Lecture 110f 41 Lecture Outline

Surface Detail 2 of 5: Textures ® Reading for Last Class: §2.7, Eberly 2¢; Direct 3D Handout
: ® Reading for Today: §2.6.3, 20.3 —20.4, Eberly 2°
OpenGL Shading eading for Today: §2.6.3, » Eberly
® References: Groller & Jeschke (2002), Isenberg (2005), Jacobs (2007)
- ® Reading for Next Class: §20.5 — 20.13, Eberly 2°
William H. Hsu ® Last Time: Intro to lllumination and Shading
Department of Computing and Information Sciences, KSU * Local vs. global models
i i i * lllumination (vertex shaders) vs. shading (fragment/pixel shaders)
KSOL course pages: http:/bit.ly/hGvXIH / http://bit.ly/eVizrE o . L .
Public mirror web site: http://www.kddresearch.org/Courses/CIS636 * Bidirectional reflectance distribution function (BRDF) p(p, @, @, 4)
Instructor home page: http://www.cis.ksu.edu/~bhsu * Phong illumination equation: introduction to shading

® Texture Mapping Explained

Readings: * Definitions
Today: Sections 2.6.3, 20.3 — 20.4, Eberly 2¢ — see http:/bit.ly/ieUq45 * Design principles
Next class: Sections 20.5 — 20.13, Eberly 2¢
Brown CS123 slides on Polygons/Texture Mapping — http:/bit.ly/h2VZn8 ® Texture Pipeline
Wayback Machine archive of Brown CS123 slides: http:/bit.ly/gAhJbh\ ® Using Simple Intermediate Surfaces (Cylinder, Sphere, Plane, Box)
CMU 15-462 slides on OpenGL Shading — http://bit.ly/g1J2nj —0 ()

OpenGL Shading: Flat Shading, Smooth Shading (Gouraud)

Lecture 11 of 41 Computing Computing

Lecture 11 of 41

Computer Graphics

h 9 Review:
Where We Are (luminati nadi
lllumination & Shading
ecture | Topic Primary Source(s)
Course Overview hapter 1, Eberty 2° Sy o SRS e - i L g
OB fon Wiairics: Lab 0 | Sections (§) 2.1, 2.2 » nghtmg, or illumination, is the process of computing the intensity and
Viewing 1: Ovenview, Projections 223224, color of a sample point in a scene as seen by a viewer
pic p ¥
Viewing 2: Viewing Transformation 23esp 234
Lab 1a: Flash & OpenGL Basics . 2, |S|, Angel Primer . » c -
Viewng3: Gra;mcspP\geHne e » lighting is a function of the geometry of the scene (including the model, lights
Scan Conversion 1. Lines, Midpont Algornm A, and camera and their spatial relationships) and material properties
Viewing 4: Clipping & Culling; Lab 1b .3.5,2.
‘Scan Conversion 2. Polygons, Clipping Intro .2, Cl . . s 3 g . .
Surtace Detal - liumination & Shading 261.-262 432902 » Shading is the process of interpolation of color at points in-between those
0 Lab 2a: Direct3D / DirectX Intro 2.7, DirectoD handout with known lighting or illumination, typically vertices of triangles or
> &
] R R T :
'Surface Detall 3 Mappings; OpenGL Textures | § 205 —20.13 quads in a mesh
Surface Detail 4: Pixel/Vertex Shad.; Lab 2b | § 3.
Sl e I R Gy NG R T » used in many real time graphics applications (e.g., games) since calculating
Demos 1- CGA, Fun; Scene Graphs: State —4.3, CGA handout . T "
Lab 3a: Shading & Transparency .6, 20.1, Primer illumination at a point is usually expensive
Animation 1: Basics, KEY rames; HW/Exam .1 —5.
Exam 1 review; Hour Exam 1 (evening hapters 14, 20 » 5 ighting is calculs ave »+, whi adingi
i e e e ooy On th.e GPU, 1lghtlt}g is calculated by a vertex shader, while shading is done
15 Demos 2: SFX: Skinning. Morphing 5.3 5.5, CGA handout by a fragment or pixel shader
20 Demos 3. Surfaces, B-repsiVolume Graphics | § 104, 12.7, MEsh handout
Lightly-shaded entries denote the due date of a written problem set; heavily-shaded entries. that of a
s'“,;ﬂ!zee‘,’,fymm“g;“ﬁg:,’:’,:’g;zﬂg"mm ERESIEREIENES, that of a paper review, and e gieen: g Adapted from slides © 2010 van Dam et al., Brown University
Green, blue and red letters denote exam review, exam, and exam solution review dates. [./ http:/bitly/hiSt0f Reused with permission.

