[

Lecture 31of 41

Ray Tracing, Part 1 of 2:
Intersections, Ray Trees & Recursion

William H. Hsu

Department of Computing and Information Sciences, KSU

KSOL course pages: http:/bit.ly/hGvXIH / http://bit.ly/eVizrE
Public mirror web site: http://www.kddresearch.org/Courses/CIS636
Instructor home page: http://www.cis.ksu.edu/~bhsu

Readings:
Last class: §5.3, Eberly 2e— see http://bit.ly/ieUq45; CGA Handout
Today: Chapter 14, Eberly 2¢
Next class: Ray Tracing Handout
Reference — Wikipedia, Ray Tracing: http://bit.ly/dV7INm
Reference — ACM Ray Tracing News: http://bit.ly/fqyZNQ

Computing

Where We Are

Lab 4a: Animation Basics Flash animation handout

Animation 2: Rotations; Dynamics, Kinematics | Chapter 17, esp §17.1-17.2

Demos 4. Modeling & Simulation; Rotations Chapter 10", 13, §17.3- 175
Collisions 1: axes, OBBs, Lab 4b §2.4.3, 8.1, GL handout

Chapter &, esp §6.1

26 Chapter 7% § 8.4
27 Lab 5a: Interaction Handling 8.3-8.4;4.2,5.0,66,9.1
28 Collisions 2: Dynamic, Parficle Syslems 9. iem handout

Exam 2 revie our Exam 2 (evening) :hﬂElEI’S 5-6.7-8,12,17
29 b 5b: Particle Systems. Particle system handout

Control & IK CGA handout

Lab 6a: Ray Tracing Basics

Chapter 15, RT handout

33 Ray Tracing 2: advanced survey
34 Visualization 1: Data (Quantities & Evidence) Tufte handout (1)
35 Lab 6b: More Ray Tracing RT handout
36 Visualization 2. Objecls Tufte handout (2
37 Color Basics, Term Project Prep Color handout
38 Lab 7. Fractals & Terrain T Fractals/Terrain handout
39 Visualization 3: Processes; Final Review 1 Tufie handout (3)
40 Project p 1, Final Review 2
a1 Project 2 =
Final Exam Ch.1-8, 10-15,17. 20

Lightly-shaded entries denote the due date of a written problem set. hieavily-shaded enfries that of a
machine problem (programming assignment); bilie-shaded eniies, that of a paper review; and the green-
shaded entry, that of the term project

Green, blue and red letters denote exam review, exam, and exam solution review dates.

Computing &

Review [1]:
Kinematics & Degrees of Freedom

Adapted from slides v 2000 — 2005 D. Brogan, University of Virginia
CS 551, Advanced CG & Animation - http://bitly/hUXrad

Lecture Outline

Reading for Last Class: §5.3, Eberly 2¢; CGA Handout
Reading for Today: Chapter 14, Eberly 2¢
Reading for Next Class: Ray Tracing Handout
Last Time: Animation Part 3 of 3 — Inverse Kinematics
* FK vs. IK
* K
» Autonomous agents vs. hand-animated movement
> Analytical vs. iterative solutions
* Rag doll physics, rigid-body dynamics, physically-based models
® End of Material on: Particle Systems, Collisions, CGA, PBM
® Today: Ray Tracing, Part 1 of 2
* Vectors: Light/shadow (L), Refl d (R), Transmitted/refracted (T)
* Basic recursive ray tracing: ray trees
® Next Class: Ray Tracing Lab

Computin

Computer Graphics

Acknowledgements:
Inverse Kinematics, Ray Tracing

David C. Brogan
Visiting Assistant Professor, Computer Science Department, University of Virginia
http://lwww.cs.virginia.edu/~dbrogan/
Susquehanna International Group (SIG)
http://www.sig.com

§iis Computer Science
L e BRI VinGEA

Renata Melamud

Ph.D. Candidate

Mechanical Engineering Department
Stanford University

STANFORD
MECHANICAL
ENGINEERING

tanford.

