)
100000 (behind) 000000 (behind) 000000 (below)
Bottom plane Right plane Left plane
000000 (above) 000000 (to left of) 000001 (to left of)
000100 (below) 000010 (to right of) 000000 (to right of)

First bit: outside back plane, behind back plane

Second bit: outside front plane, in front of front plane

Third bit: outside top plane, above top plane

Fourth bit: outside bottom plane, below bottom plane

Fifth bit: outside right plane, to right of right plane

Sixth bit: outside left plane, to left of left plane

» Again, Lines with 0OC, = 0 and OC, = 0 can be trivially accepted
» Lines lying entirely in a volume on outside of a plane can be trivially rejected:
0C, AND OC, # 0 (Le., they share an “outside” bit)
Adapted from slides © 1997 — 2010 van Dam et al., Brown University
http://bit.ly/hiSt0f Reused with permission. & &

CIS 536/636 Computing & Information Sciences

Lecture 7 of 41

Introduction to Computer Graphics Kansas State University

Cohen-Sutherland Algorithm [1]

b If we can neither trivially accept/reject (T/A, T/R), divide and conquer
b Subdivide line into two segments; then T/A or T/R one or both segments:

e .

' 3
________ _\‘.A = I—i_
//
Clip e
rectangle _~" F
3 |

» use a clip edge to cut line
» use outcodes to choose edge that is crossed
edges where the two outcodes differ at that particular bit are crossed
» pick an order for checking edges: top - bottom - right - left
» compute the intersection point
the clip edge fixes either x ory
can substitute into the line equation
» iterate for the newly shortened line, “extra” clips may happen (e.g., E-1 at H)

Adapted from slides © 1997 — 2010 van Dam et al., Brown University
http://bit.ly/hiSt0f Reused with permission. & =

CIS 536/636 Computing & Information Sciences

Lecture 7 of 41

Introduction to Computer Graphics Kansas State University

10

Cohen-Sutherland Algorithm [2]

» v=y0 + slope*(x -x0) and x=x0 + (1/slope)*(y - v0)

» Algorithm:
ComputeQutCode(x0, y0, outcode);
ComputeOutCode(x1, y1, outcodel);
repeat
check for trivial reject or trivial accept
pick the point that is outside the clip rectangle

if TOP then

x=x0 + (x1 - x0] * (ymax - y0)/(v1 - y0); ¥ = ymax;
else if BOTTOM then

x=x0+ (x1 - x0) * (ymin - y0)/(¥1 - y0); ¥ = ymin;
else if RIGHT then

v=y0+ (y1 - v0) * (xmax - x0)/(x1 - x0); x = xmax;
else if LEFT then

v =y0 + (yv1 - ¥0) * (xmin — x0)/(x1 - x0); x = xmin;

if (%0, y0 is the outer point) then
%0 = x; v0 = yv; ComputeOutCode(x0, y0, outcodel)
else

x1 = x; y1 = y; ComputeOutCode(x1, y1, outcodel)
until done

Adapted from slides © 1997 — 2010 van Dam et al., Brown University
http://bit.ly/hiSt0f Reused with permission.

Computing & Information Sciences

CIS 536/636
Lecture 7 of 41 Kansas State University

Introduction to Computer Graphics

kit

Scan Conversion after Clipping

» Don't round and then scan convert, because the line will have the wrong slope:
calculate decision variable based on pixel chosen on left edge

» (remember: y = mx + B) X =Xpiia
NE =~
I/-\
(X min, Round(Mxm, + B)) il
min min \ E M
L
(xmin' MXnin + B) } E
" Clip rectangle
» Horizontal edge problem: Y =Ymin

» clipping/rounding produces pixel A; to get pixel B, round up x of the intersection of line
with y = ymin — %: and pick pixel above:

_‘\ -
l\—/]' X = Xmin | 'i(/
Y = Ymin IR R RN — ~ A
v . —1/2 N AN - T o
T R e e
= - Y aVAATARVARVER'
V = Viin l_'E/f plastastastan
Adapted from slides © 1997 — 2010 van Dam et al., Brown University 1"—7_
http://bit.ly/hiSt0Of Reused with permission. 6

CIS 536/636 Computing & Information Sciences

Lecture 7 of 41 yo—-
Introduction to Computer Graphics Kansas State University

= Sutherland-Hodgman
Polygon Clipping

\‘ - '/_, Clip FCISIFUQJ L/l

| ~

{a)
@ V
———
(e

(o)

Clip raetangle /7 Rient elip
boundary
<] -«
() ()
=1
Bottam chp
boundary
e} id) (e}
Adapted from slides © 1997 — 2010 van Dam et al., Brown University rpj
http://bit.ly/hiSt0f Reused with permission. &

CIS 536/636 Computing & Information Sciences

Lecture 7 of 41

Introduction to Computer Graphics Kansas State University

iz Cyrus-Beck / Liang-Barsky
Parametric Line Clipping [1]

