
Computing & Information Sciences
Kansas State University

CIS 536/636

Introduction to Computer Graphics
Lecture 25 of 41

William H. Hsu

Department of Computing and Information Sciences, KSU

KSOL course pages: http://bit.ly/hGvXlH / http://bit.ly/eVizrE

Public mirror web site: http://www.kddresearch.org/Courses/CIS636

Instructor home page: http://www.cis.ksu.edu/~bhsu

Readings:

Today: Chapter 6, esp. §6.1, Eberly 2e – see http://bit.ly/ieUq45

Next class: Chapter 7, §8.4, Eberly 2e

Wikipedia, Binary Space Partitioning : http://bit.ly/eE10lc

Wikipedia, Quadtree (http://bit.ly/ky0Xy) & Octree (http://bit.ly/dVrthx)

Spatial Sorting: Binary Space Partitioning
Quadtrees & Octrees

Lecture 25 of 41

Computing & Information Sciences
Kansas State University

2

CIS 536/636

Introduction to Computer Graphics
Lecture 25 of 41

 Reading for Last Class: §2.4.3, 8.1, Eberly 2e, GL handout

 Reading for Today: Chapter 6, Esp. §6.1, Eberly 2e

 Reading for Next Class: Chapter 7, §8.4, Eberly 2e

 Last Time: Collision Handling, Part 1 of 2

 Static vs. dynamic objects, testing vs. finding intersections

 Distance vs. intersection methods

 Triangle point containment test

 Method of separating axes

 Today: Adaptive Spatial Partitioning

 Visible Surface Determination (VSD) revisited

 Constructive Solid Geometry (CSG) trees

 Binary Space Partitioning (BSP) trees

 Quadtrees: adaptive 2-D (planar) subdivision

 Octrees: adaptive 3-D (spatial) subdivision

 Coming Soon: Volume Graphics & Voxels

Lecture Outline

Computing & Information Sciences
Kansas State University

3

CIS 536/636

Introduction to Computer Graphics
Lecture 25 of 41

Where We Are

Computing & Information Sciences
Kansas State University

4

CIS 536/636

Introduction to Computer Graphics
Lecture 25 of 41

Acknowledgements:
Intersections, Containment – Eberly 1e

3D Game Engine Design © 2000 D. H. Eberly
See http://bit.ly/ieUq45 for second edition table of contents (TOC)

Last lecture’s material:

 View Frustum clipping

 §2.4.3, p. 70 – 77, 2e

 §3.4.3, p. 93 – 99, & §3.7.2, p. 133 – 136, 1e

 Collision detection: separating axes

 §8.1, p. 393 – 443, 2e

 §6.4. p. 203 – 214, 1e

Later:

 Distance methods

 Chapter 14, p. 639 – 679, 2e

 §2.6, p. 38 – 77, 1e

 Intersection methods

 Chapter 15, p. 681 – 717, 2e

 §6.2 – 6.5, p. 188 – 243, 1e

David H. Eberly
Chief Technology Officer

Geometric Tools, LLC

http://www.geometrictools.com

http://bit.ly/enKbfs

Computing & Information Sciences
Kansas State University

5

CIS 536/636

Introduction to Computer Graphics
Lecture 25 of 41

Review [1]:
View Frustum Clipping

3D Game Engine Design © 2000 D. H. Eberly
See http://bit.ly/ieUq45 for second edition table of contents (TOC)

Computing & Information Sciences
Kansas State University

6

CIS 536/636

Introduction to Computer Graphics
Lecture 25 of 41

Review [2]:
Collision Detection vs. Response

Adapted from slides 2004 – 2005 S. Rotenberg, UCSD
CSE169: Computer Animation, Winter 2005 , http://bit.ly/f0ViAN

Computing & Information Sciences
Kansas State University

7

CIS 536/636

Introduction to Computer Graphics
Lecture 25 of 41

Review [3]:
Queries – Test- vs. Find-Intersection

Adapted from 3D Game Engine Design © 2000 D. H. Eberly
See http://bit.ly/ieUq45 for second edition table of contents (TOC)

 Test-Intersection: Determine If Objects Intersect

 Static: test whether they do at given instant

 Dynamic: test whether they intersect at any point along trajectories

 Find-Intersection: Determine Intersection (or Contact) Set of Objects

 Static: intersection set (compare: A B)

 Dynamic: contact time (interval of overlap), sets (depends on time)