Dave Shreiner & Brad Grantham
Adjunct Professor & Adjunct Lecturer,

Santa Clara University

ARM Holdings, plc
http://www.plunk.org/~shreiner/
http://www.plunk.org/~grantham/

Review [2]:
Joint Types

Revolute Joint
1 DOF (Variable - Y)

Prismatic Joint
1 DOF (linear) (Variables - d)

~— Spherical Joint
3 DOF (Variables - Y}, Y. Y3)

Adapted from slides ¥ 2002 R. Melamud, Stanford University

Mirrored at CMU 16-311 ion to Robotics,

to Computer Graphics

’ Forward Kinematics:
Joint Angles to Bone Coordinates

= We will use the vector:

(D:[¢1 ¢ - ¢.\/]

to represent the array of M joint DOF values
We will also use the vector:

= e o

to represent an array of N DOFs that describe the end
effector in world space. For example, if our end effector
is a full joint with orientation, e would contain 6 DOFs: 3
translations and 3 rotations. If we were only concerned
with the end effector position, e would just contain the 3
translations.

Adapted from slides ¥ 2004 — 2005 S. Rotenberg, UCSD
CSE169: Computer Animation, Winter 2005 — http://bit.ly/fOViAN

= UCSD

Review [3]:
Forward Kinematics

End Effector

Base

x=0) e=f(®)

Choi Rotenberg

Adapted from slides ¥ 2002 K. J. Choi, Seoul National University
Graphics and Media Lab (ics.snu.ac.kr) - mirrored at: http://bit

Review [4]:
Inverse Kinematics

For more on characters & IK, see:
Advanced Topics in CG Lecture 05

End Effector

Base
0=1'® ®=1"(e)

Adapted from slides ¥ 2002 K. J. Choi, Seoul National University
Graphics and Media Lab (ics.snu.ac.kr) — mirrored at: http://bit

Lecture 31 of 41

Review [S]:
Inverse Kinematics Demos

tration in Maya

©2008 M. Kinzelman ©2007 A. Brown

Homentumbased nverse Kinemats with Motin Capture PUNA robot playing goit

©2008 T. Komura, H. S. Lim, & R. W. H. Lau ©2011 K. Iyer
hitp:/youtu be/FJTBMnPGoCM i

wputer Graphics

Inverse Kinematics:
Issues

= |[Kis challenging because while f() may be
relatively easy to evaluate, f-'() usually isn’'t

= Forone thing, there may be several possible
solutions for @, or there may be no solutions

= Even if there is a solution, it may require
complex and expensive computations to find it

= As a result, there are many different approaches
to solving IK problems

Adapted from slides ¥ 2004 - 2005 S. Rotenberg, UCSD
CSE169: Computer Animation, Winter 2005 — http://bit.ly/fOViAN

=< UCSD

Review [6]:
Ragdoll Physics

® Type of Procedural Animation
* Automatically generates CGA directives (rotations)
* Based on simulation .
* Rigid-body dynamics

® Articulated Figure
* Gravity
* No autonomous movement
* Used for inert body

> Usually: character death (car impact, falling body, etc.)

Falling Bodies © 1997 - 2001 Animats
bitp:liwwwanimats.com

> Less often: unconscious, paralyzed character
® Collisions with Multiple Bodies
* Inter-character
* Character-object

wputer Graphics

Review [7]:
Ragdoll Physics Demos

3ds max 8 Ragdoll Physics Tost

©2007 N. Picouet ©2006 P. Pelt

hitp/youtu be/6.JdLOL azLJ0
See also: htp:/iyoutu.bel5_Qisi0fyal

1y i Ragdol (OpenSimuator Nja/ODE Physics) OSgridorg Ragdol Demo (Python + ODE)

2009 M. E. Cerquoni ©2010 M. Heinzen (Arkacin)
hitp:liyoutu.be/uW_DK2avKv8 . 1 hitp:

Review [8}:
Physically-Based Modeling (PBM)

® Particle Dynamics
* Emitters
» 0-D (points), 1-D (lines), 2-D (planes, discs, cross-sections)
» e.g., fireworks (0-D); fountains (0/1/2-D); smokestacks, jets (2-D)
* Simulation: birth-death process, functions of particle age/trajectory
® Rigid-Body Dynamics
* Constrained systems of connected parts
* Examples: falling rocks, colliding vehicles, rag dolls
® Articulated Figures: Primarily IK

Rocks fall

® More References Everyone dies

* ACM, Intro to Physically-Based Modeling : http://bit.ly/hhQvXd
* Wikipedia, Physics Engine: http://bit.ly/h4PIRt
* Wikipedia, N-Body Problem: http://bit.ly/1ayWwe

® PBM System: nVidia (Ageia) PhysX: http://bit.ly/cp7bnA

Ray Tracing [1]:
Overview
® Whatis it?
® Why use it?
® Basics
® Advanced topics
©® References

© 2006 - 2007 H. Kuijpers,
Capgemini Netherlands
bitp:/bitlylerkKeC.

