

Lecture 33 of 41

Ray Tracing, Part 2 of 2: Distributed RT & Radiosity/RT Hybrid Systems

William H. Hsu Department of Computing and Information Sciences, KSU

KSOL course pages: http://bit.ly/eVizrE
Public mirror web site: http://www.kddresearch.org/Courses/CIS636
Instructor home page: http://www.cis.ksu.edu/~bhsu

Readings:

Last class: Ray Tracing Handout

Today: Chapter 15, Eberly 2e- see http://bit.ly/ieUq45; Ray Tracing Handout

Next class: Tufte Handout 1

CIS 536/636 Introduction to Computer Graphics

Lecture 33 of 41

Lecture Outline

- Reading for Last Class: Ray Tracing Handout
- Reading for Today: Chapter 15, Eberly 2e; Ray Tracing Handout
- Reading for Next Class: Tufte Handout 1
- Last Time: Ray Tracing Lab
 - * ACM SIGGRAPH demo: http://bit.ly/cllgx2
 - * POV-Ray: http://www.povray.org
- Today: Ray Tracing, Part 2 of 2
 - * Hybrid global illumination: RT with radiosity
 - > Calculating specular exponents
 - Pre-rendering backgrounds
 - > Progressive refinement
 - * Other optimizations
- Next Class: Visualization, Part 1 of 3 Data
 - * Source: The Visual Display of Quantitative Information, 2e
 - * Applications: scientific visualization, information visualization

CIS 536/636 Introduction to Computer Graphics

Lecture 33 of 41

Where We Are

21	Lab 4a: Animation Basics	Flash animation handout
22	Animation 2: Rotations; Dynamics, Kinematics	Chapter 17, esp. §17.1 – 17.2
23	Demos 4: Modeling & Simulation; Rotations	Chapter 10 ¹ , 13 ² , §17.3 – 17.5
24	Collisions 1: axes, OBBs, Lab 4b	§2.4.3, 8.1, GL handout
25	Spatial Sorting: Binary Space Partitioning	Chapter 6, esp. §6.1
26	Demos 5: More CGA; Picking; HW/Exam	Chapter 7 ² ; § 8.4
27	Lab 5a: Interaction Handling	§ 8.3 - 8.4; 4.2, 5.0, 5.6, 9.1
28	Collisions 2: Dynamic, Particle Systems	§ 9.1, particle system handout
	Exam 2 review; Hour Exam 2 (evening)	Chapters 5 - 6, 72 - 8, 12, 17
29	Lab 5b: Particle Systems	Particle system handout
30	Animation 3: Control & IK	§ 5.3, CGA handout
31	Ray Tracing 1: intersections, ray trees	Chapter 14
32	Lab 6a: Ray Tracing Basics with POV-Ray	RT handout
33	Ray Tracing 2: advanced topic survey	Chapter 15, RT handout
34	Visualization 1: Data (Quantities & Evidence)	Tufte handout (1)
35	Lab 6b: More Ray Tracing	RT handout
36	Visualization 2: Objects	Tufte handout (2 & 4)
37	Color Basics; Term Project Prep	Color handout
38	Lab 7: Fractals & Terrain Generation	Fractals/Terrain handout
39	Visualization 3: Processes; Final Review 1	Tufte handout (3)
40	Project presentations 1; Final Review 2	_
41	Project presentations 2	-
	Final Exam	Ch. 1 - 8, 10 - 15, 17, 20

Lightly-shaded entries denote the due date of a written problem set; heavily-shaded entries, that of a machine problem (programming assignment); blue-shaded entries, that of a paper review; and the green-shaded entry, that of the term project.

Green, blue and red letters denote exam review, exam, and exam solution review dates.