» Use parametric line formulation: P(t) = P, + (P; - Py)t

» Determine where line intersects the infinite line formed by each clip
rectangle edge
» solve for t multiple times depending on the number of clip edges crossed
» decide which of these intersections actually occur on the rectangle

Qutside of clip region | Inside of clip rectangle
Edge E;

Py,

Py

. ™ Nie [P() -Pgl <0
N'. Pf'P-.:U
N« [P(9 “Pg] >0 = [P0 - Pg)
—

» For any point PE;‘ on edge E;

Adapted from slides © 1997 — 2010 van Dam et al., Brown University a
http://bit.ly/hiSt0f Reused with permission. & =

CIS 536/636 Computing & Information Sciences

Lecture 7 of 41

Introduction to Computer Graphics Kansas State University

= Cyrus-Beck / Liang-Barsky
Parametric Line Clipping [2]

» Now solve for the value of t at the intersection of P P, with the edge E;:
N;«[P(t)-Pg]=0
» First, substitute for P(t):
N, [P, + (P, ‘Pa)t‘PfJ:G
¥ Next, group terms and distribute dot product:
N, [P, - PEJ +N,o[P,-Pyjt=0
¢+ Let D be the vector from F, to P, = (P, - P,;), and solve for t:
. Nj .[PD _PE;F]
— N:' « D
» note that this gives a valid value of t only if the denominator of the expression is nonzero.

» For this to be true, it must be the case that:
» N.=0 (that is, the normal should not be 0; this could occur only as a mistake)
v D=0 (thatis, P,=PF;)
» N+ D=0 (edge E, and line D are not parallel; if they are, no intersection).

» The algorithm checks these conditions.

Adapted from slides © 1997 — 2010 van Dam et al., Brown University .
http://bit.ly/hiSt0f Reused with permission. & =

CIS 536/636 Computing & Information Sciences

Lecture 7 of 41

Introduction to Computer Graphics Kansas State University

= Cyrus-Beck / Liang-Barsky
Parametric Line Clipping [3]

» Eliminate t's outside [0,1] on the line
¥ Which remaining t's produce interior intersections?
» Can'tjust take the innermost t values!

Fiy Linel

Line 2 !

rectangle
» Move from P, to P,; for a given edge, just before crossing:

» if N,» D < 0 — Potentially Entering (PE), if N;+ D> 0 = Potentially Leaving (PL)
» Pick inner PE, PL pair: t; for P, with max ¢, t, for P, withmint,andt; = 0,t, < 1.
» Ift, <t nointersection

Adapted from slides © 1997 — 2010 van Dam et al., Brown University
http://bit.ly/hiSt0f Reused with permission. & =

CIS 536/636 Computing & Information Sciences

Lecture 7 of 41

Introduction to Computer Graphics Kansas State University

i Cyrus-Beck / Liang-Barsky
Line Clipping Algorithm
Pre-calculate N; and select Py, for each edge;
for each line segment to be clipped
if P, = P, then line is degenerate so clip as a point;
else
begin
te=0;t,=1;
for each candidate intersection with a clip edge
if Ni « D = 0 then {Ignore edges parallel to line}
begin
calculate t; {ofline and clip edge intersection}
use sign of N, = D to categorize as PE or PL;
if PE then t; = max(t.t);
if PL then t; = min(t,t);
end
ift; = t; then return nil
else return P(tz) and P(t;) as true clip intersections

end
Adapted from slides © 1997 — 2010 van Dam et al., Brown University "pj
http://bit.ly/hiSt0f Reused with permission. & &

CIS 536/636 Computing & Information Sciences

Lecture 7 of 41

Introduction to Computer Graphics Kansas State University

o Parametric Line Clipping
For Upright Clip Rectangle [1]
» D=P;—Py=(x;-Xp¥1-Yd
b Leave PE:’ as an arbitrary point on clip edge; it's a free variable and drops out

Calculations for Parametric Line Clipping Algorithm

Clip Edge; Normal N; PEi Po‘PE,-) N o(By— PE}‘}
© —NsD
I
left: x = Emin [' 1:0] [xm"um ,V] (xu‘ xmin:YD'Y] = (x{] i ‘l]]lll)
[:xl T 0}
right: x = %, (1,0) (Xman¥) (g~ Xpaw¥o-¥) i (I{] _Imax}
(xl _xo)
bottom: ¥ = ¥min [{},-l] [XF ymjn] [xg'nyU' yn:un] - UG = ‘rm)
0 -¥)
op: ¥ = ¥Voax (0.1) (x Ymaxj [xﬂ'XJYU' yma.!] = (_}0 =]-'m)
(.]"]_ _.]'0:'
Adapted from slides © 1997 — 2010 van Dam et al., Brown University "pj
http://bit.ly/hiSt0f Reused with permission. & &

CIS 536/636 Computing & Information Sciences

Lecture 7 of 41

Introduction to Computer Graphics Kansas State University

& Parametric Line Clipping
For Upright Clip Rectangle [2]

