[

Lecture 13 of 41

Surface Detail 4 of 5: Pixel & Vertex Shaders
Lab 2b: Shading in Direct3D

William H. Hsu
Department of Computing and Information Sciences, KSU

KSOL course pages: http:/bit.ly/hGvXIH / http://bit.ly/eVizrE
Public mirror web site: http://www.kddresearch.org/Courses/CIS636
Instructor home page: http://www.cis.ksu.edu/~bhsu

Readings:
Today: Section 3.1, Eberly 2= — see http://bit.ly/ieUq45

Next class: Section 3.2 — 3.4, Eberly 2¢; Direct3D handout "
* Toymaker tutorials, K. Ditchburn: http://bit.ly/hMgxMI

NeHe article #21 (NB: not an old lesson): http://bit.ly/gi9g47 r

Computing

Where We Are

ecture [Topic Primary Source(s)
Course Overview hapter 1, Eberly 2
CG Basics: Tt ion Matrices; Lab 0 ections (§) 2.1, 2.2
Viewing 1: Overview, Projections 223-224,

Viewing 2- Viewing Transformaton
Lab 1a: Flash & OpenGL Basics

2.3 €5p. 2.3.4, FVEH ST
. 2, 16", Angel Primer

Viewing 3: Graphics Pipeline €sp.23.7:2 7

Scan Conversion 1: Lines, Midpoint Algorithm 1,3.1; FVFH slides

Viewing 4: Clipping & Culling; Lab 1b .3.5,2.4,3.1.3

Scan Conversion 2: Polygons, Clipping Infro .25esp. 254,316

Surface Detail 1- llumination & Shading ,261-262432 202
0 Lab 2a: Direct3D / DirectX Intro .7, Direct3D handout

63,203 204 Fr
0.13

1 Surface Detail 2 Textures: OpenGL Shading
Surface Detail 3 M:

4 DirectaD handout
5 Demos 1- CGA, Fun; Scene Graphs: State — 4.3, CGA handout
3 Lab 3a: Shading & Transparency .6, 20.1, Primer
Fd Animation 1: Basics. KEY frames: HW/Exam .1 —5.
Exam 1 review: Hour Exam 1 (evening] hapters 1- 4, 20
18 Scene GI’ﬂEhS: Rendering: Lab 3b: Shader 44-47
19 Demos 2: SFX: Skinning, Morphing 5.3—5.5, CGA handout

20 Demos 3: Surfaces; B-reps/Volume Graphics 10.4, 12.7, Mesh handout

Lightly-shaded entries denote the due date of a written problem set. hieavily-shaded enfries that of a
machine problem (programming assignment); bilie-shaded eniies, that of a paper review; and the green-
shaded entry, that of the term project

Green, blue and red letters denote exam review, exam, and exam solution review dates.

Computing

Lecture Outline

Reading for Last Class: §20.5 — 20.13, Eberly 2¢ (Many Mappings)
Reading for Today: §3.1, Eberly 2¢
Reading for Next Class: §3.2 — 3.4, Eberly 2¢; Direct3D handout
Last Time: Mappings, OpenGL Texturing
* Shadow, reflection/environment, transparency, bump, displacement
* Other mappings: gloss, volumetric fog, skins, rainbows, water
* OpenGL texture mapping how-to
® Previously: Classical Fixed-Function Pipeline, Drawing in Direct3D
® Today: Shaders in Modern Pipeline
* Vertex shaders: vertex attributes to illumination at vertices
* Pixel shaders: lit vertices to pixel colors, transparency
® Hardware Rendering: Application Programmer Interfaces (APIs)
® Next: Shader Languages — (O)GLSL, HLSL / Direct3D, Renderman

Computing

Computer Graphics

Acknowledgements:
Many Mappings

Eduard Groller

Associate Professor

Director, Visualization Working Group
http://bit.ly/hUUM94

Stefan Jeschke
Research Assistant
http://bit.ly/hUUM94

Institute of Computer Graphics and Algorithms
Technical University of Vienna

Institut far Computergraphik und Algorithmen
Arbeitsbereic

raphik

le TECHNISCHE UNIVERSITAT WIEN

Texturing material from slides © 2002 E. Gréller & S. Jeschke, Vienna University of Technology
http://bit.ly/dJFY g9