CIS 536/636 Introduction to Computer Graphics

Lecture 33 of 41

Acknowledgements: Advanced Ray Tracing & Radiosity

David K. Buck, Aaron Collins, et al. **Developers** Persistence of Vision Raytracer (POV-Ray)

C. Khambamettu & Mani V. Thomas

Professor, Department of Computing and Information Sciences, University of Delaware & Ph.D. graduate (University of Delaware) / Research Scientist, Canfield Scientific

http://www.cis.udel.edu/~chandra/ http://vims.cis.udel.edu/~mani/

Mario Costa Sousa

http://www.povray.org

Associate Professor **Department of Computer Science University of Calgary**

http://pages.cpsc.ucalgary.ca/~mario/

Introduction to Computer Graphics

Lecture 33 of 41

Review [1]: Recursive Ray Tracing Algorithm

- Compute 3D ray into scene for each 2D image pixel
- Compute 3D intersection point of ray with nearest object in scene
 - * Test each primitive in the scene for intersection
 - * Find nearest intersection
- Recursively spawn rays from point of intersection
 - * Shadow Rays
 - * Reflected rays
 - * Transmitted rays
- Accumulate color from each spawned ray at point of intersection

Adapted from slides ♥ 2005 M. Thomas & C. Khambamettu, U. Del. CISC 440/640: Computer Graphics, Spring 2005 - http://bit.ly/hz1kfU

CIS 536/636
Introduction to Computer Graphics

Lecture 33 of 41

Review [2]: Distributed Ray Tracing

Adapted from slides ♥ 2001 D. Shreiner & B. Grantham, SCU COEN 290: Computer Graphics I, Winter 2001 - http://bit.ly/hz1kfU

CIS 536/636 Introduction to Computer Graphics

Lecture 33 of 41

Review [3]: Java-Based 2-D RT Demo, SIGGRAPH

Screenshots from Java program ♥ 2001 G. S. Owen & Y. Liu, GSU ACM SIGGRAPH Ray Trace Java Demo - http://bit.ly/cllgx2

CIS 536/636 Introduction to Computer Graphics

Lecture 33 of 41

Review [4]: POV-Ray

"The Wet Bird" © 2001 Gilles Tran http://bit.ly/gMBuGt

"Dissolution" © 2005 Newt http://bit.ly/fVqj5d

"Thanks for all the fish" © 2008 Robert McGregor http://bit.ly/fE04gm

Images ♥ respective authors, generated using *POV-Ray* © 1991 – 2011 D. K. Buck *et al.* – http://www.povray.org

CIS 536/636 Introduction to Computer Graphics

Lecture 33 of 41

Formulas: Ray-Object Intersection

Intersection with plane

* Implicit form

$$F(x, y, z) = ax + by + cz + d = \mathbf{n} \cdot \mathbf{x} + d$$

* Intersection

$$\mathbf{n} \cdot \mathbf{S} + (\mathbf{n} \cdot \mathbf{c})t + d = 0 \Rightarrow t = \frac{-d - \mathbf{n} \cdot \mathbf{S}}{\mathbf{n} \cdot \mathbf{c}}$$

Intersection with sphere

* Implicit form

$$|\mathbf{p} - \mathbf{p}_c|^2 = r^2$$
 $\mathbf{p} = (x, y, z), \mathbf{p}_c = (a, b, c)$

* Intersection

$$t = -\mathbf{c} \cdot (\mathbf{S} - \mathbf{p}_c) \pm \sqrt{(\mathbf{c} \cdot (\mathbf{S} - \mathbf{p}_c))^2 - |c|^2 (|\mathbf{S} - \mathbf{p}_c|^2 - r^2)}$$

