

Lecture 32 of 41

Lab 6: Ray Tracing with ACM SIGGRAPH Demo & POV-Ray

William H. Hsu Department of Computing and Information Sciences, KSU

KSOL course pages: http://bit.ly/eVizrE
Public mirror web site: http://www.kddresearch.org/Courses/CIS636
Instructor home page: http://www.cis.ksu.edu/~bhsu

Readings:

Last class: Chapter 14, Eberly 2e – see http://bit.ly/ieUq45
Today: Ray Tracing Handout
Next class: Chapter 15, Ray Tracing Handout

Con Solomon

CIS 536/636
Introduction to Computer Graphics

Lecture 32 of 41

Computing & Information Science: Kansas State University

Lecture Outline

- Reading for Last Class: Chapter 14, Eberly 2e
- Reading for Today: Ray Tracing Handout
- Reading for Next Class: Chapter 15, Eberly 2e; Ray Tracing Handout
- Last Time: Ray Tracing (RT), Part 1 of 2
 - * Vectors: Light (L) & shadow, Reflected (R), Transmitted & refraction
 - * Basic recursive ray tracing & ray trees
 - * Phong illumination model, texture mapping revisited
 - * Distributed RT: survey, supersampling illustrated
 - * Things you get "for free": clipping, VSD (backface/occlusion culling)
- Today: Ray Tracing Lab
 - * ACM SIGGRAPH demo: http://bit.ly/cllgx2
 - * POV-Ray: http://www.povray.org
- Next Class: Ray Tracing 2 of 2
 - * Hybridizing RT with radiosity (photon maps)
 - * Progressive refinement

Where We Are

21	Lab 4a: Animation Basics	Flash animation handout
22	Animation 2: Rotations; Dynamics, Kinematics	Chapter 17, esp. §17.1 – 17.2
23	Demos 4: Modeling & Simulation; Rotations	Chapter 10 ¹ , 13 ² , §17.3 – 17.5
24	Collisions 1: axes, OBBs, Lab 4b	§2.4.3, 8.1, GL handout
25	Spatial Sorting: Binary Space Partitioning	Chapter 6, esp. §6.1
26	Demos 5: More CGA; Picking; HW/Exam	Chapter 72; § 8.4
27	Lab 5a: Interaction Handling	§ 8.3 - 8.4; 4.2, 5.0, 5.6, 9.1
28	Collisions 2: Dynamic, Particle Systems	§ 9.1, particle system handout
	Exam 2 review; Hour Exam 2 (evening)	Chapters 5 - 6, 72 - 8, 12, 17
29	Lab 5b: Particle Systems	Particle system handout
30	Animation 3: Control & IK	§ 5.3, CGA handout
31	Ray Tracing 1: intersections, ray trees	Chapter 14
32	Lab 6a: Ray Tracing Basics with POV-Ray	RT handout
33	Ray Tracing 2: advanced topic survey	Chapter 15, RT handout
34	Visualization 1: Data (Quantities & Evidence)	Tufte handout (1)
35	Lab 6b: More Ray Tracing	RT handout
36	Visualization 2: Objects	Tufte handout (2 & 4)
37	Color Basics; Term Project Prep	Color handout
38	Lab 7: Fractals & Terrain Generation	Fractals/Terrain handout
39	Visualization 3: Processes; Final Review 1	Tufte handout (3)
40	Project presentations 1; Final Review 2	-
41	Project presentations 2	_
	Final Exam	Ch. 1 - 8, 10 - 15, 17, 20

Lightly-shaded entries denote the due date of a written problem set; heavily-shaded entries, that of a machine problem (programming assignment); blue-shaded entries, that of a paper review; and the green-shaded entry, that of the term project.

Green, blue and red letters denote exam review, exam, and exam solution review dates.