Computing & Information Sciences
Kansas State University

8

CIS 536/636

Introduction to Computer Graphics
Lecture 25 of 41

Review [4]:
Queries – Distance vs. Intersection

Adapted from 3D Game Engine Design © 2000 D. H. Eberly
See http://bit.ly/ieUq45 for second edition table of contents (TOC)

 Distance-Based

 Parametric representation of object boundaries/interiors

 Want: closest points on two objects (to see whether they intersect)

 Use: constrained minimization to solve for closest points

 Intersection-Based

 Also uses parametric representation

 Want: overlapping subset of interior of two objects

 General approach: equate objects, solve for parameters

 Use one of two kinds of solution methods

 Analytical (when feasible to solve exactly – e.g., OBBs)

 Numerical (approximate region of overlap)

 Solving for parameters in equation

 Harder to compute than distance-based; use only when needed

Computing & Information Sciences
Kansas State University

9

CIS 536/636

Introduction to Computer Graphics
Lecture 25 of 41

Review [5]:
Segment vs. Triangle – Solution

Adapted from slides 2004 – 2005 S. Rotenberg, UCSD
CSE169: Computer Animation, Winter 2005 , http://bit.ly/f0ViAN

Computing & Information Sciences
Kansas State University

10

CIS 536/636

Introduction to Computer Graphics
Lecture 25 of 41

Review [6]:
Segment vs. Triangle – Point Test

Adapted from slides 2004 – 2005 S. Rotenberg, UCSD
CSE169: Computer Animation, Winter 2005 , http://bit.ly/f0ViAN

Computing & Information Sciences
Kansas State University

11

CIS 536/636

Introduction to Computer Graphics
Lecture 25 of 41

Review [7]:
Faster Triangle – Point Containment

Adapted from slides 2004 – 2005 S. Rotenberg, UCSD
CSE169: Computer Animation, Winter 2005 , http://bit.ly/f0ViAN

Computing & Information Sciences
Kansas State University

12

CIS 536/636

Introduction to Computer Graphics
Lecture 25 of 41

Review [8]:
Sphere-Swept Volumes & Distances

Adapted from 3D Game Engine Design © 2000 D. H. Eberly
See http://bit.ly/ieUq45 for second edition table of contents (TOC)

Capsule
Image © 2007 Remotion Wiki

http://bit.ly/huEzNW

Wikipedia: Sphere
http://bit.ly/9OWjQi

Image © 2008 ClipArtOf.com
http://bit.ly/eKhE2f

Lozenge
Image © 2011 Jasmin Studio Crafts

http://bit.ly/euEopw

Computing & Information Sciences
Kansas State University

13

CIS 536/636

Introduction to Computer Graphics
Lecture 25 of 41

Review [9]:
Method of Separating Axes

3D Game Engine Design © 2000 D. H. Eberly
See http://bit.ly/ieUq45 for second edition table of contents (TOC)

Computing & Information Sciences
Kansas State University

14

CIS 536/636

Introduction to Computer Graphics
Lecture 25 of 41

Steve Rotenberg
Visiting Lecturer

Graphics Lab

University of California – San Diego

CEO/Chief Scientist, PixelActive

http://graphics.ucsd.edu

Acknowledgements:
Collisions, BSP/Quadtrees/Octrees

Glenn G. Chappell
Associate Professor

Department of Computer Science

University of Alaska Fairbanks

http://www.cs.uaf.edu/~chappell/

Computing & Information Sciences
Kansas State University

15

CIS 536/636

Introduction to Computer Graphics
Lecture 25 of 41

 Scene Graphs

 Organized by how scene is constructed

 Nodes hold objects

 Constructive Solid Geometry (CSG) Trees

 Organized by how scene is constructed

 Leaves hold 3-D primitives

 Internal nodes hold set operations

 Binary Space Partitioning (BSP) Trees

 Organized by spatial relationships in scene

 Nodes hold facets (in 3-D, polygons)

 Quadtrees & Octrees

 Organized spatially

 Nodes represent regions in space

 Leaves hold objects

Data Structures for Scenes [1]:
Four Tree Representations

Adapted from slides 2004 G. G. Chappell, UAF
CS 481/681: Advanced Computer Graphics, Spring 2004, http://bit.ly/eivvVc

Computing & Information Sciences
Kansas State University

16

CIS 536/636

Introduction to Computer Graphics
Lecture 25 of 41

 We think of scene graphs as looking like the tree on the left.

 However, it is often convenient to implement them as shown on the
right.

 Implementation is a B-tree.