Formulas: <u>L</u>ight Vectors *aka* <u>S</u>hadow Rays

- "Shadow feelers"
 - * Spawn ray from P to each light source
 - * If there is intersection of shadow ray with any object then P is in shadow
- Reflection
 - * Angle of incidence = angle of reflection

$$\mathbf{m} = \left(\mathbf{a} \cdot \frac{\mathbf{n}}{|\mathbf{n}|}\right) \frac{(-\mathbf{n})}{|\mathbf{n}|} = -\frac{\mathbf{a} \cdot \mathbf{n}}{|\mathbf{n}|^2} \mathbf{n}$$

$$= -(\mathbf{a} \cdot \hat{\mathbf{n}}) \hat{\mathbf{n}} \qquad |\mathbf{n}| = 1$$

$$= -(|\mathbf{a}||\hat{\mathbf{n}}|\cos (180 - \theta_1)) \hat{\mathbf{n}} = (\mathbf{a} \cdot \hat{\mathbf{n}}) \hat{\mathbf{n}}$$

$$\mathbf{r} = \mathbf{e} + (-\mathbf{m}) = (\mathbf{a} - \mathbf{m}) + (-\mathbf{m}) = \mathbf{a} - 2\mathbf{m}$$

$$= \mathbf{a} - 2(\mathbf{a} \cdot \hat{\mathbf{n}}) \hat{\mathbf{n}}$$

Formulas: Refraction of <u>Transmitted Ray</u>

- Ray passing through two media
 - * Different refractive indices
 - * Ray bends towards/away from normal
- Snell's Law
 - * n_i and n_r are refractive indices of two media

$$n_i \sin \theta_i = n_r \sin \theta_r$$

Transmitted ray

$$\mathbf{T} = \frac{n_i}{n_r} \mathbf{u} - \left(\cos \theta_r - \frac{n_i}{n_r} \cos \theta_i\right) \mathbf{n}$$

Speeding Up RT Using Extents/BVs [1]: Motivation

- Ray tracing slow, performs same functions repeatedly
- Most time spent in computing intersections
 - * Each ray should be intersected with every object in scene
 - * Each ray spawns out reflected/transmitted rays which have to be interested with objects in scene

Speeding Up RT Using Extents/BVs [2]: Definition & Basic Idea

- Extent (aka bounding volume) of object: shape that encloses it
- Compute complicated intersections if and only if ray hits extent
- Two shapes most commonly used as extents
 - * Sphere specified by center and radius (C, r)
 - * Box specified by sides aligned to coordinate axis
 - Axis-aligned bounding box (AABB) more typical for RT
 - Oriented bounding box (OBB)

Adapted from slides ♥ 2005 M. Thomas & C. Khambamettu, U. Del. CISC 440/640: Computer Graphics, Spring 2005 - http://bit.ly/hz1kfU

Super-Sampling

- Instead of shooting <u>one</u> ray per pixel, shoot <u>four</u> rays through corners of pixel
- Adaptive super-sampling (Whitted's approach)
 - * Shoot more rays through corners with higher intensity variation
 - * Compute final color as weighted average rather than regular average

Advanced Topics in RT: Road Map

- Monte Carlo Methods: Distributed RT
- Bidirectional Ray Tracing: Caustics
- POV-Ray
- Hybrid Global Illumination
 - * RT: good for
 - Specular highlights (highlights)
 - > Point-to-point interobject reflectance, shadows
 - * Radiosity: good for
 - > Diffuse reflectance (matte effects)
 - > Patch-to-patch interobject reflectance
 - * Best of both worlds
 - > RT for exponents
 - > Radiosity for backgrounds

Distributed Ray Tracing [1]: What Is It?

- Distributed ray tracing: not RT on distributed systems!
- Ray tracing method
 - * based on randomly distributed oversampling
 - * to reduce aliasing artifacts
 - * in rendered images
- Reference
 - * Allen Martin, Worcester Polytechnic Institute (WPI)
 - * Examples for shadows, reflection, transparency

Regular RT

Distributed RT

Regular RT

Distributed RT

Regular RT

Distributed RT

"Distributed Ray Tracing" © 1995 A. Martin – http://bit.ly/ex5ZUm

Adapted from slides ♥ 2005 M. Thomas & C. Khambamettu, U. Del. CISC 440/640: Computer Graphics, Spring 2005 - http://bit.ly/hz1kfU

