[

Lecture 25 of 41

Spatial Sorting: Binary Space Partitioning
Quadtrees & Octrees

William H. Hsu
Department of Computing and Information Sciences, KSU

KSOL course pages: http:/bit.ly/hGvXIH / http://bit.ly/eVizrE
Public mirror web site: http://www.kddresearch.org/Courses/CIS636
Instructor home page: http://www.cis.ksu.edu/~bhsu

Readings:
Today: Chapter 6, esp. §6.1, Eberly 2e— see http://bit.ly/ieUg45
Next class: Chapter 7, §8.4, Eberly 2e
Wikipedia, Binary Space Partitioning: http://bit.ly/eE10lc
Wikipedia, Quadtree (http://bit.ly/ky0Xy) & Octree (http://bit.ly/dVrthx)

Computing

Lecture 25 of 41

Where We Are

21 Lab 4a: Animation Basics Flash animation handout
22 Animation 2: Rotations; Dynamics, Kinematics | Chapter 17, esp §17.1-17.2
23 Demos 4. Modeling & Simulation; Rotations Chapter 10", 13, §17.3- 175

Lab 5a: Interaction g .
28 Collisions 2: Dynamic, Particle Systems 9.1, p:

Exam 2 review: Hour Exam 2 (evening) :hﬂE"e
75 Lab 5b: Particle Systems Particle system handout

Animation 3: Control & IK § 5.3, CGA handout
Ray Tracing 1° intersections, ray trees Chapter 14

Lab 6a: Ray Tracing Basics with POV-Ray RT handout

Ray Tracing 2: advanced {opic survey Chapter 15, RT handout

34 isualization 1: Data (Quantities & Evidence) Tufte handout (1)

35 Lab 6b: More Ray Tracing RT handout
36 Visualization 2. Objecls Tufte handout (2 & 4)
37 Color Basics; Temm Project Prep Color handout
38 Lab 7. Fractals & Terrain T errain handout
39 Visualization 3: Processes: Final Review 1 3
40 Project p 1, Final Review 2 -
a1 Project =
Final Exam Ch.1-8, 10-15,17. 20

Lightly-shaded entries denote the due date of a written problem set. hieavily-shaded enfries that of a
machine problem (programming assignment); bilie-shaded eniies, that of a paper review; and the green-
shaded entry, that of the term project

Green, blue and red letters denote exam review, exam, and exam solution review dates

Computing

Lecture 25 of 41

Review [1]:
View Frustum Clipping

>0

Figure 34 Fou i i tting. Only the triangles in the shaded region are
important, so the quadrilaterals outside are not split.

3D Game Engine Design © 2000 D. H. Eberly —

See http://bitlylieUqds for second edition table of contents (TOC)

Computing

Lecture 25 of 41

Lecture Outline

Reading for Last Class: §2.4.3, 8.1, Eberly 2¢, GL handout
Reading for Today: Chapter 6, Esp. §6.1, Eberly 2¢
Reading for Next Class: Chapter 7, §8.4, Eberly 2¢
Last Time: Collision Handling, Part 1 of 2
* Static vs. dynamic objects, testing vs. finding intersections
* Distance vs. intersection methods
* Triangle point containment test
* Method of separating axes
® Today: Adaptive Spatial Partitioning
* Visible Surface Determination (VSD) revisited
* Constructive Solid Geometry (CSG) trees
* Binary Space Partitioning (BSP) trees
* Quadtrees: adaptive 2-D (planar) subdivision
* Octrees: adaptive 3-D (spatial) subdivision
® Coming Soon: Volume Graphics & Voxels

Computing

Computer Graphics

Acknowledgements:
Intersections, Containment — Eberly 1¢
David H. Eberly

Chief Technology Officer
Geometric Tools, LLC
http://www.geometrictools.com
http://bitlylenKbfs

Last lecture’s material:
® View Frustum clipping
> §2.4.3,p.70 =77, 2¢
> §3.4.3,p.93 -99, & §3.7.2, p. 133 — 136, 1¢
® Collision detection: separating axes
> §8.1,p.393 —443, 2¢
> §6.4.p.203 —214, 1¢
Later:

3D

Game Engine
Design

® Distance methods
» Chapter 14, p. 639 — 679, 2¢
> §2.6,p.38-77,1¢

® Intersection methods

» Chapter 15, p. 681 — 717, 2¢

> §6.2-6.5, p. 188 — 243, 1¢

6=

David H. Eberly

3D Game Engine Design © 2000 D. H. Eberly
See http://bit lyfieUads for second edition table of contents (TOC)