@

Introduction to Computer Graphics

Lecture 32 of 41

Computing & Information Sciences Kansas State University

Acknowledgements: Ray Tracing

Dave Shreiner & Brad Grantham Adjunct Professor & Adjunct Lecturer, Santa Clara University ARM Holdings, plc

http://www.plunk.org/~shreiner/ http://www.plunk.org/~grantham/

David K. Buck, Aaron Collins, et al.

Developers
Persistence of Vision Raytracer (POV-Ray)
http://www.povray.org

G. Scott Owen & Yan Liu

http://www.cs.gsu.edu/gsowen/

Professor Emeritus / ACM SIGGRAPH President & Graduate Research Assistant
Hypermedia and Visualization Laboratory
Department of Computer Science
Georgia State University / ACM

CIS 536/636 Introduction to Computer Graphics Lecture 32 of 41

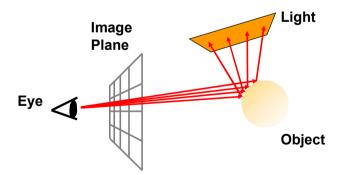
Computing & Information Sciences Kansas State University

Review [1]: Reasons for Using Ray Tracing

- Simulate rays of light
- Produces natural lighting effects
 - Reflection
- Depth of Field
- Refraction
- Motion Blur
- Soft Shadows
- Caustics
- Hard to simulate effects with rasterization techniques (OpenGL)
- Rasterizers require many passes
- Ray-tracing easier to implement

Adapted from slides ♥ 2001 D. Shreiner & B. Grantham, SCU COEN 290: Computer Graphics I, Winter 2001 - http://bit.ly/hz1kfU

CIS 536/636 Introduction to Computer Graphics Lecture 32 of 41

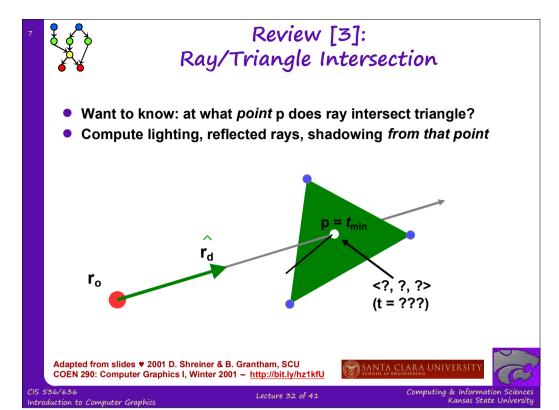

Computing & Information Sciences

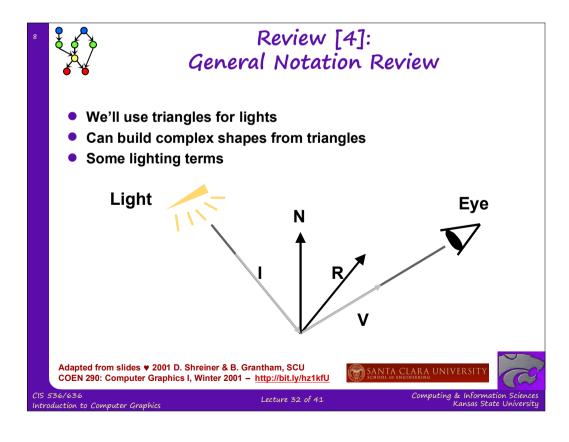
Kansas State University

Review [2]: How Ray Tracing Works

- Trace rays from eye instead
- Do work where it matters

This is what most people mean by "ray tracing".


