Lecture 20 of 41

Boundary Representations & Volume Graphics
Videos 3: Surfaces, Solid Modeling

William H. Hsu
Department of Computing and Information Sciences, KSU

KSOL course pages: http://bit.ly/hGvXIH / http://bit.ly/eVizrE
Public mirror web site: http://www.kddresearch.org/Courses/CIS636
Instructor home page: http://www.cis.ksu.edu/~bhsu

Readings:
Today: §10.4, 12.7, Eberly 2¢— see http://bit.ly/lieUg45, Mesh handout
Next class: Flash animation handout
Reference on curves (required for CIS 736): §11.1 — 11.6, Eberly 2e
Videos: http://www.kddresearch.org/Courses/CIS636/Lectures/Videos/ p=
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Lecture Outline

Reading for Last Class: §5.3 — 5.5, Eberly 2¢, CGA handout

Reading for Today: §10.4, 12.7, Eberly 2¢, Mesh handout

Reading for Next Class: §11.1 — 11.6 (736), Flash animation handout
Last Time: Skinning and Morphing

* Skins: surface meshes for faces, character models
* Morphing: gradual transition between skins
* GPU-based vertex tweening: texture arrays, vertex texturing, hybrid

® Today: Curves & Surfaces
* Piecewise linear, quadratic, cubic curves and their properties
* Interpolation: subdivision (DeCasteljau’s algorithm)
* Bicubic surfaces & bilinear interpolation

® Outside Viewing: CG Basics 10, Advanced CG 4 & 5

® Previous Videos: Morphing & Other Special Effects (SFX)

® Today’s Videos: Bicubic Surfaces (NURBS), Solid Modeling
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Where We Are

iy

B]= A i
Demos 3. Sutfaces. B rep:

Vils)u] [ ]
olume Graphics

Lecture | Topic Primary Source(s)
0 Course Ovenview Chapter 1, Eberly 2°
1 CG Basics: Transformation Matrices; Lab 0 | Sections (§) 2.1, 2.2
2 Viewing 1: Overview, Projections §223-224,28
3 Viewing 2: Viewing Transformation & 23 esp. 2.3.4; FVFH slides
4 Lab 1a: Flash & OpenGL Basics Ch. 2, 16', Angel Primer
] Viewing 3: Graphics Pipeline §23esp. 23.7,26,2.7
6 Scan Conversion 1: Lines, Midpoint Algorithm | §2.5.1, 3.1; FVFH s ;
rd Viewing 4: Clipping & Culling; Lab 1b §2.3.5,24 313
8 Scan Conversion 2: Polygons, Clipping Intro §24,25e5p.254,3.16
9 Surface Detail 1: llumination & Shading §25,261-262 432 202
10 Lab 2a: Direct3D / DirectX Intro § 2.7, Direct3D handout
11 Surface Detail 2: Textures; OpenGL Shading §26.3, 203204, Pimer
12 Surface Detail 3: Mappings; OpenGL Textures | § 205-20.13
13 Surface Detail 4: Pixel/Vertex Shad.; Lab 2b | § 3.1
14 Surface Detail 5. Direct3D Shading; OGLSL § 3.2 3.4, Direct3D handout
15 Demos 1: CGA, Fun; Scene Graphs: State §41-43, CGA handout
16 Lab 3a: Shading & Transparency § 2.6, 20.1, Primer
17 Animation 1: Basics, Keyframes; HW/Exam | §5.1-5.2

Exam 1 review; Hour Exam 1 (evening) Chapters 1-4, 20
18 Scene Graphs: Rendering; Lab 3b: Shader | §4.4-4.7

= hi — A hando

S04 127 Vechino ||

Lightly-shaded entries denote the due date of a written problem set; heavily-shaded entries. that of a

machine problem (programming assignment); blue-shaded entries, that of a paper review; and the green-
shaded entry, that of the term project.

Green, blue and red letters denote exam review, exam, and exam solution review dates.
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CIS 536/636

Introduction to Computer Graphics

Where We're Going

21 Lab 4a: Animation Basics Flash animation handout

22 Animation 2: Rotations; Dynamics, Kinematics | Chapter 17, esp. §17.1-17.2

23 Demos 4. Modeling & Simulation; Rotations Chapter 10", 13", §17.3 - 175

24 Collisions 1: axes, OBEs, Lab 4b §2.4.3, 8.1, GL handout

25 Spatial Sorting: Binary Space Partitioning Chapter 6, esp. §6.1

26 Demos 5: More CGA; Picking; HW/Exam Chapter 7°; § 8.4

27 Lab 5a: Interaction Handling §8.3-84;4.25.0,56,91

28 Collisions 2: Dynamic, Particle Systems & 9.1, particle system handout
Exam 2 review; Hour Exam 2 (evening) Chapters 5-6,7°-8,12,17