Computing

Computer Graphics

@ Review [2]:
Collision Detection vs. Response

= Collision Detection
« Collision detection is a geometric problem

» Given two moving objects defined in an initial and
final configuration, determine if they intersected at
some point between the two states

= Collision Response

» The response to collisions is the actual physics
problem of determining the unknown forces (or
impulses) of the collision

Adapted from slides ¥ 2004 — 2005 S. Rotenberg, UCSD
CSE169: Computer Animation, Winter 2005, http://bit.ly/fOViAN

= UCSD

Computing

Computer Graphics

7 Review [3]:
Queries — Test- vs. Find-Intersection
® Test-Intersection: Determine If Objects Intersect
* Static: test whether they do at given instant
* Dynamic: test whether they intersect at any point along trajectories
©® Find-Intersection: Determine Intersection (or Contact) Set of Objects
* Static:
* Dynamic: contact time (interval of overlap), sets (depends on time)

tersection set (compare: A N B)

Adapted from 3D Game Engine Design © 2000 D. H. Eberly
See http://bitly/ieUgds for second edition table of contents (TOC)

Computing

Review [S]:
Segment vs. Triangle — Solution

= First, compute signed distances of a and b to plane

= Reject if both are above or both are below triangle
= Otherwise, find intersection point x

db-da
d —d

a “b

Adapted from slides ¥ 2004 — 2005 S. Rotenberg, UCSD
CSE169: Computer Animation, Winter 2005 , http:/bit.ly/fOViAN

= UCSD

Review [7]:
Faster Triangle — Point Containment

= Reduce to 2D: remove smallest dimension
= Compute barycentric coordinates
Vo

€1=Vi-Vo

€,=Vo-Vo

a=(x"xey)/(e4xep)

B=(x'xeq)/(e1xe,)
= Reject if a<0, g<0 or a+B >1

Adapted from slides ¥ 2004 — 2005 S. Rotenberg, UCSD
CSE169: Computer Animation, Winter 2005, http:/bit.ly/fOViAN

= UCSD

Review [4]:
Queries — Distance vs. Intersection

® Distance-Based
* Parametric representation of object boundaries/interiors
* Want: closest points on two objects (to see whether they intersect)
* Use: constrained minimization to solve for closest points
® Intersection-Based
* Also uses parametric representation
* Want: overlapping subset of interior of two objects
* General approach: equate objects, solve for parameters
* Use one of two kinds of solution methods
> Analytical (when feasible to solve exactly - e.g., OBBs)
> Numerical (approximate region of overlap)
* Solving for parameters in equation
* Harder to compute than distance-based; use only when needed

Adapted from 3D Game Engine Design © 2000 D. H. Eberly
See http://bit.lyfieUads for second edition table of contents (TOC)

Computing &

Computer Graphics

Review [6]:
Segment vs. Triangle — Point Test

m |s point x inside the triangle?
(X-vp)-((v2-vp) xn) > O
m Test all 3 edges

Vo=V

Adapted from slides ¥ 2004 — 2005 S. Rotenberg, UCSD
CSE169: Computer Animation, Winter 2005, http://bit.ly/fOViAN

=< UCSD

Computing &

Review [8]:
Sphere-Swept Volumes & Distances

Wikipedia: Sphere

Image © 2008 ClipArtOf.com Capsule ozenge
‘hitpiibit.ly/eKhE2f Image Remotion Wiki Image © 2011 Jasmin Studio Crafts
httoibitly huEZNW http: Ibit lyleuEopw

“Table 6.1 Relationshi here-swept d di

line segment; re, rectangle).

(pre, point; seg,

Sphere Capsule Lozenge

Sphere dist(pnt,pnt) dist(pntseg) dist(pnturct)
Capsule dist(seg,pnt) dist(seg,seg) dist(seg,rct)
Lozenge dist(rct,pnt) dist(rct,seg) dist(rct,rct)

Adapted from 3D Game Engine Design © 2000 D. H. Eberly
See http://bit lyfieUad5 for second edition table of contents (TOC)

Computing &

Computer Graphics

Review [9]:
Method of Separating Axes

Table 6.7 Values for R, Ro, and R, for the separating axis test R > Ro + R) for two boxes in the
direction of motion.