Introduction to Computer Graphics

Lecture 33 of 41

Distributed Ray Tracing [2]: From Stochastic RT to Distributed RT

- Distributed ray tracing is an elegant technique that tackles many problems at once
 - Stochastic ray tracing: distribute rays stochastically across pixel
 - Distributed ray tracing: distribute rays stochastically across everything

Adapted from slide ♥ 2005 D. Luebke, University of Virginia CS 551-0003/651-0001: Advanced CG, Spring 2005 – http://bit.ly/eTWYAo

CIS 536/636
Introduction to Computer Graphics

Lecture 33 of 41

Distributed Ray Tracing [3]: Stochastic Oversampling (Cook, 1984)

- Developed by Cook et al. ("Distributed Ray Tracing", Computer Graphics, vol. 18, no. 3, pp 137-145, 1984)
- Stochastic Oversampling: http://bit.ly/eTWYAo
 - * Pixel for antialiasing
 - *Light source for soft shadows
 - *Reflection function for soft (glossy) reflections
 - *Time for motion blur
 - *Lens for depth of field

Adapted from slides ♥ 2005 M. Thomas & C. Khambamettu, U. Del. CISC 440/640: Computer Graphics, Spring 2005 - http://bit.ly/hz1kfU

Distributed Ray Tracing [4]: Gloss

- Partially reflecting surfaces
- Traditional ray tracing
 - * reflections look identical to scene they are reflecting
 - * reflections are always sharp
- Randomly distributing rays reflected by surface
- Send out packet of rays around reflecting direction
- Actual value of reflectance is statistical mean of the values returned by each of these rays

Distributed Ray Tracing [5]: Perturbing Specular Reflection Ray

- Distributing set of reflection rays by randomly perturbing ideal specular reflection ray
- Spread of distribution determines glossiness where wider distribution spread models rougher surface

"Realistic Raytracing" © 2003 Z. Waters & E. Agu, WPI http://bit.ly/gUNeGr

Distributed Ray Tracing [6]: Multiple Reflected Rays

- First image is from traditional ray tracer
- Second one uses 16 rays in place of single reflected ray
- Third image uses 64 rays

"Monte Carlo Ray Tracing"
© 2005 D. Strock, University of Wisconsin Milwaukee
http://bit.ly/fSIYsL

Distributed Ray Tracing [7]: Soft Shadows & Reflection

"Realistic Raytracing" © 2003 Z. Waters & E. Agu, WPI http://bit.ly/gUNeGr

Adapted from slides ♥ 2005 M. Thomas & C. Khambamettu, U. Del. CISC 440/640: Computer Graphics, Spring 2005 – http://bit.ly/hz1kfU

CIS 536/636 Introduction to Computer Graphics

Lecture 33 of 41

Distributed Ray Tracing [8]: Fuzzy Translucency

- Same as glossy reflections, but jitter refracted ray
- Analytical function similar to shading
 - * Transmission function is used instead of reflectance function
 - * Light is gathered from other side of surface.
- Cast randomly distributed rays in general direction of transmitted ray from traditional ray tracing
- Average value computed from each of these rays: true translucent component

Distributed Ray Tracing [9]: Soft Reflection & Transparency

- First image is obtained from traditional ray tracer
- Second image uses 10 rays for transmitted ray
- Third image uses 20 rays

"Distributed Ray Tracing" © 1995 A. Martin – http://bit.ly/ex5ZUm

Distributed Ray Tracing [10]: Shadows, Reflection, Transparency

- First image is from traditional ray tracer
- Second one uses 16 rays in place of single reflected ray
- Third image uses 64 rays

"Monte Carlo Ray Tracing"
© 2005 D. Strock, University of Wisconsin Milwaukee
http://bit.ly/fSIYsL

Distributed Ray Tracing [11]: Penumbras (Soft Shadows)

- Traditional ray tracing shadows: discrete
 - * Shadow feelers used to check if point is in shadow with respect to point light source
- Incorrect for large light sources and/or light sources that are close to object
- Transition from fully shadowed to partially shadowed is gradual
 - * Due to finite area of real light sources
 - * Also due to scattering of light of other surfaces