29 Lab 5b: Particle Systems Particle system handout

30 Animation 3: Control & IK § 5.3, CGA handout

I Ray Tracing 1: intersections, ray irees Chapter 14

32 Lab 6a: Ray Tracing Basics with POV-Ray RT handout

33 Ray Tracing 2: advanced topic survey Chapter 15, RT handout

34 Wisualization 1: Data (Quantities & Evidence) Tuite handout (1)

35 Lab &b: More Ray Tracing RT handout

36 Visualization 2: Objects Tufte handout (2 & 4)

37 Color Basics; Term Project Prep Color handout

38 Lab 7: Fractals & Terrain Generation Fractals/Terrain handout

39 Visualization 3: Processes; Final Review 1 Tufte handout (3)

40 Project presentations 1, Final Review 2 -

41 Project presentations 2 —

Final Exam

Ch.1-8,10-15,17, 20

Lightly-shaded entries denote the due date of a written problem set; heavily-shaded entries, that of a machine
problem (programming assignment); blue-shaded entries, that of a paper review; and the green-shaded entry, that of
the term project.

Lab exercises are always due on the day before the next lab.

Green, blue and red letters denote exam review, exam, and exam solution review dates.
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5 Review [1]:
Morphing Targets

® Vertex Tweening

* Two key meshes are blended
* Varying by time
® Morph Targets

* Represent by relative vectors Vou D — ] =
Exxon 93 Supreme "Rely On The Tiger" Commercial
» From base mesh

Burninschit 720Videos [¥| Subsaice

> To target meshes
* Geometry: mesh represents model
* Samples: corresponding images
® Applications
* Image morphing (see videos)

» | d)| oziom 360p N AL
* Lip syncing (work of Elon Gasper) © 1987 Exxon Mobil, Inc.
http://youtu.be/ViSPIrZpG40

s 4 —
Nl =
Adapted from “Morphing and Animation” © 2007 G. J. Katz, University of Pennsylvania 'i‘ E
Lecture 12, CIS 565 (formerly 665): GPU Programming and Architecture, http://bit.ly/eFkXmk "“ -
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: Review [2]:
Morph Target Animation & Lip Sync

® From Base Mesh to Multiple Targets
® Effects: Facial Animation with Muscle Deformation

® Lip Sync
* Problem: matching mouth movements to speech waveform
* Early work: Elon Gasper & Bright Star — http://bit.ly/g4sKBL
#* Used in Sierra’s Alphabet Blocks (1992) — http://bit.ly/hSKCE3

B
Adapted from “Morphing and Animation” © 2007 G. J. Katz, University of Pennsylvania 'Q‘ : =
Lecture 12, CIS 565 (formerly 665): GPU Programming and Architecture, http://bit.ly/eFkXmk """ 0
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g Review [3]:
GPU Animation Method 1

® Hold Vertex Data in Texture Arrays

® Manipulate Data in Pixel Shader / Fragment Shader

® Re-output to Texture Arrays

® Pass Output as Input to Vertex Shader (NB: Usually Other Way Around!)

e g=r

Adapted from “Morphing and Animation” © 2007 G. J. Katz, University of Pennsylvania '.‘
Lecture 12, CIS 565 (formerly 665): GPU Programming and Architecture, http://bit.ly/eFkXmk """ O
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8 Review [4]:
Pros & Cons of GPU Method 1

® Advantages

* Keeps vertex, geometry processing units’ workload at minimum
(Why is this good?)

* Good for copy operations, vertex tweening
® Disadvantages
* Per-vertex data has to be accessed through texture lookups

* Number of constant registers is less in pixel shader (224) than
vertex shader (256)

* Can not divide modification process into several pieces because
only single quad is drawn

* Therefore: constant registers must hold all bone matrices and
morph target weights for entire object

s 4 —
Nl =
Adapted from “Morphing and Animation” © 2007 G. J. Katz, University of Pennsylvania 'i‘ l‘
Lecture 12, CIS 565 (formerly 665): GPU Programming and Architecture, http://bit.ly/eFkXmk "“ -
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y Review [S]:
GPU Animation Method 2

® Apply Modifications in Vertex Shader, Do Nothing in Pixel Shader
* Destination pixel is specified explicitly as vertex shader input
* Still writing all vertices to texture

® Advantage: Can Easily Segment Modification Groups

® Disadvantage: Speed Issues Make This Method Impractical

s 4 —
gl ==
Adapted from “Morphing and Animation” © 2007 G. J. Katz, University of Pennsylvania '.‘ 1‘
Lecture 12, CIS 565 (formerly 665): GPU Programming and Architecture, http://bit.ly/eFkXmk """ -
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= Review [6]:
Hybrid CPU/GPU System