Adapted from slides ¥ 2001 D. Shreiner & B. Grantham, SCU m
COEN 290: Computer Graphics |, Winter 2001 — http://bit.ly/hz1kfU

Computer Graphics

Ray Tracing [2]:
Why Use [t?

Simulate rays of light
® Produces natural lighting effects

Hard to simulate effects with rasterization techniques (OpenGL)
Rasterizers require many passes
Ray-tracing easier to implement

Adapted from slides ¥ 2001 D. Shreiner & B. Grantham, SCU
COEN 290: Computer Graphics |, Winter 2001 — http://bit.y/hz1kfU

Ray Tracing [3]:
Who Uses It?

® Entertainment (Movies, Commercials)
® Games pre-production
® Simulation

Adapted from slides ¥ 2001 D. Shreiner & B. Grantham, SCU
COEN 290: Computer Graphics |, Winter 2001 - http://bit.ly/hz1kfU

Computer Graphics

Ray Tracing [4]:
Brief History

® Decartes, 1637 A.D. - analysis of rainbow

® Arthur Appel, 1968 - used for lighting 3D models

® Turner Whitted, 1980 - “An Improved lllumination Model for
Shaded Display” really kicked everyone off.

® 1980-now - Lots of research

Adapted from slides ¥ 2001 D. Shreiner & B. Grantham, SCU
COEN 290: Computer Graphics |, Winter 2001 — http:/bit.y/hz1kfU

Computer Graphics

Ray Tracing [5]:
Basic Operations

Generating Rays
Intersecting Rays with Scene
Lighting

Shadowing

Reflections

Adapted from slides ¥ 2001 D. Shreiner & B. Grantham, SCU
COEN 290: Computer Graphics |, Winter 2001 — http://bit.ly/hz1kfU

Ray Tracing [e]:
Basic Idea

® Simulate light rays from light source to eye

Evey, Light

oy Ing;,
¢ oted den t ray

ret

Surface

Adapted from slides ¥ 2001 D. Shreiner & B. Grantham, SCU
COEN 290: Computer Graphics |, Winter 2001 — http://bit.y/hz1kfU

%@ “Forward’ Ray Tracing

® Trace rays from light
® |ots of work for little return

Light

Image Light Rays
Plane

Eye<‘

Object

Adapted from slides ¥ 2001 D. Shreiner & B. Grantham, SCU m
COEN 290: Computer Graphics |, Winter 2001 — http://bit.ly/hz1kfU

%{2 Ray: Parametric Form

® Ray expressed as function of a single parameter (“t”)

P
<X, Y, 2> = <Xy Yoy Zo> + t* <X, Ya, 24>
~
<X, Y, 2> =1, iy

~ N
4= <Xq, Yo, Za>

To = <Xo, Yo; Zo>

Adapted from slides ¥ 2001 D. Shreiner & B. Grantham, SCU
COEN 290: Computer Graphics |, Winter 2001 - http://bit.ly/hz1kfU

Computer Graphics

%{:}" “Backward” Ray Tracing

® Trace rays from eye instead
® Do work where it matters

Light
Image '9

Plane

Eye 4

Object

This is what most people mean by “ray tracing”.