L Ro R R

W x Ag aylez| + azlen| Tiobilener —cuem| Ao W x DI
Wox A apleta| + azlerg T2 o bilcoiots — cyo| 1Ay - W x D)
W x 4, agley| + aylog] Tiobilcae —cyml |Az- W x D
Wx By Ligalcnf—cifil bilfal + balBil W x D|
Wx B Ti,aleopr—cafl bolpal + balfl W x D|
Wx By TigailcioB = cibol bolBil -+ bilfol By- W x B

3D Game Engine Design © 2000 D. H. Eberly
See http://bitly/ieUgds for second edition table of contents (TOC)

Data Structures for Scenes [1]:
Four Tree Representations

® Scene Graphs
* Organized by how scene is constructed
* Nodes hold objects
® Constructive Solid Geometry (CSG) Trees
* Organized by how scene is constructed
* Leaves hold 3-D primitives
* Internal nodes hold set operations
® Binary Space Partitioning (BSP) Trees
* Organized by spatial relationships in scene
* Nodes hold facets (in 3-D, polygons)
® Quadtrees & Octrees
* Organized spatially
* Nodes represent regions in space
* Leaves hold objects

Adapted from slides ¥ 2004 G. G. Chappell, UAF
CS 481/681: Advanced Computer Graphics, Spring 2004, http://bit.lyleivvVc

Lecture 25 of 41

Data Structures for Scenes [3]:
Constructive Solid Geometry Trees

@ In Constructive Solid Geometry (CSG), we construct a scene out of
primitives representing solid 3-D shapes. Existing objects are
using set operations (union, intersection, set difference).

® We represent a scene as a binary tree.

Leaves hold primitives.

* Internal nodes, which always have two
children, hold set operations.

* Order of children matters!

® CSG trees are useful for things other than rendering.
* ion tests etc.) are not too hard. (Thus: ray tracing.)
® CSG does not integrate well with pipeline-based rendering, so we are not
covering it in depth right now.
#* How about a project on CSG?

Adapted from slides ¥ 2004 G. G. Chappell, UAF
CS 481/681: Advanced Computer Graphics, Spring 2004, http://bit.lyleivvVc

Acknowledgements:
Collisions, BSP/Quadtrees/Octrees

Steve Rotenberg

Visiting Lecturer

Graphics Lab = UCSD

University of California — San Diego
CEO/Chief Scientist, PixelActive
http://graphics.ucsd.edu

Glenn G. Chappell
Associate Professor UNIVERSITY OF
Department of Computer Science w ALASK

= AN

University of Alaska Fairbanks
http:/www.cs.uaf.edu/~chappell/

Computing &

omputer Gr

Data Structures for Scenes [2]:
Implementing Scene Graphs

® We think of scene graphs as looking like the tree on the left.
® However, it is often convenient to implement them as shown on the
right.
#* Implementation is a B-tree.
Child pointers are first-logical-child and next-logical-sibling.
#* Then traversing the logical tree is a simple pre-order traversal of the
physical tree. This is how we draw.

Logical Tree Physical Tree

Adapted from slides ¥ 2004 G. G. Chappell, UAF
CS 481/681: Advanced Computer Graphics, Spring 2004, http://bitly/eivvVe

Computing &

A to Computer Graphics

Binary Space Partitioning Trees [1]:
Idea

® BSP tree: very different way to represent a scene

* Nodes hold facets

* Structure of tree encodes spatial information about the scene
® Applications

* Visible Surface Determination (VSD) aka Hidden Surface

Removal
* Wikipedia: Visible Surface Determination , http://bit.ly/et2yNQ
* Related applications: portal rendering (http:/bit.ly/fYO5T6), etc.

Adapted from slides ¥ 2004 G. G. Chappell, UAF
CS 481/681: Advanced Computer Graphics, Spring 2004, http://bitly/eivvWe

o Computer Graphics

Binary Space Partitioning Trees [2]:
Definition

® BSP tree: type of binary tree
#* Nodes can have 0, 1, or two children
* Order of child nodes matters, and if a node has just 1 child, it
matters whether this is its left or right child
® Each node holds a facet
* This may be only part of a facet from original scene
* When constructing a BSP tree, we may need to split facets
® Organization
* Each facet lies in a unique plane
= In 2-D, a unique line
* For each facet, we choose one side of its plane to be “outside”
Other direction: “inside”
= This can be the side the normal vector points toward
* Rule: For each node
= Its left descendant subtree holds only facets “inside” it
= Its right descendant subtree holds only facets “outside” it

Adapted from slides ¥ 2004 G. G. Chappell, UAF
CS 481/681: Advanced Computer Graphics, Spring 2004, http://bit.lyleivvVc

Lecture 25 of 41

Binary Space Partitioning Trees [3]:
Construction

® To construct a BSP tree, we need
* List of facets (with vertices)
#* “Outside” direction for each

® Procedure

Begin with empty tree

* lterate through facets, adding new node to tree for each new facet

#* First facet goes in root node.