Computing

Lecture 11 of 41

Computing

Lecture 11 of 41
Computer Graphics

: Review: g Review:
Phong lllumination Equation Flat/Constant Shading

The full Phong model is a combination of the Lambertian and specular
terms (summing over all the lights)

-

» We define a normal at each polygon

I = la;ka;0a; + z fattiay[Kay (0 - Li)Oa, + ks R - V)05,] (not at each vertex)
melights o o
» Subscript s represents specular (so kg) would be the specular coefficient = ngl_lqng:_ Emlufm the llglltmg
i equation at the center of each

» Ry, is the reflected direction of the light ray about the surface normal polygon using the associated normal
¥ fare is the lighting attenuation function

» function of distance from the light » Shading: Each sample point on the

polygon is given the calculated
3 st lighting value

= normal

o point 7 diectionol
light source reflection

/, P toviewpoint GL_CONSTANT

Adapted from slides © 1997 — 2010 van Dam et al., Brown University

Adapted from slides © 2010 van Dam et al., Brown University
http://bit.ly/hiSt0f Reused with permission.

http://bit.ly/hiSt0f Reused with permission. ¢

Computing

Lecture 11 of 41 Computing

Computer Graphics

G Review:
Gouraud Shading
» We define a normal vector at each vertex

» Lighting: Evaluate the lighting equation at
each vertex using the associated normal
vector

Shading: Each sample point’s color on the

polygon is interpolated from the color values
at the polygon’s vertices which were found in
the lighting step

GL_SMOOTH

Adapted from slides © 2010 van Dam et al., Brown University
http://bit.ly/hiSt0f Reused with permission.

Review:
Phong Shading

» Each vertex has an associated normal
vector

Lighting: Evaluate the lighting equation at
each vertex using the associated normal
vector

Shading: For every sample point on the
polygon we interpolate the normals at
vertices of the polygon and compute the
color using the lighting equation with the
interpolated normal at each interior pixel

OpenGL implementation?
Stay tuned..

Adapted from slides © 2010 van Dam et al., Brown University
http://bit.ly/hiSt0f Reused with permission.

Source Material on Texturing:
Groller & Jeschke (Vienna Tech)

Texturing

Eduard Groller
(today: Stefan Jeschke)

Institute of Computer Graphics and Algorithms

Vienna University of Technology

Adapted from slides
© 2002 Gréller, E. & Jeschke, S. Vienna Institute of Technology

Lecture 11 of 41

%{2 Why Texturing?

B |dea: enhance visual appearance of plain
surfaces by applying fine structured details

Eduard Groller, Stefan Jeschke

Adapted from slides
© 2002 Gréller, E. & Jeschke, S. Vienna Institute of Technology

Computer Graphics

‘ %@ Other Source Material on
Texture Mapping

CMSC 427 Computer Graphics

University of Maryland - College Park (UMD)
Fall 2007

Course: http://bit|y/f/XVA1A

Instructor: http: /www.cs.umd.edu/~djacobs

David W. Jacobs

Associate Professor, Computer Science Department and UMIACS,
at the University of Maryland

. CPSC 599.64/601.64 Computer Graphics
Tobias Isenberg .05

Scientific Visualization and
Computer Graphics Group
Department of Mathematics and
Computing Science

Course: http://bit.lylidD2gX
Instructor: http:/www.cs.rug.nl/~isenberg

University of Groningen + Computer Graphics Il lecture by Stefan
Schlechtweg, Department of Simulation
Formerly and Graphics, Otto-von-Guericke
University of Magdeburg, Germany
+ CPSC 407 and CPSC 453 lectures by
Brian Wyvill, Department of Computer
Science, University of Calgary, Canada