® Use Hybrid CPU/GPU Approach to Get Real Speed Advantage

1. Let CPU compute final vertex attributes used during rendering
frames n, n + k

2. Let GPU compute vertex tweening at frames greater than n, smaller
than n + k

3. Phase shift animations between characters so processors do not
have peak loads

® Advantages
* Vertex tweening supported on almost all hardware
* Modification algorithms performed on CPU, so no restrictions

s 4 —
'-*Q.J_
Adapted from “Morphing and Animation” © 2007 G. J. Katz, University of Pennsylvania '.‘ 1’
Lecture 12, CIS 565 (formerly 665): GPU Programming and Architecture, http://bit.ly/eFkXmk """ O
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- %@ Polynomial Functions

= Linear: f@)=at+b

= Quadratic: f(t)=at* +bt+c

/

o ; /R\
m Cubic: f(’)= at’ +bt> +ct+d / N/

7

Adapted from slides ¥ 2003 — 2006 S. Rotenberg, UCSD :

CSE167: Computer Graphics, Fall 2006, http://bit.ly/hXxAIP = UCSD /
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: %@ Vector Polynomials (Curves)

= Linear: f(¢)=ar+b

= Quadratic:  f(r)=ar> +br+c

= Cubic: f(t)=ar’ +br’ +cr+d ><7

S

We usually define the curvefor0<t< 1

Adapted from slides ¥ 2003 — 2006 S. Rotenberg, UCSD :

CSE167: Computer Graphics, Fall 2006, http://bit.ly/hXxAIP = UCSD /
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1s

Linear Interpolation

= Linear interpolation (Lerp) is a common technique for generating a
new value that is somewhere in between two other values

= A ‘value’ could be a number, vector, color, or even something more

complex like an entire 3D object...

= Consider interpolating between two points a and b by some

parameter ¢

Lerp(t,a,b)=(1-1)a+1b

Adapted from slides ¥ 2003 — 2006 S. Rotenberg, UCSD
CSE167: Computer Graphics, Fall 2006, http://bit.ly/hXxAIP

cliz 536/,"36 , Lecture 20 of 41
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26 Splines [1]:
Representing General Curves

» We canrepresent any polyline with vertices and edges. What about curves?

» Don't want to store curves as raster graphics (aliasing, not scalable, memory
intensive). We need a more efficient mathematical representation

» Store control points in a list, find some way of smoothly interpolating between
them

» Piecewise Linear Approximation
» Not smooth, looks awful without many control points

» Trigonometric functions
» Difficult to manipulate and control, computationally expensive to compute

» Higher order polynomials
» Relatively cheap to compute, only slightly more difficult to operate on than

polylines
. aer
Adapted from slides © 2010 van Dam et al., Brown University —
http://bit.ly/hiSt0f Reused with permission. ) [ / ‘

Computing & Information Sciences
Kansas State University

CIS 536/636 Lecture 20 of 41

Introduction to Computer Graphics




-7 Splines [2]:
Spline Types & Uses

» Polynomial interpolation is typically used. Splines are second or third order
parametric curves governed by control points or control vectors

» Used early on in automobile and aircraft industry to achieve smoothness —
even small differences can make a big difference in efficiency and look

EY interpolating
spline

approximating

spline

V'

1
4 Splines still exist outside of computers.

They're now called flexible curves.

» Used for:

» Representing smooth shapesin 2D as outlines or in 3D using "patches”
parameterized with two variables: s and t (see slide 12)

» Animation paths for “tweening” between keyframes

» Approximating “expensive” functions (polynomials are cheaper than log, sin, cos ...}

Adapted from slides © 2010 van Dam et al., Brown University
http://bit.ly/hiSt0f Reused with permission.

<k
Biyt
N
A,
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2 Splines [3]:
Hermite Curves

» Polylines are linear (1% order polynomial) interpolations between points
¥ Given points P and @, line between the two is given by the parametric equation:

x(t) = (1 —t)P +tQ, D<=t<1
» (1 —t)and tare called weighting functions of P and Q
» Splines are higher order polynomial interpolations between points

» Like linear interpolation but with higher order weighting functions allowing better
approximations/smoother curves

» One representation - Hermite curves (interpolating spline):

» Determined by two control points P and Q, an initial tangent vector v and a final
tangent vector w.