Adapted from slides ♥ 2005 M. Thomas & C. Khambamettu, U. Del. CISC 440/640: Computer Graphics, Spring 2005 - http://bit.ly/hz1kfU

Introduction to Computer Graphics

Lecture 33 of 41

27

Distributed Ray Tracing [12]: Tracing Penumbras (Soft Shadows)

- Set of rays cast about projected area of light source
 - * Projected area helps tackle large area light source
- Amount of light transmitted by: ratio of number of rays that hit source to number of rays cast

Distributed Ray Tracing [13]: Shadow Feelers & Penumbras

"Realistic Raytracing" © 2003 Z. Waters & E. Agu, WPI http://bit.ly/gUNeGr

- In case of point source, occluder would create sharp shadow boundary
- In area light source or if light source is closer to object
 - * Creation of penumbra region
- Sending out shadow feelers to capture penumbra region

Distributed Ray Tracing [14]: Example – Transitions inside Penumbra

"Realistic Raytracing" © 2003 Z. Waters & E. Agu, WPI http://bit.ly/gUNeGr

Adapted from slides ♥ 2005 M. Thomas & C. Khambamettu, U. Del. CISC 440/640: Computer Graphics, Spring 2005 – http://bit.ly/hz1kfU

CIS 536/636 Introduction to Computer Graphics

Lecture 33 of 41

Distributed Ray Tracing [15]: Example – Soft Shadows

Regular RT Distributed RT

▼ 2000 A. G. Zaferakis, UNC Chapel Hill COMP 238, Advanced Image Generation – http://bit.ly/fGYzgw / http://bit.ly/dNQHtH

Adapted from slides ♥ 2005 M. Thomas & C. Khambamettu, U. Del. CISC 440/640: Computer Graphics, Spring 2005 - http://bit.ly/hz1kfU

CIS 536/636 Introduction to Computer Graphics

Lecture 33 of 41

Distributed Ray Tracing [16]: Depth of Field

- Distance at which objects appear in focus
- Objects too far away or too close appear unfocused, blurry
- Pinhole camera model does not truly mimic real world
 - * Pinhole assumed to be infinitely small
 - * Changing focal length changes field of view but does not change focus

"Realistic Raytracing" © 2003 Z. Waters & E. Agu, WPI http://bit.ly/gUNeGr

Distributed Ray Tracing [17]: Creating Depth of Field

- Distributed RT: places artificial lens in front of view plane
- Randomly distributed rays: used once again to simulate blurring of depth of field
 - * First ray cast not modified by lens
 - * Focal point of lens is at fixed distance along this ray
 - * Rest of rays sent out for same pixel scattered about surface of lens
 - * Points in scene close to focal point of lens: in sharp focus
 - * Points closer or further away: blurred

Distributed Ray Tracing [18]: Example – Depth of Field

Low Focal Distance, © 2004 S. C. Mikula (http://bit.ly/fK6ckX)

High Focal Distance, © 2004 S. C. Mikula (http://bit.ly/fKA3b3)

Intermediate Focal Distance, © 2003 A. Bair (http://bit.ly/faXUFh)

▼ 2001-2006 respective authors, University of Illinois at Urbana-Champaign CS 419, Advanced Computer Graphics – http://bit.ly/e0UfsN

Adapted from slides ♥ 2005 M. Thomas & C. Khambamettu, U. Del. CISC 440/640: Computer Graphics, Spring 2005 - http://bit.ly/hz1kfU

CIS 536/636 Introduction to Computer Graphics

Lecture 33 of 41

Distributed Ray Tracing [19]: Motion Blur

- Temporal sampling rather than spatial sampling
- Frame represents average of scene during time that camera shutter is open
- Before each ray is cast, objects are translated or rotated to their correct position for that frame
- Rays are averaged to give actual value
- Objects with most motion will have most blurring in rendered image