Mapping material from slides © 1995 — 2009 P. Hanrahan, Stanford University
http://bitly/hZfsiZ (CS 348, Computer Graphics: Image Synthesis Techniques)

Review:
Vertex Shaders vs. Pixel Shaders

Classical Fixed-Function Pipeline (FFP): Per-Vertex Lighting, MVT + VT
* Largely superseded on desktop by programmable pipeline
* Still used in mobile computing
Modern Programmable Pipeline: Per-Pixel Lighting
Vertex Shaders (FFP and Programmable)
* Input: per-vertex attributes (e.g., object space position, normal
* Output: lighting model terms (e.g., diffuse, specular, etc.)
Pixel Shaders (Programmable Only)
* Input: output of vertex shaders (lighting aka illumination)
* Output: pixel color, transparency (R, G, B, A)
Brief Digression
* Note: vertices are lit, pixels are shaded
> “Pixel shader”: well-defined (iff “pixel” is)
> “Vertex shader”: misnomer (somewhat)
* Most people refer to both as “shaders”

Computing

Computer Graphics

Review [1]:
Shadow Mapping

® Ways to Handle Shadows
* Projected planar shadows: works well on flat surfaces only
* Shadow stencil buffer: powerful, excellent results possible; hard!

Projected
planar
shadows

Hybrid
approaches

Light maps Shadow Stencil Buffer
® OpenGL Shadow Mapping Tutorials
* Beginner/Intermediate (Baker, 2003): http://bit.ly/e1LA2N

* Advanced (Octavian et al., 2000): http:/bit.ly/f1iRYB (old NeHe #27)

Adapted from “Shadow Mapping” © 2001 C. Everitt, nVidia
nvidia j ing.html

Computing

Computer Graphics

Review [2]:
Reflection/Environment Mapping

® How To Create Direction Maps
* Latitude-Longitude (Map Projections) - paint

* Gazing Ball - photograph reflective sphere
* Cubical Environment Map - rendering program or photography
> Easy to produce |
> Simple texture coordinates calculation Wwﬁﬂ
® Old NeHe OpenGL Mapping Tutorials (2000) .
* #23 (sphere) — Intermediate (Schmick & Molofee): http://bit.ly/e3Zb8h
® nVidia Tutorial: OpenGL Sphere Map (1999): http:/bit.ly/eJEAAM

* Fisheye Lens - standard (wide-angle) camera lens
» "Uniform" resolution
* #6 (texture map onto cube) — Beginner (Molofee): http://bit.ly/gKj2Nb
® [ssues: Non-Linear Mapping, Area Distortion, Converting Between Maps

Adapted from slides © 1995 — 2009 P. Hanrahan, Stanford University
http://bit.ly/hZfsjZ (CS 348B)

Computing

Review [4]:
Bump Mapping

® Goal: Create lllusion of Textured Surface

-+ . =

Bump Mapping © 2010 Wikipedia
http://en. ia.org/wiki/Bump_ma,

® |dea
* Start with regular smooth object
* Make height map (by hand and/or using program, i.e., procedurally)
* Use map to perturb surface normals
* Plug new normals into illumination equation
® Tutorial for OpenGL (Baker, 2003): http:/bit.ly/fun4aS

Computing

Review [6]:
OpendL Shading (Overview)

® Set Up Point Light Sources

« Directional light given by “position” vector

GLfloat light_position[]
glLightfv(GL_LIGHTO,

+ Point source given by *

GLfloat light_position]] = {-1.0, 1.0, -1.0,
glLightfv(GL_LIGHTO, GL_POSITION, }lght}osl‘xnny

GLfloat mat_ambient[]:
Glfloat mat_shininess={20.0};
giMaterialfv(GL_FRONT, GL_SPECULAR, mat_specular);

Frank Pfenning

Professor of Computer Science
School of Computer Science
Carnegie Mellon University
http://www.cs.cmu.edu/~fp/

glMaterialfv(GL_FRONT, GL_AMBIENT, mat_ambient);
giMaterialfv(GL_FRONT, GL_DIFFUSE, mat_diffuse);
glMaterialf(GL_FRONT, GL_SHININESS, mat_shininess);

gIShadeModel(GL_SMOOTH); /*enable smooth shading */
glEnable(GL_LIGHTING); /* enable lighting */
glEnable(GL_LIGHTO); /* enable light 0 */