y(@) = (2t3 — 3t% + 1)P + (—2t* + 3t3)Q
» Satisfies: + ({3 =2t2+t)v + (£3 —tH)w

y(0)=P Q:t=1
(1) =0 P:t=0
Y'(0)=v
Y(D=w
s =
Adapted from slides © 2010 van Dam et al., Brown University | ——
http://bit.ly/hiSt0f Reused with permission. F
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27 Splines [4]:
Hermite Weighting Explained

» Polynomial Splines have more Polynomial weighting functions in Hermite curve equation
complex weighting functions

than I|n_e.s 8 R —
» Coefficients for P and Q are now P's coefficient @'s coefficient
3" degree polynomials

» Att =0:
» Coefficientof P is 1, all others o

» Derivative of coefficientof v is
1, derivative of all othersis o

» Att =1:
» Coefficient of Q is 1, all others o

» Derivative of coefficientof wis
1, derivative of all othersis o

v's coefficient w's coefficient

/

(0, 0)

» Can be chained together to make
more complex curves

aer
Adapted from slides © 2010 van Dam et al., Brown University | —
http://bit.ly/hiSt0f Reused with permission. i [ & &
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20 Splines [S]:
Bézier Curves

» Bezier representation is similar to Hermite
» 4 points instead of 2 points and 2 vectors (P; ... Py)
» Initial position P,, tangent vectoris P, — P,
» Final position P, tangent vector is P, — P, p—

» This representation allows a spline to be stored as ,
a list of vertices with some global parameters that _
describe the smoothness and continuity b il

» Bezier splines are widely used ‘ | )
(Adobe, Microsoft) for font definition ] ‘ "

Brown Exploratory (Spalter & Bielawa): http://bit.ly/fvalil

Adapted from slides © 2010 van Dam et al., Brown University | e

http://bit.ly/hiSt0f Reused with permission. ) [
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= Bézier Curves [1]:
Piecewise Cubic Curves

m Bezier curves can be thought of as a
higher order extension of linear
interpolation n

"r: Lo "‘l:‘\: . p3
.'; .‘:::\. /
.‘.\‘_h_/ ,"

Po
P2

Linear Quadratic Cubic

Adapted from slides ¥ 2003 — 2006 S. Rotenberg, UCSD :

CSE167: Computer Graphics, Fall 2006, http://bit.ly/hXxAIP = UCSD /
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= Bézier Curves [2]:
Formulation

m There are lots of ways to formulate Bezier
curves mathematically. Some of these include:

de Castlejau (recursive linear interpolations)

Bernstein polynomials (functions that define the
influence of each control point as a function of t)

Cubic equations (general cubic equation of t)
Matrix form

m We will briefly examine each of these

Adapted from slides ¥ 2003 — 2006 S. Rotenberg, UCSD :
CSE167: Computer Graphics, Fall 2006, http://bit.ly/hXxAIP < UCSD /
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& Bézier Curves [3]:
Interpolation Problem Defined

= Find the point x on
the curve as a
function of
parameter

Adapted from slides ¥ 2003 — 2006 S. Rotenberg, UCSD
CSE167: Computer Graphics, Fall 2006, http://bit.ly/hXxAIP
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& De Casteljau’s Algorithm [1]:
ldea

= The de Casteljau algorithm describes the
curve as a recursive series of linear
interpolations

= This form is useful for providing an
Intuitive understanding of the geometry
involved, but it is not the most efficient
form

Adapted from slides ¥ 2003 — 2006 S. Rotenberg, UCSD _ :

CSE167: Computer Graphics, Fall 2006, http://bit.ly/hXxAIP = UCSD /
CIS 536/636
Introduction to Computer Graphics Kansas State University
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& De Casteljau’s Algorithm [2]:
Initialization

Po

= We start with our original
set of points

= |n the case of a cubic

Bezier curve, we start
with four points

Adapted from slides ¥ 2003 — 2006 S. Rotenberg, UCSD
CSE167: Computer Graphics, Fall 2006, http://bit.ly/hXxAIP
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= De Casteljau’s Algorithm [3]:
Lerp Step 1

qo = L.ef'p(t’p():pl) pdw

q, = Lerp(_‘(,pl,pz)
q, = Lei':p(f,pz,pg)

Adapted from slides ¥ 2003 — 2006 S. Rotenberg, UCSD _ :

CSE167: Computer Graphics, Fall 2006, http://bit.ly/hXxAIP = UCSD /
CIS 536/636
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& De Casteljau’s Algorithm [4]:

Lerp Step 2

r, = L-ef-p(_t .9,.9,)
r, = Lerp(r,q,.q,)

Adapted from slides ¥ 2003 — 2006 S. Rotenberg, UCSD
CSE167: Computer Graphics, Fall 2006, http://bit.ly/hXxAIP

CIS 536/636

3 , Lecture 20 of 41
Introduction to Computer Graphics
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o De Casteljau’s Algorithm [ST:

Lerp Step 3

X = Lerp(t, i )

Adapted from slides ¥ 2003 — 2006 S. Rotenberg, UCSD
CSE167: Computer Graphics, Fall 2006, http://bit.ly/hXxAIP

CIS 536/636

3 , Lecture 20 of 41
Introduction to Computer Graphics
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& De Casteljau’s Algorithm [6]:
Recursive Linear Interpolation

- p
q, = Lerp(t.p,.p,)
q, = Lef:p(_t’pppz)
q, = Lerp(t,p,.p;)

I, = Ler'p(t »qp> 4, )

X = Lerp(ﬁroﬂrl)r —Lerp(f q:.9 )
, =L Lot o= |

3

Adapted from slides ¥ 2003 — 2006 S. Rotenberg, UCSD _ :

CSE167: Computer Graphics, Fall 2006, http://bit.ly/hXxAIP = UCSD /
CIS 536/636
Introduction to Computer Graphics Kansas State University
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° Bernstein Polynomials [1]:
Coefficients of Control Points

X (1 N f)((l - I‘)((l _I)po +1p, )+ f((l IR f)Pl T fp:))
+ f((l - f)((l - 1)131 + i’P: )+ f((l I rh’z + fp% ))

X= (1 B f)SPG + 3(1 = f)lfpl = = 3(1 — f)fzp: — r3p3

Adapted from slides ¥ 2003 — 2006 S. Rotenberg, UCSD _ :

CSE167: Computer Graphics, Fall 2006, http://bit.ly/hXxAIP = UCSD /
CIS 536/636
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= Bernstein Polynomials [2]:
Piecewise Cubic Basis

x=(-£ +3r —3t+1)p, + B — 612 +30)p,

+(}3r3 +312})2 +(t3})3

x = B;(1)po + B (t)p, + B, (t)p, + B (¢)p;

Adapted from slides ¥ 2003 — 2006 S. Rotenberg, UCSD
CSE167: Computer Graphics, Fall 2006, http://bit.ly/hXxAIP
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» %@ Bernstein Polynomials [3]:

Binomial Form of Basis Functions

Adapted from slides ¥ 2003 — 2006 S. Rotenberg, UCSD _ :

CSE167: Computer Graphics, Fall 2006, http://bit.ly/hXxAIP = UCSD /
CIS 536/636
Introduction to Computer Graphics Kansas State University
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& Bernstein Polynomials
Cubic Matrix Form

x—at’ +bt* +ct+d

Adapted from slides ¥ 2003 — 2006 S. Rotenberg, UCSD
CSE167: Computer Graphics, Fall 2006, http://bit.ly/hXxAIP

CIS 536/636

3 , Lecture 20 of 41
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= Geometric (G)vs. Mathematical (Ci)
Continuity

® Geometric Continuity: Gi

* Guarantees that direction of ith derivative equal

* GO curves touch at join point

* G': curves also share common tangent direction at join point

* G2: curves also share common center of curvature at join point
® Mathematical Continuity: Ci

* Guarantees that direction, magnitude of ith derivative equal

* CO= G curves touch at join point

* C': curves share common tangent direction / magnitude at join point
* C2: curves share common second derivative at join point

Two curve segments, S, S, Two curve segments,
R, with only (" continuity with tangent vector (C') continuity
®

" R,

© 2008 — 2009 Wikipedia, Smooth Function avE
http://bit.ly/hQwnY2 i

CIS 536/636
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35

Connecting Bézier Curves:
Ci Continuity

A simple way to make larger curves is to connect up Bezier curves
Consider two Bezier curves defined by p,...p; and v;...v;

If p,=Vv,, then they will have C? continuity

If (p5-p,)=(v4-Vy), then they will have C' continuity

C2 continuity is more difficult...

Vi

P>

P, /’\/

P;v,

Adapted from slides ¥ 2003 — 2006 S. Rotenberg, UCSD
CSE167: Computer Graphics, Fall 2006, http://bit.ly/hXxAIP
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1]

Building 3-D Primitives

» Made out of 2D and 1D primitives

» Triangles are commonly used L

» Many triangles used for a single
object is a triangular mesh.