Adapted from slides ♥ 2005 M. Thomas & C. Khambamettu, U. Del. CISC 440/640: Computer Graphics, Spring 2005 - http://bit.ly/hz1kfU

CIS 536/636 Introduction to Computer Graphics

Lecture 33 of 41

Distributed Ray Tracing [20]: Example – Motion Blur

▼ 2005 C. M. Cameron, University of Illinois at Urbana-Champaign CS 419, Advanced Computer Graphics – http://bit.ly/hmZU3x

Adapted from slides ♥ 2005 M. Thomas & C. Khambamettu, U. Del. CISC 440/640: Computer Graphics, Spring 2005 - http://bit.ly/hz1kfU

CIS 536/636 Introduction to Computer Graphics

Lecture 33 of 41

Distributed Ray Tracing [21]: Example – Soft Shadows

▼ 2005 M. A. Townsend, University of Illinois at Urbana-Champaign CS 419, Advanced Computer Graphics – http://bit.ly/dL8GrH

Adapted from slides ♥ 2005 M. Thomas & C. Khambamettu, U. Del. CISC 440/640: Computer Graphics, Spring 2005 - http://bit.ly/hz1kfU

CIS 536/636 Introduction to Computer Graphics

Lecture 33 of 41

Bidirectional Ray Tracing [1]: Example – Caustic

© 1996 H. W. Jensen, University of California, San Diego http://graphics.ucsd.edu/~henrik/

Adapted from slides ♥ 2005 M. Thomas & C. Khambamettu, U. Del. CISC 440/640: Computer Graphics, Spring 2005 – http://bit.ly/hz1kfU

CIS 536/636 Introduction to Computer Graphics

Lecture 33 of 41

Bidirectional Ray Tracing [2]: Example - Caustic

- Caustic (concentrated) specular reflection/refraction onto diffuse surface
- Standard ray tracing cannot handle caustics

© 1996 H. W. Jensen, University of California, San Diego http://graphics.ucsd.edu/~henrik/

Adapted from slides ♥ 2005 M. Thomas & C. Khambamettu, U. Del. CISC 440/640: Computer Graphics, Spring 2005 - http://bit.ly/hz1kfU

Light Paths: Abbreviated Notation

- Shown: interactions of light ray
- Can be expressed using regular expressions

* L: light source

* E: eye/camera

* D: diffuse surface

* S: specular surface

Sillion, F. X. & Puech, C. (1994). Radiosity and Global Illumination. San Francisco, CA: Morgan-Kaufmann.
Amazon: http://amzn.to/evNBJH

Adapted from slides ♥ 2005 M. Thomas & C. Khambamettu, U. Del. CISC 440/640: Computer Graphics, Spring 2005 – http://bit.ly/hz1kfU

BRDF Revisited: Diffuse Surfaces [1]

- Uncertainty in direction photon will take for diffuse surfaces
- Specular surfaces: <u>B</u>idirectional <u>R</u>eflectance <u>D</u>istribution <u>F</u>unction (probability that incoming photon will leave in particular direction) has thin profile
 - * Can predict direction of outgoing photon
- For ideal diffuse surfaces, BRDF would be spherical
 - * Photon can travel along any direction with equal probability

Sillion, F. X. & Puech, C. (1994). Radiosity and Global Illumination. San Francisco, CA: Morgan-Kaufmann.
Amazon: http://amzn.to/evNBJH

Adapted from slides ♥ 2005 M. Thomas & C. Khambamettu, U. Del. CISC 440/640: Computer Graphics, Spring 2005 - http://bit.ly/hz1kfU

Introduction to Computer Graphics

Lecture 33 of 41

BRDF Revisited: Diffuse Surfaces [2]

- Idea: Trace forward <u>light rays</u> into scene as well as backward <u>eye rays</u>
 - * At diffuse surfaces, light rays additively "deposit" photons in radiosity textures, or "rexes", where they are picked up by eye rays
- Rays of forward and backward pass "meet in middle" to exchange information

Heckbert, P. S. (1990). "Adaptive radiosity textures for bidirectional ray tracing", *Proceedings of the 17th Annual Conference on Computer Graphics and Interactive Techniques* (Scott 1990).