See also: OpenGL: A Primer, 3¢ (Angel)

http://bit.ly/hVeVWN ® Start Drawing (glBegin ..

glEnd)
Adapted from slides © 2003 F. Pfenning, Carnegie Mellon University
http://bit.ly/g1J2nj

Computing

Review [3]:
Transparency Mapping
® OpenGL Transparency How-To at OpenGL.org: http://bit.ly/hRaQgk
® Screen Door Transparency
* Use glPolygonStipple (), glEnable (GL_POLYGON_STIPPLE)
* See http://bit.ly/g1hQpJ

® Glass-Like Transparency using Alpha Blending
* Use glEnable (GL_BLEND), glBlendFunc (..)

* See http://bit.ly/hs82Za

wl ¥~

m-
BT

Viola et al. (2004),
Technical University of Vienna, IEEE Vis 2004

Alpha blending: Lim (2010), http://bitly/6TsJrb

Goon Creative, Maya Trans parency Tutorial

Computing &

o Computer Graphics

Review [5]:
Displacement Mapping

® Displacement Map: Similar to Bump Map - Contains Delta Values

S0
ORIGINAL MESH P(u,y)
IP(uy) IP(uy)
S@uy)=——"— Ty)=——"—
==,) ==

N(u,v)=SxT

ABC

DISPLACEMENT MAP P/(,v) = P(u,v) + (u, V)N (u,v)

W Displacement

W Perturbed normal
N(u.v) =P xP,
=N+h,(TxN)+h (SXN)

From Blinn 1976

MESH WITH DISPLACEMENT

Displacement Mapping ©2005 Wikipedia Adapted from sides © 1995.- 2009 P. Hanrahan, Stanford University
hitp: mapping hitpi/lbit.lylhZf 48B)

® Displacement Mapping: Uses Open GL Shading Language (GLSL)
® Tutorial using GLSL (Guinot, 2006): http://bit.ly/dWXNya

Computing

Review [7]:
Texturing — Object Center Method

» When we treat the object intersection point as a point on a sphere, our
“sphere” won't always have the same radius

A far
intersection
fomt =

large radius
near spheres through

intersection
house/ray

oint =

small
radius L

» Whatradius to use?

» Compute the radius as the distance from the center of the complex object to
the intersection point. Use that as the radius for the (u, v) mapping.

Adapted from slides © 2010 van Dam et al., Brown University
http://bit.ly/hiSt0f Reused with permission.

Lecture 13 of 41 Computing &

Review [8]:
OpengL Texturing

In initialization:

(GL_TEXTURE_2i
In display:

// Activate the texture defined in
initialization
(GL_TRIANGLES,

Adapted from slides
© 2007 Jacobs, D. W., University of Maryland

Acknowledgements

Nathan H. Bean

Instructor

Outreach Coordinator

D of C iting and ion Sciences
Kansas State University

Direct3D material from slides © 2006 — 2010 N. Bean, Kansas State University
http://bit.ly/gC3vwH

Andy van Dam

T. J. Watson University Professor of
Technology and Education & Professor of
Computer Science

Brown University
http://www.cs.brown.edu/~avd/

Randy Fernando
Executive Director
Mindful Schools
http://www.randima.com

Mark Kilgard

Principal System Software Engineer
Nvidia

http://bit.ly/gdjLzR

Cg material from figures © 2003 R. Fernando & M. Kilgard, Nvidia, from The Cg Tutorial
http://bit.ly/59ffSR

Computing

History

® 1992 - id’s Wolfenstein 3D video game rocks gaming world, all
objects are billboards (flat planes) and rendered in software

® 1996 - id’s Quake introduces a full 3D polygonal game, lighting
vertices and shading pixels is still done in software

® 1996 - Voodoo 3Dfx graphics card released, does shading
operations (such as texturing) in hardware. QuakeWorld
brings hardware acceleration to Quake

® 1999 - Geforce 256 graphics card released, now transform and
lighting (T&L) of vertices is done in hardware as well (uses the
fixed function pipeline)

® 2001 - Geforce 3 graphics card lets programmers download
assembly programs to control vertex lighting and pixel
shading keeping the speed of the fixed function pipeline with
none of the restrictions

° M— Expanded features and high level API’s for vertex and
pixel shaders, increasec u ¢ ¢*' gti'. j effects such as bump
mapping and shadowing ni¢ b .1 e 5.1 .tion color values. Doom
Il and Half-Life 2 usher in a new era of realism

Adapted from slides © 2002 - 2003 van Dam et al., Brown University
http://bit.ly/fiYmje Reused with permission.