’ ?P' Ines Uf"ed to describe b‘?undarles of ., ¥ mage credit (Stanford Bunny): http://bit.ly/fDSxn9
patches” — these can be “sewn together L v.2)
to represent curved surfaces J{ ‘*‘f*%i"““ !
» o x(s,t)=(1 —s)P*(1 —t)*= Py, /"4{7{ / SO
(1 —5)P=3t(1 —)2 =P, + AL N
¥ L £ S L2 ” / .\L Control Puwgo;\g{“'
G B
Adapted from slides © 2010 van Dam et al., Brown University | ——
http://bit.ly/hiSt0f Reused with permission. ) [ &=
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= Surface Modeling:
Utah Teapot

® Many real-world objects: inherently smooth
* Therefore need infinitely many points to model them
* Not feasible for a computer with finite storage
® More often we merely approximate objects with
* Pieces of planes
* Spheres
* Other shapes that are easy to describe mathematically
® Two most common representations for 3-D surfaces
* Polygon mesh surfaces
* Parametric surfaces
® Will also discuss parametric curves
% 2-D, embedded in 3-D
* Think of parametric surfaces as generalization of curves

Adapted from slides ¥ 2006 B. McCaul, Dublin City University
CA433 Computer Graphics I, http://bit.ly/ghw08y
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& Polygon Meshes [1]:
Vertex, Edge, Polygon Tables

VERTEX TABLE EDGE TABLE POLYGON TABLE
Vi X, ¥4 2 E: V.V, P: V,V,, V,
Vi X2¥22 E VY Py V,, ViV, Vs
Vsl X3 Y323 Ez: V,V,

Vi Xp V02, E; V,V, OR
Vs X5, Vs Zs E; V,V, POLYGON TABLE
E: VYV, P: E,E, E;
P; E;, E,, Es, E;

Adapted from slides ¥ 2006 B. McCaul, Dublin City University
CA433 Computer Graphics I, http://bit.ly/ghw08y
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a1 Polygon Meshes [2]:
“Eliminating” Edge Table

® The geometry can be stored as three tables: a vertex table, an edge
table, and a polygon table. Each entry in the vertex table is a list of
coordinates defining that point. Each entry in the edge table
consists of a pointer to each endpoint of that edge. And the entries
in the polygon table define a polygon by providing pointers to the
edges that make up the polygon.

® We can eliminate the edge table by letting the polygon table
reference the vertices directly, but we can run into problems, such
as drawing some edges twice, because we don't realise that we
have visited the same set of points before, in a different polygon.
We could go even further and eliminate the vertex table by listing
all the coordinates explicitly in the polygon table, but this wastes
space because the same points appear in the polygon table several

times.
Adapted from slides ¥ 2006 B. McCaul, Dublin City University ; ~
CA433 Computer Graphics I, http://bit.ly/ghw08y /(7‘ =3
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‘0 Polygon Meshes [3]:
Representation

1. Explicit way: just list 3D vertices of each polygon in a certain order.
Problems are, firstly it represents same vertex many times and
secondly, no explicit representation of shared edges and vertices

P:((xlaylaZl)a(xzayz’zz)a--~a(xn’yn’Zn))

2. Pointer to a vertex list: store all vertices once into a numbered list,
and represent each polygon by its vertices. It saves space (vertex
only listed once) but still has no explicit representation of shared
edges and vertices

P=(1,3,4,5)

3. Explicit edges: list all edges that belong to a polygon, and for each
edge list the vertices that define it along with the polygons of which
it is a member.

E=. 7, F)

Adapted from slides ¥ 2006 B. McCaul, Dublin City University
CA433 Computer Graphics I, http://bit.ly/ghw08y
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“ Types of Curves [1]:
Explicit & Implicit

1. Explicit
In Cartesian plane, explicit equation of planar curve given by
y = f(x)
Difficulties with this approach

a) impossible to get multiple values of y for single x, so curves such as
circles and ellipses must be represented by multiple curve segments

b) describing curves with vertical tangents: difficult, numerically unstable

2. Implicit
f(x,y)=0
Ax+ By + C =0
Difficulties: determining tangent continuity of two given curves — crucial in
many applications
(Circle can be defined as: x2+ y2= 1, but what about half circle?)

Adapted from slides ¥ 2006 B. McCaul, Dublin City University
CA433 Computer Graphics I, http://bit.ly/ghw08y
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o Types of Curves [2]:
Parametric

3. Parametric Curves
Cubic polynomials that define curve segment Q(f)= [x(t) y(t)]T are of form:
x(t)=at’ +bt’ +ct+d,
yOy=a,’ +bt’ +ct+d,
Written in matrix form, system becomes

Q=[x y()] =T-C

where
a, aﬂ
b b
c=| """ T=l¢ 2 ¢ 1

C, Cy

4,4, |

Adapted from slides ¥ 2006 B. McCaul, Dublin City University : e
i ==
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Parametric Bicubic Surfaces [1]

® Equations that describe parametric curve depend on variable f not
explicitly part of geometry

x=f(t)
y=g(?)

