

























































Summary

- Cumulative Transformation Matrices (CTM): T, R, S
 - * Translation
 - * Rotation
 - * Scaling
- * Setup for Shear, Perspective to Parallel see Eberly, Foley et al.
- "Matrix Stack" in OpenGL: Premultiplication of Matrices
- Coming Up
 - * Parametric equations in clipping
 - * Intersection testing: ray-cube, ray-sphere, implicit equations (ray tracing)
- Homogeneous Coordinates: What Is That 4th Coordinate?
 - * http://en.wikipedia.org/wiki/Homogeneous_coordinates
 - * Crucial for ease of normalizing T, R, S transformations in graphics
 - * See: Slide 22 of this lecture
 - * Note: Slides 13 & 15 (T, S) versus 14 (R)
 - * Read about them in Eberly 2e, Angel 3e
 - * Special case: barycentric coordinates

Terminology

- <u>Cumulative Transformation Matrices (CTM)</u>: <u>Translation, Rotation, Scaling</u>
- Some Basic Analytic Geometry and Linear Algebra for CG
 - * Vector space (VS) set of vectors admitting addition, scalar multiplication and observing VS axioms
 - * Affine space (AS) set of points with associated vector space admitting vector difference, point-vector addition and observing AS axion
 - * Linear subspace nonempty subset S of VS (V, +, \cdot) closed under + and \cdot
 - * Affine subspace nonempty subset S of VS (V, +, ·) such that closure S' of S under point subtraction is a linear subspace of V
 - * Span set of all linear combinations of set of vectors
 - * <u>Linear independence</u> property of set of vectors that none lies in span of others
 - * Basis minimal spanning set of set of vectors
 - $\underline{\text{Dot product}} \text{scalar-valued } \underline{\text{inner product}} < u, \, \mathbf{v} > \; \equiv u \cdot \mathbf{v} \equiv u_1 v_1 + u_2 v_2 + \dots + u_n v_n$
 - Orthogonality property of vectors \mathbf{u} , \mathbf{v} that $\mathbf{u} \cdot \mathbf{v} = \mathbf{0}$
 - Orthonormality basis containing pairwise-orthogonal unit vectors
 - * Length (Euclidean norm) $\|\mathbf{v}\| = \sqrt{\mathbf{v} \cdot \mathbf{v}}$