Adapted from slides ♥ 2001 D. Shreiner & B. Grantham, SCU COEN 290: Computer Graphics I, Winter 2001 - http://bit.ly/hz1kfU



CIS 536/636 Introduction to Computer Graphics Lecture 32 of 41

Computing & Information Sciences

Review [5]: Recursive Calculation & Ray Tree

Recursive ray evaluation

```
rayTrace(ray) {
   hitObject(ray, p, n, triangle);
   color = object color;
   if(object is light)
       return(color);
   else
      return(lighting(p, n, color));
}
```

stew point

Ray tree
© 2000 N. Patrikalakis, MIT

I = Incident ray
S = light Source vector (aka L)
R = reflected ray
T = transmitted ray

• Generates <u>ray tree</u> shown at right

Adapted from slides ♥ 2001 D. Shreiner & B. Grantham, SCU COEN 290: Computer Graphics I, Winter 2001 – http://bit.ly/hz1kfU

Introduction to Computer Graphics

Lecture 32 of 41

Computing & Information Sciences Kansas State Universitu

Review [6]: Putting It All Together

Calculating surface color

Adapted from slides ♥ 2001 D. Shreiner & B. Grantham, SCU COEN 290: Computer Graphics I, Winter 2001 - http://bit.ly/hz1kfU

Introduction to Computer Graphics

Lecture 32 of 41

Computing & Information Sciences

11

Review [7]: More Quality, More Speed

- Better Lighting + Forward Tracing
- Texture Mapping
- Modeling Techniques
- Distributed Ray Tracing: Techniques
 - * Motion Blur
 - * Depth of Field
 - * Blurry Reflection/Refraction
 - * Wikipedia, Distributed Ray Tracing: http://bit.ly/ihyVUs
- Improving Image Quality
- Acceleration Techniques

Adapted from slides ♥ 2001 D. Shreiner & B. Grantham, SCU COEN 290: Computer Graphics I, Winter 2001 - http://bit.ly/hz1kfU