Graphics Jungle Lab
Department of Computer Science
University of Calgary

Introduction [1]:
Motivation

« so far: detail through
polygons & materials

« example: brick wall

 problem: many polygons § 2 g
& materials needed for detailed structures
— inefficient for memory and processing

+ new approach necessary: texture mapping

* introduced by Ed Catmull (1974),
extended by Jim Blinn (1976)

Adapted from slides
© 2005 Isenberg, T., University of Calgary (now at U. Groningen)

Computer Graphics

Introduction [2]:
Properties and their Mappings

- several properties can be modified

— color: diffuse component of surface

— reflection: specular component of surface to
simulate reflection (environment mapping)

—normal vector: simulate 3D surface structure
(bump mapping)

— actual surface: raise/lower points to actually
modify surface (displacement mapping)

— transparency: make parts of a surface entirely
or to a certain degree transparent

Adapted from slides
© 2005 Isenberg, T., University of Calgary (now at U. Groningen)

%‘{2’ Without Textures

Adapted from slides
© 2007 Jacobs, D. W., University of Maryland ©1991 Foley, van Dam, Feiner, Hughes

From Computer Graphics: Principles and Practice

%{2 Texture Image

CARAMEL COLOR, PHOSPHORIC ACID,
NATURAL FLAVORS, CAFFEINE.

©2006 THE COCA-COLA COMPANY
CONSUMER INFORMATION

CALL 1-800-438-2653

CARBONATED WATER, SUCROSE,
WWW.COKE.COM

Adapted from slides
© 2007 Jacobs, D. W., University of Maryland

% Concerning Textures

» Pattern of Intensity and color.
— Can be generalized to 3D texture.
+ How do we get them?
— Take pictures.
— Write a program (procedural textures).
— Synthesize from examples
* How do we apply them? (Texture mapping)

— Specify a mapping from texture to object.
— Interpolate as needed.

— This can be a challenging problem, but we'll consider
simpler version.

Adapted from slides
© 2007 Jacobs, D. W., University of Maryland

%@’ With Textures

Adapted from slides From Computer Graphics: Principles and Practice
© 2007 Jacobs, D. W., University of Maryland ©1991 Foley, van Dam, Feiner, Hughes

% Acknowledgements

Andy van Dam —
T. J. Watson University Professor of = - i ———
Technology and Education &
Professor of Computer Science
Brown University

http://www.cs.brown.edu/~avd/

Texture Mapping

I Beautification of Surfaces

Adapted from slides © 1997 — 2010 van Dam et al., Brown University
http://bit.ly/hiSt0f Reused with permission.

Lecture 11 of 41

Texture Mapping Overview [1]:
Technique

» Texture mapping:
» Implemented in hardware on every gpu

» Simplest surface detail hack, dating back to the '60s GE
flight simulator and its terrain generator

Sphere with no texture

» Technique:

» “Paste” photograph or bitmap (the texture, for example:
a brick pattern, a wood grain pattern, a sky with clouds)
on a surface to add detail without adding more
polygons.
Map texture onto the surface get the surface color or
alter the object’s surface color

" Texture image

» Think of texture map as stretchable contact paper
Sphere with texture.

Adapted from slides © 2010 van Dam et al., Brown University
http://bit.ly/hiSt0f Reused with permission.

Texture Mapping Overview [3]:
Mappings
» Afunction is a mapping

» Takes any value inthe domain as an input and outputs (“maps it to”) one unique
value in the co-domain.

» Mappingsin “Intersect”: linear transformations with matrices

Map screen space points (input) to camera space rays (output)

Map camera space rays into world space rays

Map world space rays into un-transformed object space for intersecting

Map intersection point normals to world space for lighting

» Mapping a texture:
» Take points on the surface of an object (domain)

» Return an entry in the texture (co-domain)

Adapted from slides © 2010 van Dam et al., Brown University

http://bit.ly/hiSt0f Reused with permission.