Computing

Review [49]:
Mappings, Eberly 2¢

Fine Surface Detail: Bump (§20.5 Eberly 2¢)
Material Effects: Gloss (§20.6)
Enclosing Volumes

* Sphere (§20.7)

* Cube (§20.8)
Light

* Refraction for Transparency (§20.9)

* Reflection aka Environment (§20.10)
Shadow

* Shadow Maps (§20.11, 20.13)

* Projective Textures (§20.12)
More Special Effects (SFX)

* Fog (§20.14) Babylon 5

* Skinning (§20.15) ©1993 - 1998 Warner Brothers Entertainment, Inc.

* Iridescence (§20.16), Water (§20.17)

Computer Graphics

void CGExEntityCube: :Render ()

}

Review:
Drawing in Direct3D

Specify the material we wish to use for the following triangles

Specify the texture we wish to use (if we want one or NULL if not)

Set the stream source to our vertex buffer

Set the FVF we will be using

Set the index buffer we will be using V1 V2
Call the required DrawPrimitive function

Yo V3

gD3dDevice->SetMaterial (&m material);
gD3dDevice->SetTexture (0,NULL) ;
gD3dDevice->SetStreamSource (0, m_vb,0, sizeof (CUBEVERTEX));
gD3dDevice->SetFVF (D3DEVF_CUBEVERTEX) ;
gD3dDevice->SetIndices(m_ib);

// draw a triangle list using 24 vertices and 12 triangles
gD3dDevice->DrawIndexedPrimitive (D3DPT_TRIANGLELIST,O0,0,24,0,12);

Toymaker © 2004 — 2010 K. Ditchburn, Teesside University t‘ B Teesside
http://bit.ly/hMaxMi "

Universiy

Lecture 13 of 41 Computing

Computer Graphics

Fixed Function Pipeline

® Starting in 1999 some graphics cards began to do the standard
lighting model and transformations in hardware (T&L). CPUs
everywhere sighed in relief.
» Hardware T&L existed in the 60s and 70s, it was just really
slow and really expensive.

® Implementing the pipeline in hardware made processing
polygons much faster, but the developer could not modify the
pipeline (hence “fixed function pipeline). The fixed function
pipeline dates back to the first SGI workstations.

® New programmable hardware allows programmers to write
vertex and pixel programs to change the pipeline

» Vertex and pixel programs aren’t necessarily slower than the
fixed function alternative

® Note that the common term “vertex shader” to describe a vertex
program is misleading: vertices are lit and pixels are shaded

Adapted from slides © 2002 - 2003 van Dam et al., Brown University
http://bitly/fiYmje Reused with permission.

Lecture 13 of 41 Computing

Computer Graphics

Programmable Hardware

Starcraft l: Wings of Liberty
© 2010 Blizzard Entertainment, Inc. — hitp:

age & id Tech 5 Unreal Tournament 3 & Steamworks

R:
©20111d Software, Inc. - htp:/bit.ly/eROm2B. ©2010 Epic Games & Valve — http://bit.ly9QKAST

Inspired by slides © 2002 - 2003 van Dam et al., Brown University
http://bit.ly/fiYmje Reused with permission.

21

Programmable Hardware Pipeline

1 unlit model

‘space vertex
Standard
TaL

1 lit clip

space vertex —
Backface Culling
Frustum Clipping

1 un-colored

pixel

1 colored

ixel
P Depth
. Test
clip space refers to the space of

the canonical view volume

New graphics cards can use
either the fixed function pipeline
or vertex/pixel programs

Adapted from slides © 2002 - 2003 van Dam et al., Brown University
http://bit.ly/fiYmje Reused with permission.

Computing &

What is Cg?