CIS 536/636

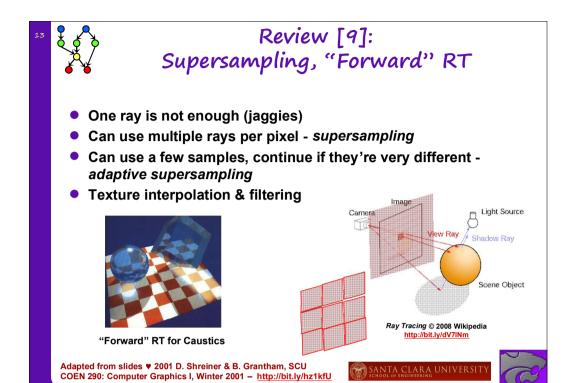
Introduction to Computer Graphics

Lecture 32 of 41

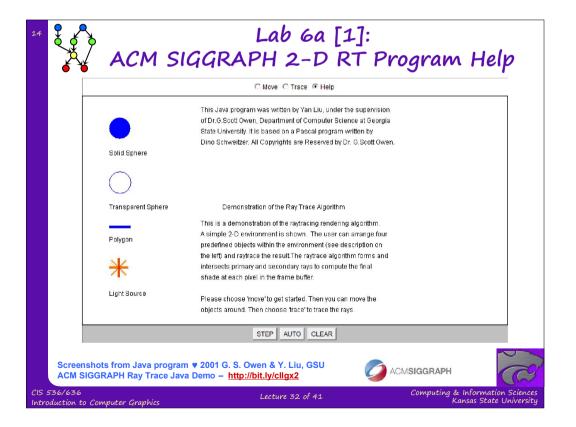
Computing & Information Sciences

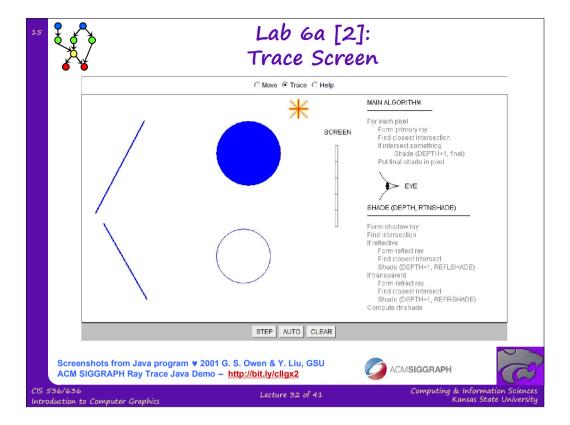
Kansas State University

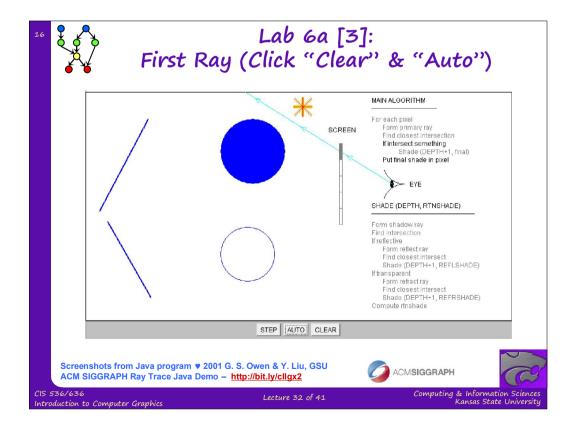
Review [8]: Distributed Ray Tracing

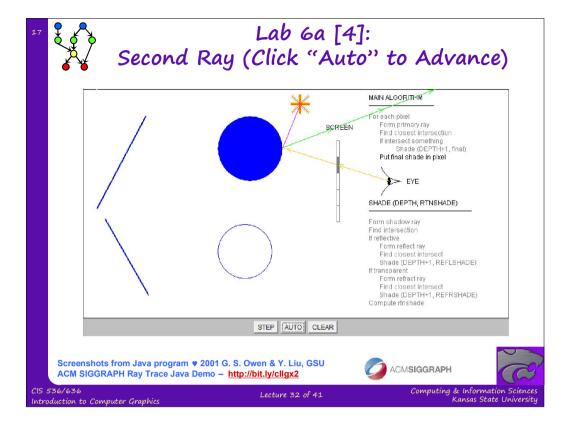

Adapted from slides ♥ 2001 D. Shreiner & B. Grantham, SCU COEN 290: Computer Graphics I, Winter 2001 - http://bit.ly/hz1kfU

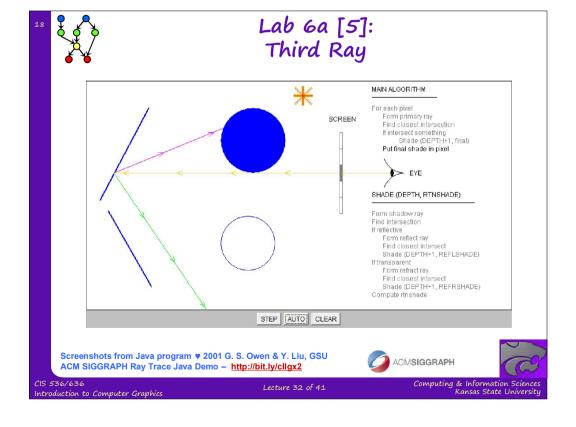
CIS 536/636 Introduction to Computer Graphics Lecture 32 of 41