Adapted from slides ♥ 2005 M. Thomas & C. Khambamettu, U. Del. CISC 440/640: Computer Graphics, Spring 2005 - http://bit.ly/hz1kfU

Radiosity

- Handling cases such as LD*E
- "Color Bleeding"

Adapted from slides ♥ 2005 M. Thomas & C. Khambamettu, U. Del. CISC 440/640: Computer Graphics, Spring 2005 - http://bit.ly/hz1kfU

Software Packages

- Two excellent, full-featured rendering & modeling packages
- POV-Ray (http://www.povray.org/)
 - * Persistence of Vision Ray Tracer
 - * Free rendering tool (not modeling tool)
 - * Uses text-based scene description language (SDL)
 - * Available on Windows, Linux, Mac OS
- Blender (http://www.blender3d.org)
 - * Modeling, animation, rendering tool
 - * Especially useful in 3-D game creation
 - * Available for Windows, Linux, Irix, Sun Solaris, FreeBSD or Mac OS X under GPL

Adapted from slides ♥ 2005 M. Thomas & C. Khambamettu, U. Del. CISC 440/640: Computer Graphics, Spring 2005 - http://bit.ly/hz1kfU

Radiosity [1]: Basic Idea

- "Radiosity" method: basis is field of thermal heat transfer
- Heat transfer theory describes radiation as transfer of energy from surface when that surface has been thermally excited

Radiosity [2]: Derivation of Radiosity Equation

- Radiosity equation describes amount of energy which can be emitted from surface, as sum of
 - * energy inherent in surface (e.g., light source)
 - * energy which strikes surface, being emitted from some other surface
- Energy which leaves surface j and strikes another surface i is attenuated by two factors
 - * "form factor" between surfaces *i* and *j*, which accounts for physical relationship between two surfaces
 - * the reflectivity of surface *i*, which will absorb some percentage of light energy striking surface

Radiosity [4]: Implementation, Pros & Cons

- Classic radiosity = finite element method
- Assumptions
 - * Diffuse reflectance
 - * Usually polygonal surfaces
- Advantages
 - * Soft shadows and indirect lighting
 - * View independent solution
 - * Precompute for set of light sources
 - * Useful for walkthroughs

Radiosity [8]: Formula – Overall Form Factor

Overall form factor between *i* and *j* is found by integrating

Adapted from slides ♥ 2001 - 2005 M. C. Sousa, University of Calgary CPSC 591/691: Rendering, Spring 2001 through Spring 2011 - http://bit.ly/ftMP0G

CIS 536/636 Introduction to Computer Graphics

Lecture 33 of 41

Radiosity [9]: Progressive Refinement

- Each element in scene maintains two energy values
 - * Accumulated
 - * Residual ("unshot")
- Choose one element as shooter
- Test visibility of every other element from this shooter
 - * If visible, calculate shooter-to-receiver energy transfer
 - * Based on shooter's residual, receiver's reflectance
- Progressive refinement: reset residual, repeat with new shooter
- Terminate when shooter residuals below threshold

Adapted from *GPU Gems 2*, Chapter 39, "Global Illumination Using Progressive Refinement Radiosity", © 2005 G. Coombe & M. Harris, nVidia Corporation – http://bit.ly/hXQ8Zd

Radiosity [10]: Example – Progressive Refinement

Myszkowski, K. (2001). Efficient and Predictive Realistic Image Synthesis. Habilitation thesis, Warsaw University of Technology – http://bit.ly/gij9k6

Politechnika Warszawska

CIS 536/636 Introduction to Computer Graphics

Lecture 33 of 41

Radiosity [11]: Example – Cornell Box

- This simulation of the Cornell box was done by Michael F. Cohen and Donald P. Greenberg for the 1985 paper The Hemi-Cube, A Radiosity Solution for Complex Environments, Vol. 19, No. 3, July 1985, pp. 31-40.
- The hemi-cube allowed form factors to be calculated using scan conversion algorithms (which were available in hardware), and made it possible to calculate shadows from occluding objects.