Adapted from slides ¥ 2001 D. Shreiner & B. Grantham, SCU m —
COEN 290: Computer Graphics |, Winter 2001 — http://bit.y/hz1kfU [C

Computer Graphics

% Generating Rays [1]

® Trace one ray for each pixel (u, v) in image plane

tan(fov,) * 2

(Looking down from the top)

Adapted from slides ¥ 2001 D. Shreiner & B. Grantham, SCU
COEN 290: Computer Graphics |, Winter 2001 — http:/bit.y/hz1kfU

Computer Graphics

%@ Generating Rays [2]

® Trace one ray for each pixel (u, v) in image plane

(Looking from the side)

(tan(fov,)* 2) / m

Eye

L N e RnE

(tan(fovy)* 2) /'n

Adapted from slides ¥ 2001 D. Shreiner & B. Grantham, SCU
COEN 290: Computer Graphics |, Winter 2001 — http://bit.ly/hz1kfU

%} Generating Rays [3]

® Trace one ray for each pixel (u, v) in image plane

renderImage () {
for each pixel i, j in the image

ray.setStart (0, 0, 0); // x4

ray.setDir ((.5 + i) * tan(fov,)* 2 / m,
(.5 + j) * tan(fov,)* 2 / n,
1.0); // rq

ray.normalize() ;

image[i] [j] = rayTrace(ray):

Adapted from slides ¥ 2001 D. Shreiner & B. Grantham, SCU
COEN 290: Computer Graphics |, Winter 2001 — http://bit.y/hz1kfU

omputer Graphics

Ray/Triangle Intersection [1]:
Intersection Test Revisited

® Want to know: at what point p does ray intersect triangle?
® Compute lighting, reflected rays, shadowing from that point

Adapted from slides ¥ 2001 D. Shreiner & B. Grantham, SCU m
COEN 290: Computer Graphics |, Winter 2001 — http://bit.ly/hz1kfU

omputer Graphics

omputer Graphics

Ray/Triangle Intersection [2]:
Ray/Plane Intersection Point p

® Step 1 : Intersect with plane
(Ax + By + Cz + D =0)

~ Plane normal
“ n=<A,B,C>

/
L
twn=p=-(N D 1, +D)/(nery)

Adapted from slides ¥ 2001 D. Shreiner & B. Grantham, SCU m
COEN 290: Computer Graphics |, Winter 2001 — http://bit.y/hz1kfU

omputer Graphics

Ray/Triangle Intersection [3]:
Triangle Containment

® Step 2 : Check against triangle edges

E; = V,;V,;, *n (plane A, B, C)
d; = -A°N (plane D)

Plug pinto (p ® E; + d;) for each edge
if signs are all positive or negative,
point is inside triangle!

Adapted from slides ¥ 2001 D. Shreiner & B. Grantham, SCU
COEN 290: Computer Graphics |, Winter 2001 - http://bit.ly/hz1kfU

s Triangle Normals
for Shading

® Could use plane normals (flat shading)
@ Better to interpolate from vertices

ovi v Find areas

V0
ny2

Adapted from slides ¥ 2001 D. Shreiner & B. Grantham, SCU
COEN 290: Computer Graphics |, Winter 2001 — http:/bit.y/hz1kfU

omputer Graphics

o
s

Finding Intersections

® Check all triangles, keep closest intersection t,;,

hitObject (ray) {
for each triangle in scene
does ray intersect triangle?
if (intersected and was closer)
save that intersection
if (intersected)
return intersection point and normal

Adapted from slides ¥ 2001 D. Shreiner & B. Grantham, SCU
COEN 290: Computer Graphics |, Winter 2001 — http://bit.ly/hz1kfU

Lecture 31 of 41

Lighting [1]:
General Notation Review

® We’ll use triangles for lights
® Can build complex shapes from triangles
® Some lighting terms

Light

Adapted from slides ¥ 2001 D. Shreiner & B. Grantham, SCU
COEN 290: Computer Graphics |, Winter 2001 — http://bit.y/hz1kfU

w
o

Lighting [2]:
Modified Phong Illlumination

® Use modified Phong lighting
* similar to OpenGL
* simulates rough and shiny surfaces

for each light
In = IambientKambient +
TyirruseKaisruse (L-N) +
I K (R-V)n

specular“‘specular

Adapted from slides ¥ 2001 D. Shreiner & B. Grantham, SCU m
COEN 290: Computer Graphics |, Winter 2001 — http://bit.ly/hz1kfU

Diffuse Light

® I, ... —Simulates direct lighting on rough surface
® Viewer-independent
® Paper, rough wood, brick, etc...