#* For each subsequent facet, descend through tree, going left or right
depending on whether facet lies inside or outside the facet stored in
relevant node

= If facet lies partially inside & partially outside, split it along plane [line]
of facet
= Facet becomes two “partial” facets
= Each inherits its “outside” direction from original facet
= Continue descending through tree with each partial facet separately
#* Finally, (partial) facet is added to current tree as leaf

Adapted from slides ¥ 2004 G. G. Chappell, UAF
CS 481/681: Advanced Computer Graphics, Spring 2004, http://bitly/eivvVe

Computing

Binary Space Partitioning Trees [4]:
Simple Example

® Suppose we are given the following (2-D) facets and >
“outside” directions:

N

® We iterate through the facets in numerical order
* Facet 1 becomes the root
* Facet 2 is inside of 1
#* Thus, after facet 2, we have the following BSP tree:

® Facet 3 is partially inside facet 1 and partially outside. e
#* We split facet 3 along the line containing facet 1
" 3a
#* The resulting facets are 3a and 3b - -o-|'—--- - 5
#* They inherit their “outside” directions from facet 3 1 3b

® We place facets 3a and 3b separately
* Facet 3a s inside facet 1 and outside facet 2
* Facet 3b is outside facet 1

® The final BSP tree looks like this:

Adapted from slides ¥ 2004 G. G. Chappell, UAF
CS 481/681: Advanced Computer Graphics, Spring 2004, http://bit.lyleivvVc

Lecture 25 of 41

Computer Graphics

BSP Tree Traversal [1]

® Important use of BSP trees: provide back-to-front (or front-to-back)
ordering of facets in scene, from point of view of observer
* When we say “back-to-front” ordering, we mean that no facet
comes before something that appears directly behind it
* This still allows nearby facets to precede those farther away
* Key idea: All descendants on one side of facet can come before
facet, which can come before all descendants on other side
® Procedure
* For each facet, determine on which side of it observer lies
* Back-to-front ordering: in-order traversal of tree where subtree
opposite from observer comes before subtree on same side

2 ©
— —3a —

Adapted from slides ¥ 2004 G. G. Chappell, UAF
CS 481/681: Advanced Computer Graphics, Spring 2004, http://bitly/eivvVe

Computing

BSP Tree Traversal [2]

® Procedure:
#* For each facet, determine on which side of it the observer lies.
#* Back-to-front ordering: Do an in-order traversal of the tree in which the
subtree opposite from the observer comes before the subtree on the same
side as the observer.

® Our observer is inside 1, outside 2, inside 3a, outside 3b.

o

® Resulting back-to-front ordering: 3b, 1, 2, 3a.
® |s this really back-to-front?

Adapted from slides ¥ 2004 G. G. Chappell, UAF
CS 481/681: Advanced Computer Graphics, Spring 2004, http://bit.lyleivvVc

Computer Graphics

BSP Trees:
What Are They Good For?

® BSP trees are primarily useful when a back-to-front
or front-to-back ordering is desired:
* For HSR
* For translucency via blending
® Since it can take some time to construct a BSP
tree, they are useful primarily for:
* Static scenes
#* Some dynamic objects are acceptable
® BSP-tree techniques are generally a waste of effort
for small scenes. We use them on:
* Large, complex scenes

Adapted from slides ¥ 2004 G. G. Chappell, UAF
CS 481/681: Advanced Computer Graphics, Spring 2004, http://bitly/eivvWe

Computing

Computer Graphics

e . BSP Trees:
BSP Tree Optimization Fin ding Inside/Outside [1]

® Order in which we iterate through the facets can matter a great deal ® When dealing with BSP trees, we need to determine inside or
* Consider our simple example again outside many times. What exactly does this mean?
* If we change the ordering, we can obtain a simpler BSP tree * A facet lies entirely on one side of a plane if all of its vertices lie
on that side.
s * Vertices are points. The position of the observer is also a point.
2 I—» —_— —_— * Thus, given a facet and a point, we need to be able to determine
’11_' 3 on which side of the facet’s plane the point lies.
® We assume we know the normal vector of the facet (and that
numbere. I it points toward the “outside”).