® By sweeping through ¢, in our case 0 < f <1, we can evaluate equations
and determine x, y values for points on curve

:\.\\\
—_— )
0.0 10t v

Parameter space Object space

Adapted from slides ¥ 2006 B. McCaul, Dublin City University
CA433 Computer Graphics I, http://bit.ly/ghw08y
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4 Review [8]:
Parametric Bicubic Surfaces

® Parametric Bicubic Surface: Generalization of Parametric Cubic Curve

P(u, v)= [x(u, v), y(u, v), z(n, v)] 0<u<l 0Zv<I1

® From Curves to Surfaces
* Let one parameter (say v) be held at constant value
* Above will represent a curve

#* Surface generated by sweeping all points on boundary curve, e.g., P(u,
0), through cubic trajectories, defined using v, to boundary curve P(u, 1)

v
1.0
0.0 10" v=0 v=1
Farameter Space Ohject Space
Be=er
Adapted from slides ¥ 2006 B. McCaul, Dublin City University : e
i ==
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Bézier Surface Patch

The representation of the bicubic surface patch can be illustrated by
considering the Bézier Surface Patch. The edge P(0, v) of a Bezier
patch is defined by giving four control points P y;, Py, Py, and Py;.
Similarly the opposite edge P(7, v) can be represented by a Bezier
curve with four control points. The surface patch is generated by
sweeping the curve P(0, v) through a cubic trajectory in the parameter u
to P(1, v). To define this trajectory we need four control points, hence
the Bezier surface patch requires a mesh of 4 x4 control points as
illustrated below.

Adapted from slides ¥ 2006 B. McCaul, Dublin City University
CA433 Computer Graphics I, http://bit.ly/ghw08y
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Surfaces — Simple Extension

® Easy to generalize from cubic curves to bicubic surfaces
® Surfaces defined by parametric equations of two variables, s and t

® j.e., surface is approximated by series of crossing parametric cubic
curves

® Result is polygon mesh

® Decreasing step size in s and t will give
* mesh of small near-planar quadrilateral patches
¥* more accuracy

0<s<1 and 0<t<1

Adapted from slide ¥ 2007 - 2008 K. Hawick, Massey University ‘A MASSEY UNIVERSITY O
159-235 Graphics and Graphical Programming, http://bit.ly/gmY8R8 .5, TE KUNENGA KI PUREHUROA & &
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Control of Surface Shape

® Control is now 2-D array of control points

® Two parameter surface function, forming tensor product with
blending functions, is:

X(s,t)= 2 fi()f;(D)a,
similarly for Y (s,¢) and Z(s,t)

® Use appropriate blending functions for Bézier and B-Spline surface

functions
® Convex Hull property preserved since bicubic is still weighted sum
(1)
==
Adapted from slide ¥ 2007 - 2008 K. Hawick, Massey University ‘A MASSEY UNIVERSITY : —n,
159-235 Graphics and Graphical Programming, http://bit.ly/gmY8R8 .E, TE KUNENGA KI PUREHUROA //? 3
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43 Example :
Bézier Surface

® Matrix formulation as follows

x(s,0)=s".M,.q.M}.t
q. is 4x4 array of x coords

y(s,t) = ST.MB.qy.MT.t

b R
e
AR,

q, is 4x4 array of y coords
z(s,t)=s".M,.q..M,.t

q. is 4x4 array of z coords

® Substitute suitable values for s, f (20 in above example)

Adapted from slide ¥ 2007 - 2008 K. Hawick, Massey University ‘A MASSEY UNIVERSITY —,
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B-Spline Surfaces

® Break surface into 4-sided patches choosing suitable
values for s and t

® Points on any external edges must be multiple knots of
multiplicity k

® Lot more work than Bézier

® There are other types of spline systems and NURBS
modelling packages are available to make the work much
easier

® Use polygon packages for display, hidden-surface removal
and rendering (Bézier too)

Adapted from slide ¥ 2007 - 2008 K. Hawick, Massey University ‘A MASSEY UNIVERSITY —,
159-235 Graphics and Graphical Programming, http://bit.ly/gmY8R8 .E, TE KUNENGA KI PUREHUROA /7' 4
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Continuity of Bicubic Patches

® Hermite and Bézier patches
* CO continuity by sharing 4 control points between patches

* C'continuity when both sets of control points either side of the
edge are collinear with the edge

® B-Spline patch
* C2 continuity between patches

Adapted from slide ¥ 2007 - 2008 K. Hawick, Massey University ‘A MASSEY UNIVERSITY —
159-235 Graphics and Graphical Programming, http://bit.ly/gmY8R8 .5, TE KUNENGA KI PUREHUROA
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Display (Rendering) of Bicubic Patches

® Can calculate surface normals to bicubic surfaces by vector cross
product of their 2 tangent vectors