Radiosity [12]: Example – Discontinuity Meshing

- Dani Lischinski, Filippo
 Tampieri and Donald P.
 Greenberg created this image for the 1992 paper Discontinuity Meshing for Accurate Radiosity.
- It depicts a scene that represents a pathological case for traditional radiosity images, many small shadow casting details.
- Notice, in particular, the shadows cast by the windows, and the slats in the chair.

Radiosity [13]: Example – Focused Opera Lighting

- This scene from La Bohème demonstrates the use of focused lighting and angular projection of predistorted images for the background.
- It was rendered by Julie O'B.
 Dorsey, Francois X. Sillion, and Donald P. Greenberg for the 1991 paper Design and Simulation of Opera Lighting and Projection Effects.

Radiosity [14]: Formula – Overall Form Factor

- These two images were rendered by Michael F. Cohen, Shenchang Eric Chen, John R. Wallace and Donald P. Greenberg for the 1988 paper A Progressive Refinement Approach to Fast Radiosity Image Generation.
- The factory model contains 30,000 patches, and was the most complex radiosity solution computed at that time.
- The radiosity solution took approximately 5 hours for 2,000 shots, and the image generation required 190 hours; each on a VAX8700.

Radiosity [15]: Example – Cornell Virtual Museum

- Most of the illumination that comes into this simulated museum arrives via the baffles on the ceiling.
- As the progressive radiosity solution executed, users could witness each of the baffles being illuminated from above, and then reflecting some of this light to the bottom of an adjacent baffle.
- A portion of this reflected light was eventually bounced down into the room.
- The image appeared on the proceedings cover of SIGGRAPH 1988.

© 1988-1989 E. Chen & M. Cohen, Cornell University – http://bit.ly/e7Y1tj

Adapted from slides ♥ 2001 - 2005 M. C. Sousa, University of Calgary CPSC 591/691: Rendering, Spring 2001 through Spring 2011 - http://bit.ly/ftMPOG

CIS 536/636 Introduction to Computer Graphics

Lecture 33 of 41

Summary

- Reading for Last Class: Ray Tracing Handout
- Reading for Today: Chapter 15, Eberly 2e; Ray Tracing Handout
- Reading for Next Class: Tufte Handout 1
- Last Time: Ray Tracing Lab
 - * ACM SIGGRAPH demo: http://bit.ly/cllgx2
 - > 2-D "screen"
 - ➤ Moveable objects: transparent, opaque (both reflective)
 - * POV-Ray (http://www.povray.org) Example Renderings
- Next Class: Visualization Part 1 of 3

CIS 536/636 Introduction to Computer Graphics

Lecture 33 of 41

Terminology

- Caustic: Envelope of Light Rays Reflected/Refracted by Curved Object
- RT Direction
 - * <u>"Forward" RT</u>: Light-to-Scene, Scene-to-Eye (Only for Caustics)
 - * "Backward" RT: Eye-to-Scene, Scene-to-Light (Typical Order)
 - * Bidirectional RT: both directions (meet in middle)
- Stochastic Jitter: Local Random Perturbations of Traced Rays
- Distributed RT: Nonlocal Randomization
- Penumbra: Region Where Only Part of Light Source Blocked
- Blurring
 - * Soft shadows: blurred penumbras (achieved using shadow feelers)
 - * Gloss: property of smooth surface material (multiple reflected rays)
 - * Reflections: soften (also distributed RT)
 - **★** Transparency: lensed caustic effect (also distributed RT)
- Form Factor: Fraction of Energy Leaving Surface i That Reaches j
- Radiosity: Heat Transfer-Based Global Illumination Method

CIS 536/636 Introduction to Computer Graphics

Lecture 33 of 41