» Examine t:
» numerator is just the directed distance to an edge; sign corresponds to OC
» denominator is just the horizontal or vertical projection of the line, dx or dy;
sign determines PE or PL for a given edge
» ratio is constant of proportionality: “how far over” from P, to P, intersection
is relative to dx or dy

Adapted from slides © 1997 — 2010 van Dam et al., Brown University .
http://bit.ly/hiSt0f Reused with permission. & &

CIS 536/636 Computing & Information Sciences

Lecture 7 of 41

Introduction to Computer Graphics Kansas State University

s Culling: A Form of
Visible Surface Determination

» Given a set of 3-D objects and a view specification (camera), determine
which lines or surfaces of the object are visible

why might objects not be visible?
occlusion vs. clipping

clipping is one object at a time, while

occlusion is global] | T\:l

» Also called [N ‘ |
Hidden Surface Removal (HSR) | A
\
[\ ;

» We begin with some history of / \ "L_
previously used VSD algorithms \ 1

| |‘Q’D D |

Adapted from slides © 1997 — 2010 van Dam et al., Brown University .
http://bit.ly/hiSt0f Reused with permission. =

Computing & Information Sciences
Kansas State University

CIS 536/636 Lecture 7 of 41

Introduction to Computer Graphics

20 Visibility Culling:
View Frustum, Back Face, Occlusion

View frustum culling

View
Frustum

O

Back face culling
View
Point

Occlusion culling

© 1998 — 2004 Kim et al., KAIST VR Lab .
http://bit.ly/e3wRRN =

CIS 536/636 Computing & Information Sciences

Lecture 7 of 41

Introduction to Computer Graphics Kansas State University

21

Occlusion Culling

l_ Tree's Bounding Box

T H|dden blocks rendered, CPU g&\ W $
@.' LOS time wasted

P E 4
Player's)

]
camera &% - i

Car's Bounding Box
(Completely Occluded
r by Tree's Bounding Box)

. @\
Hidden blocks not rendered, l

~ CPU time saved = 4 4 ;;
O 7 o

Without occlusion culing

With occlusion culling

© 2004 Sekulic, D. Chapter 29: Efficient

© 2010 Kwoon, J. (Jakkor), Roblox.com Occlusion Culling. In Fernando, R.,
http://bit.ly/hAL7U5 ed., GPU Gems. Reading, MA:
Addison-Wesley.

http://bit.ly/edQtON

CIS 536/636 Lecture 7 of 41 Computing & Information Sciences

Kansas State University

Introduction to Computer Graphics

22

Lab 1B

® Adobe Flash
* Basic 2-D (up to Flash v9)
* 3-D: Flash 10+
* Simple Flash animation exercise
® Animation Ideas
* Animate: to “bring to life”
* From still frames to animations
* Incremental change and smoothness
® Using Culling
* Back faces illustrated
* What to do besides cull
® Simple Flash Animation Exercise
* Watch Senocular.com tutorial(s) as needed (http://bit.ly/hhigtk)

* Turnin
» ActionScript source code -
» Screenshot(s) as instructed in Lab 1 handout ? e

CIS 536/636 Computing & Information Sciences

Lecture 7 of 41

Introduction to Computer Graphics Kansas State University

23

Summary

® Last Time: Scan Conversion (aka Rasterization)
* Lines: incremental algorithm vs. (Bresenham’s) midpoint algorithm
* Decision variables and forward differences
* Circles and Ellipses (preview)
® See Also: CG Basics 3 -4
* CG Basics 3: Projections and 3-D Viewing (in detail)
* CG Basics 4: Fixed-Function Graphics Pipeline
® Today: Clipping and Culling
* What parts of scene to clip: edges vs. polygons of model
* What parts of viewport to clip against: clip faces vs. clip edges
* Clipping techniques
» Cohen-Sutherland: outcodes (quick rejection), test intersections
> Liang-Barsky / Cyrus-Beck: solve for t, find innermost PE/PL
* Visibility culling: view frustum, back face, occlusion
® Next: More Scan Conversion (Polygons, Scan Line Interpolation) //—

CIS 536/636 Computing & Information Sciences

Lecture 7 of 41

Introduction to Computer Graphics Kansas State University

24

Terminology

® Fixed Function Pipeline

* Modelview transformation

* Normalizing transformation (inverse of viewing transformation)
® Coordinate Spaces

* Model space — absolute w.r.t. model

* World space aka scene space — absolute w.r.t. scene, canonical

* Camera / Eye / View space - relative, user-defined, arbitrary
* Clip space — before perspective division
* Normalized device coordinates — after perspective division

® Clipping and Culling
* Clip faces/edges - clip region (screen, view volume) boundaries

* Clipping techniques
» Cohen-Sutherland: outcodes (quick rejection), test intersections

> Liang-Barsky / Cyrus-Beck: solve for t, innermost PE/PL
* Visibility culling: view frustum, back face, occlusion P

CIS 536/636 Computing & Information Sciences

Lecture 7 of 41

Introduction to Computer Graphics Kansas State University