® Normal is expensive to compute

* Formulation of normal is a biquintic (two-variable, fifth-degree)
polynomial

® Display
* Can use brute-force method - very expensive!
* Forward differencing method very attractive

Adapted from slide ¥ 2007 - 2008 K. Hawick, Massey University ‘A MASSEY UNIVERSITY T e
159-235 Graphics and Graphical Programming, http://bit.ly/gmY8R8 .5, TE KUNENGA KI PUREHUROA & =
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Non-Uniform Rational B-Splines &
NURBS Surfaces

® B-Splines

© 2009 Wikipedia, B-spline

® NURBS

ST

Hethod 5

Matched Knot Position
Ar | Boams

© 2007 Wikipedia, Non-uniform rational B-spline

® NURBS Surface

© 2010 Wikipedia, Non-uniform rational B-spline

CIS 536/636
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Curves & Surfaces: Summary

® Curves
* Bézier: easier to scan convert (DeCasteljau)
* Hermite: easier to control via GUI (tangent)
® Bicubic patches
* Bilinear interpolation
* Control patch aka Coons patch

® Acknowledgments - thanks to Eric McKenzie, Edinburgh, from
whose Graphics Course some of these slides were adapted.

Trailer: http://youtu.be/1KCX0pFPRwk
Eris scene: http://youtu.be/w1r8_vByXW4
2003 Wired article: http://bit.ly/gm85UU

Adapted from slide ¥ 2007 - 2008 K. Hawick, Massey University ‘A MASSEY UNIVERSITY —,
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Further Reading

® Foley et al.. Computer Graphics: Principles and Practice
#* 2nd edition in C (1991), http://amzn.to/hFNqNC
* Chapter 11: Representing Curves and Surfaces
® Approaches: Classical (OpenGL v1 & 2) vs. New (OpenGL v3 & 4)
* Classical: evalCoord (http://bit.ly/e80lZj), evalMesh (http://bit.ly/gGkt8Z)
#* New: Map{1|2}{£]|d}; Chapter 5, compatibility profile (http://bit.ly/gkbVyE)
® OpenGL 1.1 Specification
* All versions: http://www.opengl.org/documentation/specs/
#* Chapter 5: Evaluators, http://bit.ly/gMVzAO
® Red Book (OpenGL Programming Guide)
* v1.1: http://glprogramming.com/red/ (current edition: 7th)
#* Chapter 12: Evaluators and NURBS, http://bit.ly/hZ1tpb
® Blue Book (OpenGL Reference Manual)
* 1992 edition: http://glprogramming.com/blue/
* See evalCoord (http://bit.ly/eADQLM), evalMesh (http://bit.ly/f7Juog)

Adapted from slides ¥ 2006 B. McCaul, Dublin City University
CA433 Computer Graphics I, http://bit.ly/ghw08y
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Summary

Reading for Last Class: §5.3 — 5.5, Eberly 2¢, CGA handout

Reading for Today: §10.4, 12.7, Eberly 2¢, Mesh handout

Reading for Next Class: §11.1 — 11.6 (736), Flash animation handout
Last Time: Brief Survey of Skinning and Morphing

* GPU-based vertex tweening: texture arrays, vertex texturing, hybrid
* Agent simulation using GPU-based finite state machines
® Today: Curves & Surfaces
* Piecewise linear, quadratic, cubic curves and their properties
* Interpolation: subdivision (DeCasteljau’s algorithm)
* Bicubic surfaces & bilinear interpolation
® OQutside Viewing
* CIS 536 & 636 students: watch Basic CG lecture 10 on VSD
* CIS 736 students: watch Advanced CG lectures 4 & 5 on CGA, IK
® Previous Videos: Morphing & Other Special Effects (SFX)
Today’s Videos: Bicubic Surfaces (NURBS), Solid Modeling /—
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Terminology

® Skins — Surface Meshes for Faces, Character Models

® Morphing - gradual transition between images or meshes
* Vertex tweening — texture arrays, vertex texturing, or hybrid method
#* GPU computing — offload some tasks to GPU

® Piecewise Polynomial Curves aka Splines

* Piecewise linear, piecewise quadratic, piecewise cubic
* Types of splines: Bézier, Hermite, B-splines, NURBS
* DeCasteljau’s algorithm: recursive linear interpolation (subdivision)

* Control points: vertices of control polygon, determine spline shape
* Bernstein polynomials: weight of each control point as function of t
® Continuity: Geometric (G), Mathematical (C)
® Bicubic Surfaces
* Controlled by control patch (Coons patch), defining 3-D surface
* Bilinear interpolation — sweep spline along another spline path
* NURBS surface — bicubic surface based on NURBS curves ?'/7,;
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