T2 * [f you are using vecpos.h, and three non-colinear vertices of
the facet are stored in pos variables p1, p2, p3, then you can
find the normal as follows.

\ 1 [7 * If not, compute the normal using a cross product.
3

® [f a scene is not going to change, and the BSP tree will be used
many times, then it may be worth a large amount of preprocessing A
time to find the best possible BSP tree vec n = cross(p2-pl, p3-pl).normalized();

Adapted from slides ¥ 2004 G. G. Chappell, UAF P > Adapted from slides ¥ 2004 G. G. Chappell, UAF
CS 481/681: Advanced Computer Graphics, Spring 2004, http://bit lyleivwVe U o CS 481/681: Advanced Computer Graphics, Spring 2004, http:/bitlyleivwe

o Computer Graphics

BSP Trees: BSP Trees:
Finding Inside/Outside [2] Splitting Polygons [1]

® To determine on which side of a facet’s plane a point lies:
4 potN be the normal vector of the facet @ May need to split facet when constructing BSP tree
Let p be a point in the facet’s plane
= Maybe p is a vertex of the facet? [] Example
: Letz be the point we want to check * Suppose we have the facet shown below.
Compute (z—p) - N
= If this is positive, then z is on the outside * If all vertices are (say) outside, then no split required

= Negative: inside * But if A, E, and F are outside (+), and B, C, and D are inside

_ =Zero:onthe plane .) (-), then we must split into two facets
® Using vecpos.h, and continuing from previous slide:

E + - D
pos z = ...; // point to check
if (dot(z-pl, n) >= 0.) . B
// Outside or on plane F c
else
// Inside
A+ - B

Adapted from slides ¥ 2004 G. G. Chappell, UAF - Adapted from slides ¥ 2004 G. G. Chappell, UAF
CS 481/681: Advanced Computer Graphics, Spring 2004, http://bit.lyleivvVc [(CS 481/681: Advanced Computer Graphics, Spring 2004, http://bitly/eivvVe

Lecture 25 of 41 Computing &

A to Computer Graphics

BSP Trees: = BSP Trees:
Splitting Polygons [2] Splitting Polygons [3]
® Where do we split? ® We were given vertices A, B, C, D, E, F in order
#* Since the expression (z — p) - N is positive at E and negative at D, it must ® We computed Sand T
be zero somewhere on the line segment joining D and E. Call this point .
S. This is one place where the facet splits. * S lies between D and E
* Let k, be the value of (z — p) - N at D, and let k, be the value at E. * T lies between A and B
* Then S = (1/(k, - k,)) (k,D — k,E). ® We have A, (splitatT), B, C, D, (splitatS), E, F

#* Point T (shown in the diagram) is computed similarly. ® We form two polygons as follows:

* Start through vertex list

® Usin .h (continuing from earlier slides):
ing vecpos (inuing ! !) * When we get to split, use that vertex, and skip to other split

obie K1 = dot(oot . : * Result: A, T, S,E, F E N
ouble = dot(D-pl, n); F * Do the same with the part we skipped
double k2 = dot(E-pl, n); * Result: B,C,D, S, T F c

pos S = affinecomb (k2, D, -kl, E);
// Explanation of above line?

Adapted from slides ¥ 2004 G. G. Chappell, UAF % Adapted from slides ¥ 2004 G. G. Chappell, UAF

CS 481/681: Advanced Computer Graphics, Spring 2004, http://bit.lyleivvVc :: [s CS 481/681: Advanced Computer Graphics, Spring 2004, http://bitly/eivvWe

o Computer Graphics

o
s

w
o

Quadtrees & Octrees [1]:
Background

® |dea of binary space partition: good general applicability
® Variations used in several different structures
* BSP trees (of course) {
= Split along planes containing facets M
* Quadtrees & octrees (next) T@
= Split along pre-defined planes. ’
* K-d trees (Lecture 28)

= Split along planes parallel to coordinate axes, so as to split
up the objects nicely.