® Cg is a C-like language that the graphics card compiles in to a
program

» The program is run once per-vertex and/or per-pixel on the
graphics card

® Cg does not have all the functionality of C
» Different type systems
» Can’tinclude standard system headers
» No malloc
> http://lwww.cgshaders.org/articles/ has the technical
documentation for Cg
® Cg is actually an abstraction of the more primitive assembly
language that the programmable hardware originally supported

Adapted from slides © 2002 - 2003 van Dam et al., Brown University
http://bit.ly/fiYmje Reused with permission.

Computer

Quick Review:
Interpolative Shading in OpendGL

By default, GL will do the following:

1. Take as input various per-vertex =
quantities (color, light source, eye
point, texture coordinates, etc.)

2. Calculate a final color for each P
vertex using a basic lighting \
model (OpenGL uses Phong \
lighting) \

3. For each pixel, linearly interpolate
the three surrounding vertex
colors to shade the pixel (OpenGL
uses Gouraud shading)

4. Write the pixel color value to the
frame buffer

Adapted from slides © 2002 - 2003 van Dam et al., Brown University
http://bitly/fiYymje Reused with permission.

Computin

Lecture 13 of 41

Computer Graphics

Example:
Cartoon Shader & Utah Teapot

® Cartoon shading is a cheap and neat
looking effect used in video games such
as Jet Set Radio Future

@ Instead of using traditional methods to
light a vertex, use the dot product of the
light vector and the normal of the vertex
to index into a 1 dimensional “texture”
(A texture is simply a lookup function for
colors — nothing more and nothing less)

@ Instead of a smooth transition from low
intensity light (small dot product) to high
intensity light (large dot product) make

normlvector

the 1 dimensional texture have sharp T
< |
transitions A
@ Textures aren’t just for “wrapping” 2D L. L I
images on 3D geometry! 00 — dotproduct — 10
® Viola! Cartoon Teapot Amesneteniy

Adapted from slides © 2002 - 2003 van Dam et al., Brown University
http://bitly/fiYmje Reused with permission.

Lecture 13 of 41 Computing & I

Computer Graphics

Cgq Tips

® Understand the different spaces your vertices may exist in

» model space: the space in which your input vertex positions exist, in this
space the center of the model is at the origin

> world space: the space in which you will do most of your calculations

> clip space: the space in which your output vertex positions must exist,
this space represents the canonical view volume

® If you want a vector to have length 1 make sure to normalize the vector, this
often happens when you want to use a vector to represent a direction

® When writing a Cg program try to go one step at a time, one sequence of steps
might be
> Make sure the model vertex positions are being calculated correctly

> set the color or texture coordinates to an arbitrary value, verify that you
are changing the surface color

> Calculate the color or texture coordinates correctly
® Check out http://cgshaders.org/articles/ for some helpful documents

Adapted from slides © 2002 - 2003 van Dam et al., Brown University
http://bitly/fiYmje Reused with permission.

Lecture 13 of 41 Computing

to Computer Graphics

Cg: Big Picture

® Write a.cg file. This will invariably take some sort of information as a
parameter to its “main () ” function
> Note that this main () is not compiled by gcc (or any C/C++ compiler).
That would generate a symbol conflict, among other things. Itis only
processed by NVidia’s Cg compiler
® Write a class that extends CGEffect. This is cs123’s object-oriented
wrapper around the basic C interface provided by Nvidia
» The CGEffect subclass allows you to bind data from your .C files to
variables in your .cg vertex program
® Make that CGEffect the IScene’s current CGEf fect by calling
IScene: :setCGEffect (). IScene will take ownership of the CGEffect*
at this point, so you will not be deleting the memory you allocated
yourself. Rendering will now be done using your vertex shader
® Call IScene emoveCGEffect () if you want to turn vertex shaders off
again

Adapted from slides © 2002 - 2003 van Dam et al., Brown University
http://bit.ly/fiYmje Reused with permission.

o e Computing &

Kan ate Univer

jon to Computer Graphics

HLSL [1]

® High-Level Shader Language (HLSL) is Mi ‘s for p ing GPUs

® Looks like C

® Example vertex and pixel shader for projective texturing (texture should appear to be
projected onto the scene, as if from a slide projector)

struct VS_OUTPUTPROJTEX
{

// output structure

floatd Pos : POSITION;
floatd Tex : TEXCOORDO;
Y

VS_OUTPUTPROJTEX VSProjTexture (floatd Pos : POSITION, float3 Normal : NORMAL)
{

vS_C out = (VS_C 0;
out.Pos = mul (Pos, matWorldViewProj);
Out.Tex = mul (ProjTextureMatrix, Pos);