; Eye

Adapted from slides ¥ 2001 D. Shreiner & B. Grantham, SCU
COEN 290: Computer Graphics |, Winter 2001 - http://bit.ly/hz1kfU

to Computer Graphics

Ambient Light

® I_.:..: — Simulates indirect lighting in a scene

EweYQ?‘

Light

® May not need for RT!

Adapted from slides ¥ 2001 D. Shreiner & B. Grantham, SCU
COEN 290: Computer Graphics |, Winter 2001 — http://bit.y/hz1kfU

to Computer Graphics

Specular Light

® T . .cua: Simulates direct lighting on a smooth surface
® Viewer dependent
® Plastic, metal, polished wood, etc...

; Eye

Adapted from slides ¥ 2001 D. Shreiner & B. Grantham, SCU
COEN 290: Computer Graphics |, Winter 2001 — http:/bit.y/hz1kfU

o - Computing &

to Computer Graphics

w

Shadow Test

® Check against other objects to see if point is shadowed

; Eye

Shadowing
object

Adapted from slides ¥ 2001 D. Shreiner & B. Grantham, SCU
COEN 290: Computer Graphics |, Winter 2001 — http://bit.ly/hz1kfU

Lecture 31 of 41

u

Reflection

® Angle of incidence = angle of reflection (0, = 0R)
® |, R, N lie in the same plane

~
N

R=I-2(NeDN 1 9

Adapted from slides ¥ 2001 D. Shreiner & B. Grantham, SCU
COEN 290: Computer Graphics |, Winter 2001 — http://bit.y/hz1kfU
o Computing &

to Computer Graphics

w

Putting It All Together [1]:
Recursive Calculation & Ray Tree

® Recursive ray evaluation

rayTrace (ray) {
hitObject (ray, p, n, triangle);
color = object color;
if(object is light)
return (color) ;
else
return(lighting(p, n, color)); y tree
} © 2000 N. Patrikalakis, MIT
hitpJ/bitlyKicGGk
S= ightSource vecir (skal)

ted ray
T= transmitted ray

©® Generates ray tree shown at right

Adapted from slides ¥ 2001 D. Shreiner & B. Grantham, SCU
COEN 290: Computer Graphics |, Winter 2001 — http://bit.ly/hz1kfU

“ Putting It All Together [2]:
Applying Lighting

® Calculating surface color

lighting (point) {
color = ambient color;

for each light
if (hitObject (shadow ray))
color += lightcolor *
dot (shadow ray, n);
color += rayTrace (reflection) *
shininess) ;

pow (dot (reflection, ray),
return (color) ;

Adapted from slides ¥ 2001 D. Shreiner & B. Grantham, SCU
COEN 290: Computer Graphics |, Winter 2001 — http://bit.y/hz1kfU

to Computer Graphics

@ Putting It All Together [3]:
Main Program

main() {
triangles = readTriangles();

image = renderImage (triangles) ;
writeImage (image) ;

Adapted from slides ¥ 2001 D. Shreiner & B. Grantham, SCU
COEN 290: Computer Graphics |, Winter 2001 - http://bit.ly/hz1kfU

Good Start:
What next?

® Lighting, Shadows, Reflection are enough to make some
compelling images

® Want better lighting and objects

® Need more speed

Adapted from slides ¥ 2001 D. Shreiner & B. Grantham, SCU
COEN 290: Computer Graphics |, Winter 2001 — http:/bit.y/hz1kfU

to Computer Graphics

3

W

More Quality, More Speed

Better Lighting + Forward Tracing
Texture Mapping
Modeling Techniques
Distributed Ray Tracing: Techniques
* Motion Blur
* Depth of Field
* Blurry Reflection/Refraction
* Wikipedia, Distributed Ray Tracing: http://bit.ly/ihyVUs
Improving Image Quality
® Acceleration Techniques

Adapted from slides ¥ 2001 D. Shreiner & B. Grantham, SCU

COEN 290: Computer Graphics |, Winter 2001 — http://bit.ly/hz1kfU m

Refraction [2]:
Example

Adapted from slides ¥ 2001 D. Shreiner & B. Grantham, SCU
COEN 290: Computer Graphics |, Winter 2001 — http://bit.ly/hz1kfU