Texture Mapping How-To [2]:
Adapting Polygons-to-Pixels Pipeline

« rendering pipeline slightly modified to use
new texture mapping function

« algorithm: for each pixel to be rendered
— find depicted surface point

—find point in texture (texel) that corresponds
to surface point

— use texel color to modify the pixel’s shading

Adapted from slides
© 2005 Isenberg, T., University of Calgary (now at U. Groningen)

Texture Mapping Overview [2]:
Motivation
» How do we add more detail to a model?
» Add more detailed geometry; more, smaller triangles:
Pros: Responds realistically to lighting, other surface interaction
Cons: Difficult to generate, takes longer to render, takes more memory space
» Map atexture to amodel:

Pros: Can be stored once and reused, easily compressed to reduce size, rendered very
quickly, very intuitive to use, especially useful on far-away objects, terrain, sky,...

Cons: Very crude approximation of real life. Texture mapped but otherwise unaltered
surfaces still look smooth.

» What can you putin a texture map?
Diffuse, ambient, specular, or any kind of color

Surface normal data (for bump mapping or normal mapping)

»
» Specular exponents, transparency or reflectivity coefficients
»
» Projected reflections or shadows

Adapted from slides © 2010 van Dam et al., Brown University
http://bit.ly/hiSt0f Reused with permission.

Texture Mapping How-To [1]:
Goals and Texture Elements (Texels)
« texture: typically 2D pixel image
- texel: pixel in a texture
+ determines the appearance of a surface

« procedure to map the texture onto the
surface needed
— easy for single triangle
— complex for arbitrary 3D surface

« goal: find easy way to do this mapping

Adapted from slides

© 2005 Isenberg, T., University of Calgary (now at U. Groningen)

Texture Mapping How-To [3]:
Mapping Definition

+ 2D texture: function that maps points on
the (u, v) plane to (r, g, b) values:
(f’, g, b) = Ciex(u1 V)

+ texture mapping function maps (u, v)
values to (x, y, z) positions on objects:
(x,y.2)= Fmap (U, v)

» we need to solve the inverse function to
find (u, v) values for a (x, y, z) position:

(U, V) = I:map-1 (X! Ys Z) u=s(x,y,z)
v=t(x,y, z)

Adapted from slides
© 2005 Isenberg, T., University of Calgary (now at U. Groningen)

Texture Mapping How-To [4]:
General Procedure

» general texture mapping pipeline:

(xy) (X.y.2) (v (s.f)

determine find texture find corres-
surface position coordil ponding texel
possibly more modify
Pr i illuminati

(s (rab) (rg.b)

1. compute texture color for surface point

2. use to modify parameters in Phong
illumination

Adapted from slides
© 2005 Isenberg, T., University of Calgary (now at U. Groningen)

%@ Texture Mapping How-To [6]:
(

Manual) Surface Parameterization

simplest technique

specification of texture coordinates during
modeling

* (u, v) coordinates specified for all vertices
of a polygon

interpolation between these values for
points inside the polygon

(e.g. barycentric interpolation for triangles)

Adapted from slides
© 2005 Isenberg, T., University of Calgary (now at U. Groningen)

%{j Two-Step Approach [1]:
Duality (Again)
« two steps:
— mapping of 2D texture coordinates onto
simple 3D surface (s-mapping)
— mapping of the now 3D texture pattern onto
complex object (o-mapping)
« in practice — inverse approach:
— mapping of object point onto simple surface
O f(Xg Vo 20) = (X ¥y 2)
— mapping of surface point onto texture
S:f(x, ¥, z) = (U, V)

%{} Texture Mapping How-To [5]:

Projective Textures, Functions

« goal: derive texture coordinates from
3D point

* PrRB = R2,s0P(X, Y, 2) = (U, V)

» several typical possibilities
— (manual) parameterization of the surface

— use of inherent (u, v) coordinates (e.g.,
freeform surfaces or primitive shapes)

—two step technique

Adapted from slides

© 2005 Isenberg, T., University of Calgary (now at U. Groningen)

%@ Texture Mapping How-To [7]:

Inherent (u, v) Coordinates

* (u, v) coordinates derived from
parameter directions of surface patches
(e.g., Bézier and spline patches)

« obvious (u, V)
coordinates
derived for primitive
shapes (e.g., boxes,
spheres, cones,
cylinders, etc.)