// transform Position
// project texture coordinates

return Out;

}
floatd PSProjTexture(floatd Tex: TEXCOORDO) : COLOR
{

return tex2Dproj (ProjTexMapSampler, Tex);

}

Adapted from slide 2003 Wolfgang Engel, http://www.wolfgang-engeL.info
Visiondays 2003, http://bit.ly/hhkANP

6 Computing &

" Kar ate Univer

jon to Computer Graphics

Cg [1]

® Q:Whatls Cg?
* A1: Nvidia’s high-level shading language C 9‘
* A2: An OpenGL, Direct3D, RenderMan descendant...

Ganerstrupose N el T
Programming Susding
[y Linguages

‘Speclalzsd o Cpririzodtor
Bt T

" PG T —

Figure 110, Fernando & Kilgard (2003) Figure 111, Fernando & Kilgard (2003)

® Intro Slides for Cg Tutorial (Online Book): http://bit.ly/59ffSR

© 2003 R. Fernando & M. Kilgard. The Cg Tutorial.
http://bit.ly/59ffSR

Computing & Inf

ar

Shader Languages Overview
TEEEEA

i .L:«_M

OpenGL State Machine (Simplified) from Wikipedia: Shader

+ HLSL: Shader language and AP| developed by Microsoft, only usable from within a
DirectX application.

+ Cg: Shader language and API developed by Nvidia, usable from within a DirectX and
OpenGL application. Cg has a stark resemblance to HLSL.

* GLSL: Shader language and API developed by the OpenGL consortium and usable
from withing an OpenGL application.

©2009 Koen Samyn

http://knol.google.com/k/hisl-shaders
—— Computing & Infor
Lecture 13 of 41 ka

Computer Graphics

& HLSL [2]:
Code Example

// This is u v 3dsmax to load the co
string ParamID = "0x0"

// DxMaterial specific

floatdxd wvp :

struct vs_ou
{

floatd Pos :
f£loatd Col :
b
VS_OUTPUT VS (float3 Pos :)
{
VS_OUTPUT Out = (VS_OUTPUT)O;

floatd hpos = floatd (Pos, 1);
Out.Pos = mul(hPos, wvp);
out.Col = floatd(1, 1, 1, 1);
return Out;

}
technique Default
{

None;
VertexShader = compile vs 2 0 VS();

©2009 Koen Samyn
http://knol.google.com/k/hisl-shaders

Lecture 13 of 41

Computing & Infor

Computer Graphics

o
S

Cg [2]

® Polygons-to-Pixels Pipeline (Fixed-Function & Programmable) in Action

ﬂ’

) T

Intrplation, Tostring.

-

Coloed Vertens At

olored Vet M e Aasomty Rotetantion

Figure 1.6, Fernando & Kilgard (2003)
® Programmable Graphics Pipeline

£l)

Figure 1-7, Fernando & Kilgard (2003)

©2003R. Fernando & M. Kilgard. The Cg Tutorial.

Lecture 13 of 41

o
o

o
o

o

GLSL [1]:
Building on Top of OpendL

® How It Used to Be (in OpenGL)

———> Pixel Grouns.
——> Vorticas
> Fragment

—— Textures

OpenGL Reference Manual
http://bit.ly/gi9g47
® New Function: Fragment (Pixel-Level) Shaders
* Programmable pipeline — like HLSL, Cg
* Compiles to shader objects
* Runs on hardware: ATlI Radeon 9x00+, nVidia GeForce 5x00+

Lecture 13 of 41

0 Computer Graphics

Vertex Shaders [1]

® “Fixed-Function”
* Standard pipeline
* Typical examples include simple “my first shader” definitions
» Constant (flat) shading
» Smooth (Gouraud) shading
©® Brief Digression: Sample-Based vs. Geometry-Based Graphics
* Sample-based: image manipulation
> Not rendered from (3-D) model
» Examples: Photoshop, GIMP

* Geometry-based: transform and render representations of objects

® Programmable
* Fixed material properties selected by user
* Procedural material properties
* Gradients
* Lots of other things you see in sample-based graphics