Using “Forward” Ray Tracing [1]:

® Backward tracing doesn’t handle indirect lighting too well
® To get caustics, trace forward, store results in texture map

Adapted from slides ¥ 2001 D. Shreiner & B. Grantham, SCU
COEN 290: Computer Graphics |, Winter 2001 - http://bit.ly/hz1kfU

Lecture 31 of 41

Lensed Caustics for Indirect Lighting

Refraction [1]:
Snell’s Law
® Keep track of medium (air, glass, etc)

® Need index of refraction (1)
® Need solid objects

2>

sin(O.) _ 1]_1

Medium 1
(e.g., air)

sin(6r) 2

T

Adapted from slides ¥ 2001 D. Shreiner & B. Grantham, SCU

COEN 290: Computer Graphics |, Winter 2001 — http://bitly/hz1kiU m

Computer Graphics

.i.

Medium 2
(e.g., water)

Cook-Torrance

® Cook-Torrance model
* Based on a microfacet model
* Wikipedia: http://bit.ly/hX3U30
® Metals have different color at angle
® Oblique reflections leak around corners

Adapted from slides ¥ 2001 D. Shreiner & B. Grantham, SCU

COEN 290: Computer Graphics |, Winter 2001 — http://bitly/hz1kiU m

Computer Graphics

Improved Light Model:

Example

Adapted from slides ¥ 2001 D. Shreiner & B. Grantham, SCU
COEN 290: Computer Graphics |, Winter 2001 — http:/bit.y/hz1kfU

Using “Forward” Ray Tracing [2]:

Texture Mapping & Ray Tracing [1]:
Applying Surface Detail

® Using texture maps
* Add surface detail
* Think of it like texturing in OpenGL
Diffuse, specular colors
Shininess value
Bump map
Transparency value

Adapted from slides ¥ 2001 D. Shreiner & B. Grantham, SCU
COEN 290: Computer Graphics |, Winter 2001 — http://bit.ly/hz1kfU

%@ Parametric Surfaces

® More expressive than triangle
® |Intersection is probably slower
® y and von surface can be used as texture s, t

Adapted from slides ¥ 2001 D. Shreiner & B. Grantham, SCU m
COEN 290: Computer Graphics |, Winter 2001 — http://bit.ly/hz1kfU

Texture Mapping & Ray Tracing [2]:
Example

Adapted from slides ¥ 2001 D. Shreiner & B. Grantham, SCU
COEN 290: Computer Graphics |, Winter 2001 — http://bit.y/hz1kfU

%{:}" Constructive Solid Geometry

® Union, Subtraction, Intersection of solid objects

® Have to keep track of intersections

Adapted from slides ¥ 2001 D. Shreiner & B. Grantham, SCU m —
COEN 290: Computer Graphics |, Winter 2001 — http://bit.y/hz1kfU [C

%{2 Hierarchical Transformation

® Scene made of parts

® Each part made of smaller parts

® Each smaller part has transformation linking it to larger part
® Transformation can change over time: animation (CGA)

Adapted from slides ¥ 2001 D. Shreiner & B. Grantham, SCU
COEN 290: Computer Graphics |, Winter 2001 - http://bit.ly/hz1kfU

Computer Graphics

Distributed Ray Tracing [1]:
Basic ldea

® Average multiple rays instead of just one ray

® Use for both shadows, reflections, transmission (refraction)
® Use for motion blur

® Use for depth of field

Adapted from slides ¥ 2001 D. Shreiner & B. Grantham, SCU -
COEN 290: Computer Graphics I, Winter 2001 — http://bit.ly/hz1kfU €a

Computer Graphics

Distributed Ray Tracing [2]:
Example

Adapted from slides ¥ 2001 D. Shreiner & B. Grantham, SCU

COEN 290: Computer Graphics |, Winter 2001 — http://bit.ly/hz1kfU

Acceleration!

® 1280x1024 image with 10 rays/pixel
® 1000 objects (triangle, CSG, NURBS)
® 3 levels recursion

39321600000 intersection tests
100000 tests/second -> 109 days!
Must use an acceleration method!