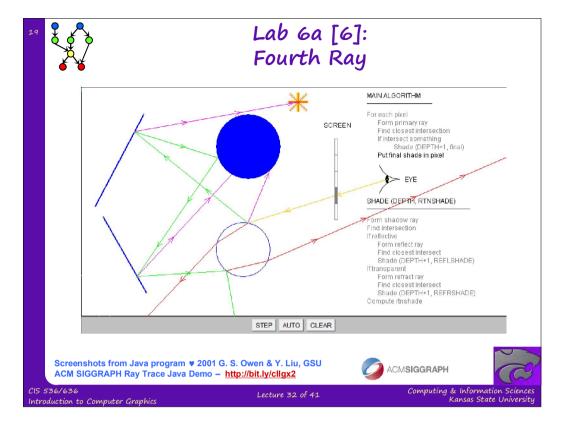

Computing & Information Sciences

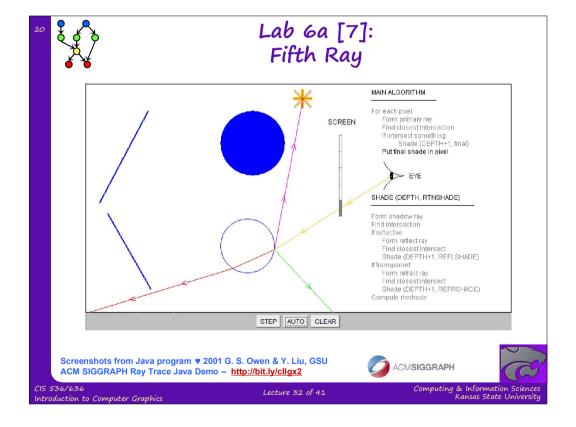



Lecture 32 of 41


on to Computer Graphics


Kansas State Universi





2

Lab 6b [1]: POV-Ray

"Office" © 2004 Jaime Vives Piqueres

"My First CGSphere" © 2008 Robert McGregor http://bit.ly/fGb6Pj

Images ♥ respective authors, generated using *POV-Ray* © 1991 – 2011 D. K. Buck *et al.* – http://www.povray.org

Introduction to Computer Graphic

Lecture 32 of 41

Computing & Information Sciences Kansas State University

Lab 6b [2]: POV-Ray

"The Wet Bird" © 2001 Gilles Tran http://bit.ly/gMBuGt

"Dissolution" © 2005 Newt http://bit.ly/fVqj5d

"Thanks for all the fish" © 2008 Robert McGregor http://bit.ly/fE04gm

Images ♥ respective authors, generated using *POV-Ray* © 1991 – 2011 D. K. Buck *et al.* – http://www.povray.org

CIS 536/636 Introduction to Computer Graphics Lecture 32 of 4:

Computing & Information Sciences Kansas State University 2

Summary

- Reading for Last Class: Chapter 14, Eberly 2^e
- Reading for Today: Ray Tracing Handout
- Reading for Next Class: Chapter 15, Eberly 2e; Ray Tracing Handout
- Last Time: Ray Tracing (RT), Part 1 of 2
 - * Vectors: I (incident ray), L, R, T
 - * Basic recursive ray tracing & ray trees
 - * Distributed RT: survey, supersampling illustrated
- Today: Ray Tracing Lab
 - * ACM SIGGRAPH demo: http://bit.ly/cllgx2
 - > 2-D "screen"
 - Moveable objects: transparent, opaque (both reflective)
 - * POV-Ray (http://www.povray.org) Example Renderings
- Next Class: Ray Tracing 2 of 2
 - * Progressive refinement radiosity (photon maps) introduced
 - **★** Using RT/radiosity together and with shading

C15 536/636 Introduction to Computer Graphics Lecture 32 of 41

Computing & Information Sciences

Kansas State University

Terminology

- Ray Tracing aka Ray Casting
 - * Given: screen with pixels (u, v)
 - * Find intersection $t_{min}(u, v)$ of rays through each (u, v) with scene
 - **★** Vectors emanating from world-space coordinate of t_{min}
 - > Light (L) aka Source (S): to point light sources (or shadows)
 - > Reflected (R): from object surface
 - > Transmitted or Transparency (T): through transparent object
 - * Recursive RT: call raytracer for each intersection, get ray tree
 - * Incident vector (I): incoming from eye
- Caustic: Envelope of Light Rays Reflected/Refracted by Curved Object
 - * Wikipedia: http://bit.ly/etlXld
 - * Example: Slide 13 (today's lecture)
- "Backward" RT: Eye-to-Scene, Scene-to-Light (Typical Order)
- "Forward" RT: Light-to-Scene, Scene-to-Eye (Only for Caustics)
- Screen: Parallel to View "Plane", Rays Shot Through It