« used as defaults

Adapted from slides
© 2005 Isenberg, T., University of Calgary (now at U. Groningen)

% Two-Step Approach [2]:

Example — Cylindrical Mapping

« mapping onto cylinder
surface given by

height h, and angle 6,

S:(0.h) > (uy)= [£(0~«9¢,)wl(lhh‘7)]
¢ d

using scaling factors
¢, d, and the radius r
« discontinuity along

one line parallel to
center axis

Adapted from slides

© 2005 Isenberg, T., University of Calgary (now at U. Groningen)

%@ Two-Step Approach [3]:
Example — Spherical Mapping

« mapping onto surface
of a sphere given by
spherical coordinates

N :(r,¢.9)~>(n,|f):(%,$)

* no non-distorting
mapping possible
between plane and
sphere surface

from R. Wolfe: Teaching Texture Mapping

Adapted from slides
© 2005 Isenberg, T., University of Calgary (now at U. Groningen)

%} Two-Step Approach [4]:
Example — Planar Mapping

* mapping onto planar
surface given by
position vector ¥; and
two vectors s'and t

S:(y=> (ey=| 22 .
S:(x, v,z uy)=—,—
7 T

+ scaling factor k and
V'= P, -V, (describes
point position w.r.t.

the origin of the plane)

%@ Two-Step Approach [S]:
Example — Cuboid/Box Mapping

* enclosing box is
usually axis-parallel
bounding box of
object

six rectangles onto
which the texture is
mapped

similar to planar
mapping

from R. Wolfe: Teaching Texture Mapping

Adapted from slides
© 2005 Isenberg, T., University of Calgary (now at U. Groningen)

& O Mapping [1]:
Object-to-Surface
+ hecessary for all named techniques

« four methods

— reflected ray. trace a ray from viewer to object
and reflect it onto the intermediate surface

— object normal: intersection of normal vector of
object with intermediate surface

— object center intersection of ray from object
center through the object surface with the
intermediate surface

— normal of intermediate surface: trace this
normal vector towards the object and
determine intersection with it

Adapted from slides
© 2005 Isenberg, T., University of Calgary (now at U. Groningen)

O Mapping [2]:
lllustrations

1. Reflected Ray 2. Object Normal

3. Object Center 4. Normal of Intermediate Surface

Adapted from slides
© 2005 Isenberg, T., University of Calgary (now at U. Groningen)

Correspondence Functions [1]:
Texture Coordinates

* projector functions yield (u, v) coordinates
in texture parameter space u=s(xy,2)

« typically values of v and vin [0, 1] ey

+ correspondence functions transform these
into texel positions

+ rotations, translations, scaling possible

+ in most simple cases only scaling
necessary

Adapted from slides
© 2005 Isenberg, T., University of Calgary (now at U. Groningen)

Corvespondence Functions [2]:
Tiling, Mirroring, Clamping, Borders

+ problem: what happens outside of [0, 1]?
« typical approaches

— texture repetition (tiling) using modulo function

— texture mirroring — better continuity at texture
seams

— clamping: repeat the last value of the texture
edges for values outside of [0, 1]

— border color: use a specified color for all non-
defined values

Adapted from slides
© 2005 Isenberg, T., University of Calgary (now at U. Groningen)

%@ Application of Texture Values:
Combining Texturing and Lighting
 from an (X, y, z) position we derived
an (r, g, b) color value from the texture,
potentially with o transparence value
« is typically used to modify illumination
+ methods:

— replace: surface color value is replaced with
texture color

—decal: a blending of texture and original color
— modulate: multiplication of original color value
with texture color

Adapted from slides
© 2005 Isenberg, T., University of Calgary (now at U. Groningen)

Corvespondence Functions [3]:
Clamping and Borders lllustrated

P
= =
e

Texture Clamped texture appled to primitive:

from Microsoft Developer Network Texture Texture with red border applied to primitive

Adapted from slides

© 2005 Isenberg, T., University of Calgary (now at U. Groningen)

‘ &ﬁ}" The End...?