 Child pointers are first-logical-child and next-logical-sibling.

 Then traversing the logical tree is a simple pre-order traversal of the
physical tree. This is how we draw.

Logical Tree Physical Tree

Data Structures for Scenes [2]:
Implementing Scene Graphs

Adapted from slides 2004 G. G. Chappell, UAF
CS 481/681: Advanced Computer Graphics, Spring 2004, http://bit.ly/eivvVc

Computing & Information Sciences
Kansas State University

17

CIS 536/636

Introduction to Computer Graphics
Lecture 25 of 41

 In Constructive Solid Geometry (CSG), we construct a scene out of
primitives representing solid 3-D shapes. Existing objects are combined
using set operations (union, intersection, set difference).

 We represent a scene as a binary tree.
 Leaves hold primitives.
 Internal nodes, which always have two

children, hold set operations.

 Order of children matters!

 CSG trees are useful for things other than rendering.
 Intersection tests (collision detection, etc.) are not too hard. (Thus: ray tracing.)

 CSG does not integrate well with pipeline-based rendering, so we are not
covering it in depth right now.
 How about a project on CSG?

U

U U

∩ – sphere sphere

cube cone sphere cube

Data Structures for Scenes [3]:
Constructive Solid Geometry Trees

Adapted from slides 2004 G. G. Chappell, UAF
CS 481/681: Advanced Computer Graphics, Spring 2004, http://bit.ly/eivvVc

Computing & Information Sciences
Kansas State University

18

CIS 536/636

Introduction to Computer Graphics
Lecture 25 of 41

 BSP tree: very different way to represent a scene

 Nodes hold facets

 Structure of tree encodes spatial information about the scene

 Applications

 Visible Surface Determination (VSD) aka Hidden Surface
Removal

 Wikipedia: Visible Surface Determination , http://bit.ly/et2yNQ

 Related applications: portal rendering (http://bit.ly/fYO5T6), etc.

Binary Space Partitioning Trees [1]:
Idea

Adapted from slides 2004 G. G. Chappell, UAF
CS 481/681: Advanced Computer Graphics, Spring 2004, http://bit.ly/eivvVc

Computing & Information Sciences
Kansas State University

19

CIS 536/636

Introduction to Computer Graphics
Lecture 25 of 41

 BSP tree: type of binary tree
 Nodes can have 0, 1, or two children

 Order of child nodes matters, and if a node has just 1 child, it
matters whether this is its left or right child

 Each node holds a facet
 This may be only part of a facet from original scene

 When constructing a BSP tree, we may need to split facets

 Organization
 Each facet lies in a unique plane

 In 2-D, a unique line

 For each facet, we choose one side of its plane to be “outside”
Other direction: “inside”
 This can be the side the normal vector points toward

 Rule: For each node
 Its left descendant subtree holds only facets “inside” it

 Its right descendant subtree holds only facets “outside” it

Binary Space Partitioning Trees [2]:
Definition

Adapted from slides 2004 G. G. Chappell, UAF
CS 481/681: Advanced Computer Graphics, Spring 2004, http://bit.ly/eivvVc

Computing & Information Sciences
Kansas State University

20

CIS 536/636

Introduction to Computer Graphics
Lecture 25 of 41

 To construct a BSP tree, we need

 List of facets (with vertices)

 “Outside” direction for each

 Procedure

 Begin with empty tree

 Iterate through facets, adding new node to tree for each new facet

 First facet goes in root node.

 For each subsequent facet, descend through tree, going left or right
depending on whether facet lies inside or outside the facet stored in
relevant node

 If facet lies partially inside & partially outside, split it along plane [line]
of facet

 Facet becomes two “partial” facets

 Each inherits its “outside” direction from original facet

 Continue descending through tree with each partial facet separately

 Finally, (partial) facet is added to current tree as leaf

Binary Space Partitioning Trees [3]:
Construction

Adapted from slides 2004 G. G. Chappell, UAF
CS 481/681: Advanced Computer Graphics, Spring 2004, http://bit.ly/eivvVc

Computing & Information Sciences
Kansas State University

21

CIS 536/636

Introduction to Computer Graphics
Lecture 25 of 41

 Suppose we are given the following (2-D) facets and
“outside” directions:

 We iterate through the facets in numerical order
 Facet 1 becomes the root

 Facet 2 is inside of 1
 Thus, after facet 2, we have the following BSP tree:

 Facet 3 is partially inside facet 1 and partially outside.
 We split facet 3 along the line containing facet 1