= How about a project on K-d trees?
® Quadtrees used to partition 2-D space; octrees are for 3-D
* Two concepts are nearly identical
* Unfortunate that they are given different names

Wikipedia, Octree
hittpbit y/dVrthx.

Adapted from slides ¥ 2004 G. G. Chappell, UAF
CS 481/681: Advanced Computer Graphics, Spring 2004, http://bit.lyleivvVc

Quadtrees & Octrees [3]:
Example

® Root node of quadtree corresponds
to square region in space
* Generally, this encompasses A
entire “region of interest”

® [f desired, subdivide along lines
parallel to the coordinate axes, 0
forming four smaller identically

sized square regions
#* Child nodes correspond to these D .

® Some or all of these children may o
be subdivided further

® Octrees work in a similar fashion, Ha
but in 3-D, with cubical regions
subdivided into 8 parts

Adapted from slides ¥ 2004 G. G. Chappell, UAF
CS 481/681: Advanced Computer Graphics, Spring 2004, http://bit.lyleivvVc

Lecture 25 of 41

Summary

Reading for Last Class: §2.4.3, 8.1, Eberly 2¢, GL handout
Reading for Today: Chapter 6, Esp. §6.1, Eberly 2°
Reading for Next Class: Chapter 7, §8.4, Eberly 2¢

Last Time: Collision Detection Part 1 of 2

* Static vs. dynamic, testing vs. finding, distance vs. intersection
* Triangle point containment test
* Lots of intersections: spheres, capsules, lozenges
* Method of separating axes
® Today: Adaptive Spatial Partitioning
* Visible Surface Determination (VSD) revisited
* Constructive Solid Geometry (CSG) trees
* Binary Space Partitioning (BSP) trees
* Quadtrees: adaptive 2-D (planar) subdivision
* Octrees: adaptive 3-D (spatial) subdivision
® Coming Soon: Volume Graphics & Voxels

Computing

Lecture 25 of 41

Quadtrees & Octrees [2]:
Definition

® In general
* Quadtree: tree in which each node has at most 4 children
* Octree: tree in which each node has at most 8 children
* Binary tree: tree in which each node has at most 2 children
® In practice, however, we use “quadtree” and “octree” to mean
something more specific
* Each node of the tree corresponds to a square (quadtree) or
cubical (octree) region
* If a node has children, think of its region being chopped into 4
(quadtree) or 8 (octree) equal subregions
* Child nodes correspond to these smaller subregions of parent’s
region
* Subdivide as little or as much as is necessary
* Each internal node has exactly 4 (quadtree) or 8 (octree) children

Adapted from slides ¥ 2004 G. G. Chappell, UAF
CS 481/681: Advanced Computer Graphics, Spring 2004, http://bitly/eivvVe

o Computer Graphics

= Quadtrees & Octrees [4]:
What Are They Good For?

® Handling Observer-Object Interactions
Subdivide the quadtree/octree until each leaf’s region intersects only a
small number of objects
Each leaf holds a list of pointers to objects that intersect its region
#* Find out which leaf the observer is in. We only need to test for
interactions with the objects pointed to by that leaf
® Inside/Outside Tests for Odd Shapes
#* The root node represent a square containing the shape

#* If node’s region lies entirely inside or entirely outside shape, do not
subdivide it

#* Otherwise, do
exceeded)

#* Then the quadtree or octree contains information allowing us to check
quickly whether a given point is inside the shape

® Sparse Arrays of Spatially-Organized Data

#* Store array data in the quadtree or octree

Only subdivide if that region of space contains interesting data

#* This is how an octree is used in the BLUIsculpt program

(unless a pr depth limit has been

Adapted from slides ¥ 2004 G. G. Chappell, UAF
CS 481/681: Advanced Computer Graphics, Spring 2004, http://bitly/eivvVe

Computing &

A to Computer Graphics

Terminology

® Collision Detection

* Static vs. dynamic objects

* Queries: test-intersection vs. find-intersection

* Parametric methods:
® Bounding Objects

* Axis-aligned bounding box

* Oriented bounding box: can point in arbitrary direction

* Sphere

* Capsule

* Lozenge
® Constructive Solid Geometry Tree: Regularized Boolean Set Operators
® Adaptive Spatial Partitioning : Calculating Intersection, Visibility

* Binary Space Partitioning tree — 2-way decision tree/surface

* Quadtree — 4-way for 2-D =

* Octree — 8-way for 3-D ~

istance-based, intersection-based

Computing &

o Computer Graphics