Done! ... well, almost

Adapted from slides
© 2005 Isenberg, T., University of Calgary (now at U. Groningen)

Surface Detail: Imitating Complexity by
Texturing Smooth Objects

® Also possible: model very complex objects
just by using simple textured geometry

Adapted from slides
© 2002 Gréller, E. & Jeschke, S. Vienna Institute of Technology

: More on Shading
(Surface Detail 2, 4, 5)

® Shading in OpenGL
* Flat/constant: GL_CONSTANT
* Gouraud: GL_SMOOTH

® Shading Languages
* Renderman Shading Language (RSL) — http://bit.ly/g229q4
* OpenGL Shading Language (OGLSL or GLSL) — http://bit.ly/fX8V0Y
* Microsoft High-Level Shading Language (HLSL) — http://bit.ly/eVnjp5
* nVidia Cg — http:/bit.ly/ewoRic

® Vertex vs. Pixel Shaders

® How to Write Shaders

Source Material on
OpendlL Shading
15-462 Computer Graphics |
Lecture 8

Shading in OpenGL

Polygonal Shading
Light Source in OpenGL
Material Properties in OpenGL

Frank Pfennmg Normal Vectors in OpenGL
Professor of Computer Science Approximating a Sphere

School of Computer Science February 14, 2002 [Angel 6.5-6.9]
Carnegie Mellon University Erank P1er’\\/ln|ﬂg U it
http://www.cs.cmu.edu/~fp/ amegie Meton Cniversty

hitp:

Adapted from slides © 2003 F. Pfenning, Carnegie Mellon University.
http:/bit.ly/g1J2nj

Shading in OpengGL [2]:
Interpolative (aka Smooth), Gouraud

® Interpolative Shading

« Enable with giShadeModel(GL_SMOOTH);

« Calculate color at each vertex

« Interpolate color in interior

» Compute during scan conversion (rasterization)
* Much better image (see Assignment 1)

* More expensive to calculate

® Gouraud Shading

« Special case of interpolative shading
* How do we calculate vertex normals?
+ Gouraud: average all adjacent face normals

« Requires knowledge
about which faces share
a vertex

Adapted from slides © 2003 F. Pfenning, Carnegie Mellon University.
http:/bit.ly/g1J2nj

Shading in OpengGL [1]:
Flat Shading
Normal: given explicitly before vertex

gINormal3f(nx, ny, nz);
glVertex3f(x, vy, z);

Shading constant across polygon
Single polygon: first vertex
Triangle strip:Vertex n+2 for triangle n

Adapted from slides © 2003 F. Pfenning, Carnegie Mellon University.
http://bit.ly/g1J2nj

Computer Graphics

Shading in OpenGL [S]:
Specifying & Enabling Light Sources

® Enabling Light Sources
« Lighting in general must be enabled
glEnable(GL_LIGHTING);

« Each individual light must be enabled
glEnable(GL_LIGHTO);
+ OpenGL supports at least 8 light sources
® Specifying Point Light Source
« Use vectors {r, g, b, a} for light properties
« Beware: light source will be transformed!
GLfloat light_ambient]] = {0.2, 0.2, 0.2, 1.0};

o {
GLfloat light_specularf] = {1.0, 1.0, 1.0, 1.0};
GLfloat light_position[] = {-1.0, 1.0, -1.0, 0.0};
glLightfv(GL_LIGHTO, GL_AMBIENT, light_ambient);

glLightfv(GL_LIGHTO, GL_DIFFUSE, light_diffuse);
glLightfv(GL_LIGHTO, GL_SPECULAR, light_specular);
glLightfv(GL_LIGHTO, GL_POSITION, light_position);

Adapted from slides © 2003 F. Pfenning, Carnegie Mellon University.
http://bit.ly/g1J2nj

Shading in OpengGL [3]:
Phong Shading

+ Interpolate normals rather than colors
+ Significantly more expensive
* Mostly done off-line (not supported in OpenGL)

... kind of
-WHH

Adapted from slides © 2003 F. Pfenning, Carnegie Mellon University.
http://bit.ly/g1J2nj

% Shading in OpengL [6]:

Global Ambient Light

Set ambient intensity for entire scene

GLfloat alf] = {0.2, 0.2, 0.2, 1.0};
glLightModelfv(GL_LIGHT_MODEL_AMBIENT, al);

The above is default

Also: local vs infinite viewer

glLightModeli(GL_LIGHT _MODEL_LOCAL_VIEWER,
GL_TRUE);

More expensive, but sometimes more accurate

Adapted from slides © 2003 F. Pfenning, Carnegie Mellon University.
http://bit.ly/g1J2nj

Computer Graphics

Shading in OpengGL [7]:
Point Sourcesvs. Directional

® Directional Lights versus Point Lights

« Directional light given by “position” vector

GLfloat light_position[] = {-1.0, 1.0, -1.0, 0.0};
glLightfv(GL_LIGHTO, GL_POSITION, light_position);

« Point source given by “position” point

GLfloat light_position[] = {-1.0, 1.0, -1.0, 1.0};
glLightfv(GL_LIGHTO, GL_POSITION, light_position);

® Spotlights: Special Case of Point Lights
« Create point source as before
« Specify additional properties to create spotlight

GLfloat sd[] = {-1.0, -1.0, 0.0},
glLightfv(GL_LIGHTO, GL_SPOT_DIRECTION, sd);
glLightf(GL_LIGHTO, GL_SPOT_CUTOFF, 45.0)

glLightf(GL_LIGHTO, GL_SPOT_EXPONENT, 2.0);

Adapted from slides © 2003 F. Pfenning, Carnegie Mellon University.
http:/bit.ly/g1J2nj

Summary

® Last Time: Intro to lllumination and Shading
* Local vs. global models
* lllumination (vertex shaders) vs. shading (fragment/pixel shaders)
* Phong illumination: derivation of ambient, diffuse, specular terms
* Introduction to shading

® Texturing: Adding Detail, Raster Image, Color, etc. to CG Model

® Texture Pipeline
* Part of polygons-to-pixels
* Uses same spaces (coordinate systems) and more

® Using Simple Intermediate Surfaces (Cylinder, Sphere, Plane, Box)

® OpenGL Shading: Flat aka Constant, Interpolative (Specifically,
Gouraud)

® Next: Patterns, Procedural Textures, Anisotropic Filtering
® References: Groller & Jeschke (2002), Isenberg (2005), Jacobs (2007

Lecture 11 of 41

Shading in OpengGL [8]:
Example Material Properties

GLfloat mat_specular[]={0.0, 0.0, 1.0};

GLfloat mat_diffuse[]={0.8, 0.6, 0.4, 1.0};

GLfloat mat_ambient] 8,0.6,04, 1.0};

GLfloat mat_shininess={20.0},

glMaterialfv(GL_FRONT, GL_SPECULAR, mat_specular);
glMaterialfv(GL_FRONT, GL_AMBIENT, mat_ambient);
glMaterialfv(GL_FRONT, GL_DIFFUSE, mat_diffuse);
glMaterialf(GL_FRONT, GL_SHININESS, mat_shininess);

glShadeModel(GL_SMOOTH); /*enable smooth shading */
glEnable(GL_LIGHTING); /* enable lighting */
glEnable(GL_LIGHTO); /* enable light 0 */

Adapted from slides © 2003 F. Pfenning, Carnegie Mellon University.
http://bit.ly/g1J2nj

Terminology

©® Texture Map / Texture Mapping
* Method of adding surface detail to CGI or 3-D model (Wikipedia)
* Kinds of surface detail
> Detail: roughness, grain, bumps/dimples, etc.
> Surface texture: finish, veneer, efc. (represented by raster image)
> Color: monochrome, patterns, polychromatic
® Coordinate Systems (Spaces)
* Model / Object: 3-D (x, y, z)
* World / Scene: 3-D (x, y, 2)
* Camera / Eye: 3-D (u, v, n)
* Window / Screen: 2-D (u, v)
* Texture: 1-D, 2-D, or 3-D; (s, t) for 2-D
Texture Pipeline — End-to-End System for Calculating, Applying Textures
® Gouraud Shading - Interpolative Shading with Color Interpolation ps=

Computer Graphics