 The resulting facets are 3a and 3b

 They inherit their “outside” directions from facet 3

 We place facets 3a and 3b separately
 Facet 3a is inside facet 1 and outside facet 2
 Facet 3b is outside facet 1

 The final BSP tree looks like this:

1

2

3

1

2

1

2 3b

3a

3b

3a

1

2

Binary Space Partitioning Trees [4]:
Simple Example

Adapted from slides 2004 G. G. Chappell, UAF
CS 481/681: Advanced Computer Graphics, Spring 2004, http://bit.ly/eivvVc

Computing & Information Sciences
Kansas State University

22

CIS 536/636

Introduction to Computer Graphics
Lecture 25 of 41

 Important use of BSP trees: provide back-to-front (or front-to-back)
ordering of facets in scene, from point of view of observer

 When we say “back-to-front” ordering, we mean that no facet
comes before something that appears directly behind it

 This still allows nearby facets to precede those farther away

 Key idea: All descendants on one side of facet can come before
facet, which can come before all descendants on other side

 Procedure

 For each facet, determine on which side of it observer lies

 Back-to-front ordering: in-order traversal of tree where subtree
opposite from observer comes before subtree on same side

3b

3a

BSP Tree Traversal [1]

Adapted from slides 2004 G. G. Chappell, UAF
CS 481/681: Advanced Computer Graphics, Spring 2004, http://bit.ly/eivvVc

2

1

Computing & Information Sciences
Kansas State University

23

CIS 536/636

Introduction to Computer Graphics
Lecture 25 of 41

1

 Procedure:
 For each facet, determine on which side of it the observer lies.

 Back-to-front ordering: Do an in-order traversal of the tree in which the
subtree opposite from the observer comes before the subtree on the same
side as the observer.

 Our observer is inside 1, outside 2, inside 3a, outside 3b.

 Resulting back-to-front ordering: 3b, 1, 2, 3a.
 Is this really back-to-front?

3b

3a

BSP Tree Traversal [2]

Adapted from slides 2004 G. G. Chappell, UAF
CS 481/681: Advanced Computer Graphics, Spring 2004, http://bit.ly/eivvVc

3b

3a
2 2

1

Computing & Information Sciences
Kansas State University

24

CIS 536/636

Introduction to Computer Graphics
Lecture 25 of 41

 BSP trees are primarily useful when a back-to-front
or front-to-back ordering is desired:
 For HSR

 For translucency via blending

 Since it can take some time to construct a BSP
tree, they are useful primarily for:
 Static scenes

 Some dynamic objects are acceptable

 BSP-tree techniques are generally a waste of effort
for small scenes. We use them on:
 Large, complex scenes

BSP Trees:
What Are They Good For?

Adapted from slides 2004 G. G. Chappell, UAF
CS 481/681: Advanced Computer Graphics, Spring 2004, http://bit.ly/eivvVc

Computing & Information Sciences
Kansas State University

25

CIS 536/636

Introduction to Computer Graphics
Lecture 25 of 41

 Order in which we iterate through the facets can matter a great deal

 Consider our simple example again
 If we change the ordering, we can obtain a simpler BSP tree

 If a scene is not going to change, and the BSP tree will be used
many times, then it may be worth a large amount of preprocessing
time to find the best possible BSP tree

1

2

3

1

2 3b

3a
1

2

3b

3a

2

1

32

1

3

numbers
reversed

BSP Tree Optimization

Adapted from slides 2004 G. G. Chappell, UAF
CS 481/681: Advanced Computer Graphics, Spring 2004, http://bit.ly/eivvVc

Computing & Information Sciences
Kansas State University

26

CIS 536/636

Introduction to Computer Graphics
Lecture 25 of 41

 When dealing with BSP trees, we need to determine inside or
outside many times. What exactly does this mean?
 A facet lies entirely on one side of a plane if all of its vertices lie

on that side.
 Vertices are points. The position of the observer is also a point.

 Thus, given a facet and a point, we need to be able to determine
on which side of the facet ’s plane the point lies.