Adapted from slides ¥ 2001 D. Shreiner & B. Grantham, SCU m
COEN 290: Computer Graphics |, Winter 2001 — http://bit.ly/hz1kfU

Distributed Ray Tracing [3]:
Supersampling

® One ray is not enough (jaggies)
® Can use multiple rays per pixel - supersampling

® Can use a few samples, continue if they’re very different -
adaptive supersampling
® Texture interpolation & filtering

Sewne Ot

Ray Tracing © 2008 Wikipedia
hittpibit ly/dV7INm

Adapted from slides ¥ 2001 D. Shreiner & B. Grantham, SCU
COEN 290: Computer Graphics |, Winter 2001 — http://bit.y/hz1kfU

Computer Graphics

Bounding Volumes

® Use simple shape for quick test, keep BV hierarchy

Adapted from slides ¥ 2001 D. Shreiner & B. Grantham, SCU m —
COEN 290: Computer Graphics |, Winter 2001 — http://bit.y/hz1kfU [C

Spatial Partitioning:
Subdivision

® Break your space into pieces
® Search the structure linearly

Adapted from slides ¥ 2001 D. Shreiner & B. Grantham, SCU
COEN 290: Computer Graphics |, Winter 2001 - http://bit.ly/hz1kfU

Computer Graphics

Pavallelism

® Can always throw more processors at it
® Parallel computing model

* Multiple processes or threads

* Data parallel: separate pixel for each

Adapted from slides ¥ 2001 D. Shreiner & B. Grantham, SCU -
COEN 290: Computer Graphics I, Winter 2001 — http://bit.ly/hz1kfU €a

Computer Graphics

Adapted from slides ¥ 2001 D. Shreiner & B. Grantham, SCU
COEN 290: Computer Graphics |, Winter 2001 — http://bit.ly/hz1kfU

Really Advanced Stuff

Error analysis

Hybrid radiosity/ray-tracing
Metropolis Light Transport
Memory-Coherent Ray-tracing

Lecture 31 of 41

Summary

Reading for Last Class: §5.3, Eberly 2¢; CGA Handout
Reading for Today: Chapter 14, Eberly 2¢
Reading for Next Class: Ray Tracing Handout
Last Class: Particle Systems, Collisions, IK/CGA Concluded
* Dynamics vs. kinematics, forward vs. inverse revisited
* |K: autonomous vs. hand-animated; solution approaches
* Rag doll physics, rigid-body dynamics, physically-based models
Today: Ray Tracing, Part 1 of 2
* Vectors
> Light (L): to point light sources (or shadows)
> Reflected (R): from object surface
» Transmitted or Transparency (T): through transparent object
* tnin: distance to intersection between ray and bounding volume
* Ways to find fmin
* Basic recursive ray tracing: ray trees

Lecture 31 of 41 Computing

Adapted from slides ¥ 2001 D. Shreiner & B. Grantham, SCU
COEN 290: Computer Graphics |, Winter 2001 — http://bit.y/hz1kfU

References

® Introduction to Ray-Tracing, Glassner et al., 1989, 0-12-286160-4

® Advanced Animation and Rendering Techniques, Watt & Watt,
1992, 0-201-54412-1

® Computer Graphi
8854-4

® SIGGRAPH Proceedings (All)

: Image Synthesis, Joy et al., 1988, 0-8186-

Computer Graphics

Terminology

Joints: Parts of Robot / Articulated Figure That Turn, Slide
Effectors: Parts of Robot / Articulated Figure That Act (e.g., Hand, Foot)
Bones: Effectors, Other Parts That Rotate about, Slide through Joints
Procedural Animation: Automatic Generation of Motion via Simulation
Ray Tracing aka Ray Casting

* Given: screen with pixels (u, v)

* Find intersection fyin(U, v) of rays through each (u, v) with scene

* Calculate vectors

ing from world-sp: coordinate of f,
» Light (L): to point light sources (or shadows)
» Reflected (R): from object surface
» Transmitted or Transparency (T): through transparent object
* Recursive RT: call raytracer for each intersection found
» Builds ray tree rooted at intersection point
» Base cases: unobstructed vector to light; depth limit
* Parallel RT: use multiple threads/processes for each (u, v) or t

o o Computing &

to Computer Graphics