Lecture 13 of 41

0 Computer Graphics

Vertex Shaders [3]:
GLSL Example

® Diffuse Shader (NeHe GLSL Example)

one common used lighting model. I's a litte bit harder

® Machine Problems, Projects: Will Use Combination of Shaders

http://bit.ly/gi9ga7

GLSL [2]:

Hybrid Shader Example — Color Cube

Vertex Shader

varying float xpos;

varying float ypos:

varying float zpos;

void main(void)

i
xpos = clamp(gl_Vertex.x,0.0,1.0);
ypos = clamp(gl_Vertex.y,0.0,1.0);
2zpos = clamp(gl_Vertex.z,0.0,1.0);

g1_Position = gl ModelViewProjectionMatrix * gl_Vertex;
)

Fragment Shader
varying float xpos;

varying float ypos:
varying float zpos;

void main (void)
i
g1_FragColor = vecd (xpos, ypos, zpos, 1.0);
)

©2003 — 2005 M. Christen, ClockworkCoders.com
http://bit.ly/et5q0p

Lecture 13 of 41 Computing

to Computer Graphics

= Vertex Shaders [2]:
Cg/HLSL-Style Pipeline

s opy Vertex
) = __l
el
} (g

It Rogisters

Tomporary - Purtorm nstruction
Regisors MathOp sraion

v
- o | o
L R a [werit| & ¢ vm«)
=

©2003R. Fernando & M. Kilgard. The Cg Tutorial.
IIbitly/59FFSR

Lecture 13 of 41 Computing &

to Computer Graphics

o

Pixel & Fragment Shaders [1]

® Fragments: Pixels Plus Properties
* Everything needed to shade pixel
* Coordinates
* Normals
* Object colors: diffuse, specular
#* Other properties
* May involve local computation of lighting (local to pixel)
* Typical example: Phong-like shading (normal interpolation)
® Programmable
* Use fragment data
* Combine it with lights, textures, efc.
® Hybridization: Combine Vertex and Pixel Shading
* Varying attributes for vertex (basis for fragment shading)
* Interpolating value from vertex shader across fragments

Computing &

Lecture 13 of 41

to Computer Graphics

- B Pixel & Fragment Shaders [2]:
Cg/HLSL-Style Pipeline

© 2003 R. Fernando & M. Kilgard. The Cg Tutorial.
http://bit.ly/59ffSR

Lecture 13 of 41

0 Computer Graphics

Summary

® Last Time: Mappings, OpenGL Texturing
* Shadow, reflection/environment, transparency, bump, displacement
#* Other mappings: gloss, volt ic fog, skins, rainbows, water
* OpenGL texture mapping how-to
® Previously: Basic Drawing in Direct3D, Shading & Texturing in OpenGL
® Today: Shaders in Modern Pipeline
* Vertex shaders
» Input: per-vertex attributes (e.g., object space position, normal)
» Output: lighting model terms (e.g., diffuse, specular, etc.)
* Pixel shaders
> Input: output of vertex shaders (lighting aka illumination)
» Output: pixel color, transparency (R, G, B, A)
® Shader Languages — (O)GLSL, HLSL / Direct3D, Renderman
® Next: Using Shader Languages

Lecture 13 of 41

b Pixel & Fragment Shaders [3]:

GLSL Example

® Consider BRDF (Especially N < L) From Last Lecture

® Result: Diffuse Term for Phong Shading (One Light, No Specular)

http://bit.ly/gi9ga7

Lecture 13 of 41

Terminology

® Mappings
* Shadow, reflection/environment, transparency, bump, displacement
#* Other mappings: gloss, volumetric fog, skins, rainbows, water
® (Classical Fixed-Function Pipeline (FFP): Per-Vertex Lighting, MVT + VT
® Modern Programmable Pipeline: Per-Pixel Lighting
® Shader Languages (SLs)
* Domain-specific programming languages
* Geared towards hardware rendering
® Specific SLs Covered
* HLSL / Direct3D — Microsoft’s programmable pipeline; overview
* Cg - Nvidia’s OpenGL / Direct3D descendant
* (O)GLSL - OpenGL shading language, covered in more detail
® Other Shader Languages Beyond Scope of This Course
* Gelato — Nvidia’s production render farm SL

* Renderman - Pixar’s specification, renderer, or SL

Lecture 13 of 41

Computing &

0 Computer Graphics

to Computer Graphics