 We assume we know the normal vector of the facet (and that
it points toward the “outside”).
 If not, compute the normal using a cross product.
 If you are using vecpos.h, and three non-colinear vertices of

the facet are stored in pos variables p1, p2, p3, then you can
find the normal as follows.

vec n = cross(p2-p1, p3-p1).normalized();

Adapted from slides 2004 G. G. Chappell, UAF
CS 481/681: Advanced Computer Graphics, Spring 2004, http://bit.ly/eivvVc

BSP Trees:
Finding Inside/Outside [1]

Computing & Information Sciences
Kansas State University

27

CIS 536/636

Introduction to Computer Graphics
Lecture 25 of 41

 To determine on which side of a facet ’s plane a point lies:
 Let N be the normal vector of the facet

 Let p be a point in the facet ’s plane

 Maybe p is a vertex of the facet?

 Let z be the point we want to check

 Compute (z – p) · N

 If this is positive, then z is on the outside

 Negative: inside

 Zero: on the plane

 Using vecpos.h, and continuing from previous slide:

pos z = …; // point to check

if (dot(z-p1, n) >= 0.)

 // Outside or on plane

else

 // Inside

Adapted from slides 2004 G. G. Chappell, UAF
CS 481/681: Advanced Computer Graphics, Spring 2004, http://bit.ly/eivvVc

BSP Trees:
Finding Inside/Outside [2]

Computing & Information Sciences
Kansas State University

28

CIS 536/636

Introduction to Computer Graphics
Lecture 25 of 41

 May need to split facet when constructing BSP tree

 Example
 Suppose we have the facet shown below.

 If all vertices are (say) outside, then no split required

 But if A, E, and F are outside (+), and B, C, and D are inside
(–), then we must split into two facets

A B

C

DE

F

–+

+ –

+ –

BSP Trees:
Splitting Polygons [1]

Adapted from slides 2004 G. G. Chappell, UAF
CS 481/681: Advanced Computer Graphics, Spring 2004, http://bit.ly/eivvVc

Computing & Information Sciences
Kansas State University

29

CIS 536/636

Introduction to Computer Graphics
Lecture 25 of 41

S

T

 Where do we split?
 Since the expression (z – p) · N is positive at E and negative at D, it must

be zero somewhere on the line segment joining D and E. Call this point
S. This is one place where the facet splits.

 Let k1 be the value of (z – p) · N at D, and let k2 be the value at E.

 Then S = (1/(k2 – k1)) (k2D – k1E).

 Point T (shown in the diagram) is computed similarly.

 Using vecpos.h (continuing from earlier slides):

double k1 = dot(D-p1, n);

double k2 = dot(E-p1, n);

pos S = affinecomb(k2, D, -k1, E);

// Explanation of above line?
A B

C

DE

F

–+

+ –

+
–

BSP Trees:
Splitting Polygons [2]

Adapted from slides 2004 G. G. Chappell, UAF
CS 481/681: Advanced Computer Graphics, Spring 2004, http://bit.ly/eivvVc

Computing & Information Sciences
Kansas State University

30

CIS 536/636

Introduction to Computer Graphics
Lecture 25 of 41

 We were given vertices A, B, C, D, E, F in order

 We computed S and T

 S lies between D and E

 T lies between A and B

 We have A, (split at T), B, C, D, (split at S), E, F

 We form two polygons as follows:

 Start through vertex list

 When we get to split, use that vertex, and skip to other split

 Result: A, T, S, E, F

 Do the same with the part we skipped

 Result: B, C, D, S, T

A B

C

DE

F

BSP Trees:
Splitting Polygons [3]

T

S

Adapted from slides 2004 G. G. Chappell, UAF
CS 481/681: Advanced Computer Graphics, Spring 2004, http://bit.ly/eivvVc

Computing & Information Sciences
Kansas State University

31

CIS 536/636

Introduction to Computer Graphics
Lecture 25 of 41

 Idea of binary space partition: good general applicability

 Variations used in several different structures

 BSP trees (of course)

Split along planes containing facets

 Quadtrees & octrees (next)

Split along pre-defined planes.

 K-d trees (Lecture 28)

Split along planes parallel to coordinate axes, so as to split
up the objects nicely.

How about a project on K-d trees?

 Quadtrees used to partition 2-D space; octrees are for 3-D

 Two concepts are nearly identical

 Unfortunate that they are given different names

Quadtrees & Octrees [1]:
Background

Adapted from slides 2004 G. G. Chappell, UAF
CS 481/681: Advanced Computer Graphics, Spring 2004, http://bit.ly/eivvVc

Wikipedia, Octree
http://bit.ly/dVrthx

Computing & Information Sciences
Kansas State University

32

CIS 536/636

Introduction to Computer Graphics
Lecture 25 of 41

 In general

 Quadtree: tree in which each node has at most 4 children

 Octree: tree in which each node has at most 8 children

 Binary tree: tree in which each node has at most 2 children

 In practice, however, we use “quadtree” and “octree” to mean
something more specific

 Each node of the tree corresponds to a square (quadtree) or
cubical (octree) region

 If a node has children, think of its region being chopped into 4
(quadtree) or 8 (octree) equal subregions

 Child nodes correspond to these smaller subregions of parent’s
region

 Subdivide as little or as much as is necessary

 Each internal node has exactly 4 (quadtree) or 8 (octree) children

Adapted from slides 2004 G. G. Chappell, UAF
CS 481/681: Advanced Computer Graphics, Spring 2004, http://bit.ly/eivvVc

Quadtrees & Octrees [2]:
Definition

Computing & Information Sciences
Kansas State University

33

CIS 536/636

Introduction to Computer Graphics
Lecture 25 of 41

EDCB

 Root node of quadtree corresponds
to square region in space
 Generally, this encompasses

entire “region of interest”

 If desired, subdivide along lines
parallel to the coordinate axes,
forming four smaller identically
sized square regions
 Child nodes correspond to these

 Some or all of these children may
be subdivided further

 Octrees work in a similar fashion,
but in 3-D, with cubical regions
subdivided into 8 parts

A

GF H I

A

B C

D E
F G

H I

A

A

B C

D E

Quadtrees & Octrees [3]:
Example

EDCB

A

Adapted from slides 2004 G. G. Chappell, UAF
CS 481/681: Advanced Computer Graphics, Spring 2004, http://bit.ly/eivvVc

Computing & Information Sciences
Kansas State University

34

CIS 536/636

Introduction to Computer Graphics
Lecture 25 of 41

 Handling Observer-Object Interactions
 Subdivide the quadtree/octree until each leaf’s region intersects only a

small number of objects

 Each leaf holds a list of pointers to objects that intersect its region

 Find out which leaf the observer is in. We only need to test for
interactions with the objects pointed to by that leaf

 Inside/Outside Tests for Odd Shapes
 The root node represent a square containing the shape

 If node’s region lies entirely inside or entirely outside shape, do not
subdivide it

 Otherwise, do subdivide (unless a predefined depth limit has been
exceeded)

 Then the quadtree or octree contains information allowing us to check
quickly whether a given point is inside the shape

 Sparse Arrays of Spatially-Organized Data
 Store array data in the quadtree or octree

 Only subdivide if that region of space contains interesting data

 This is how an octree is used in the BLUIsculpt program

Adapted from slides 2004 G. G. Chappell, UAF
CS 481/681: Advanced Computer Graphics, Spring 2004, http://bit.ly/eivvVc

Quadtrees & Octrees [4]:
What Are They Good For?

Computing & Information Sciences
Kansas State University

35

CIS 536/636

Introduction to Computer Graphics
Lecture 25 of 41

Summary

 Reading for Last Class: §2.4.3, 8.1, Eberly 2e, GL handout

 Reading for Today: Chapter 6, Esp. §6.1, Eberly 2e

 Reading for Next Class: Chapter 7, §8.4, Eberly 2e

 Last Time: Collision Detection Part 1 of 2

 Static vs. dynamic, testing vs. finding, distance vs. intersection

 Triangle point containment test

 Lots of intersections: spheres, capsules, lozenges

 Method of separating axes

 Today: Adaptive Spatial Partitioning

 Visible Surface Determination (VSD) revisited

 Constructive Solid Geometry (CSG) trees

 Binary Space Partitioning (BSP) trees

 Quadtrees: adaptive 2-D (planar) subdivision

 Octrees: adaptive 3-D (spatial) subdivision

 Coming Soon: Volume Graphics & Voxels

Computing & Information Sciences
Kansas State University

36

CIS 536/636

Introduction to Computer Graphics
Lecture 25 of 41

Terminology

 Collision Detection

 Static vs. dynamic objects

 Queries: test-intersection vs. find-intersection

 Parametric methods: distance-based, intersection-based

 Bounding Objects

 Axis-aligned bounding box

 Oriented bounding box: can point in arbitrary direction

 Sphere

 Capsule

 Lozenge

 Constructive Solid Geometry Tree: Regularized Boolean Set Operators

 Adaptive Spatial Partitioning : Calculating Intersection, Visibility

 Binary Space Partitioning tree – 2-way decision tree/surface

 Quadtree – 4-way for 2-D

 Octree – 8-way for 3-D

