Lecture 5 of 41 Lecture Outline

Viewing 3 of 4:
Normalizing Transformation and
Fixed-Function Graphics Pipeline

William H. Hsu
Department of Computing and Information Sciences, KSU

Reading for Last Class: Chapters 2, 16, Eberly 2 ¢; Foley et al. Slides
Reading for Today: Section 2.3 (esp. 2.3.7), 2.6, 2.7, Eberly 2 ¢
Reading for Next Class: §2.5.1, 3.1 Eberly 2°
Last Time: Basic Viewing Principles
* Projections: definitions, history
* Perspective: optical principles, terminology
® Today: View Volume Specification and Viewing Transformation
* View volumes: ideal vs. approximated
* Frustum in computer graphics (CG)
* Specifying view volume in CG: Look and Up vectors
* Aspect ratio, view angle, front/back clipping planes
* Focal length
* Parallel (cuboid) view volume & perspective frustum
* Normalizing transformation (NT) & viewing transformation (VT)
® Next Time: Fixed-Function Graphics Pipeline

KSOL course pages: http:/bit.ly/hGvXIH / http://bit.ly/eVizrE
Public mirror web site: http://www.kddresearch.org/Courses/CIS636
Instructor home page: http://www.cis.ksu.edu/~bhsu

Readings:
Today: Section 2.3 (esp. 2.3.7), 2.6, 2.7, Eberly 2¢ — see http://bit.ly/lieUq45

Next class:
This week: FVFH slides on Viewing -
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Where We Are

ecture [ Topic Primary Source(s)
Course Overview Chaper 1, Eberly 2
CG Basics: Tt Matrices; Lab 0 | Sections (§) 2.1, 2.2
Viewing 1: Overview. Projections §223-224.28
Viewing 2- Viewing Transformation §23esp 234 FVEH ol
Lab 1 lash & OpenGL Basics Ch. 2, 16", Angel Primer
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Lab 2a: Direct3D / DirectX Intro

Surface Detail 2 Textures: OpenGL Shading

.7, Direct3D handout
63,203 204 F T

Surface Detail 3: Mappings: OpenGL Textures

0.

5-2013

Surface Detail 4: Pixel/Vertex Shad.; Lab 2b

Surface Defail 5 Direct3D Shading: OGLSL

—34, Direct3D handout

Demos 1: CGA, Fun; Scene Graphs: State

—4.3, CGA handout

T. J. Watson University Professor of
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Professor of Computer Science
Brown University

Brown University

Steve Feiner
Steven K. Feiner

http://www.cs.brown.edu/~avd/

Lab 3a: Shading & Transparency .6, 20.1, Primer Professor of Computer Science &

Animation 1: Basics, Keyframes: HW/Exam .1 —5. Director, Computer Graphics and User Columbia University

Exam 1 review: Hour Exam 1 (evening] hapters 1- 4. 20 Interfaces Laboratory hitp: /lwww.cs. ~feiner/
18 Scene Graphs: Rendering: Lab 3b: Shader | §44—47 e
18 Demos 2: SFX: Skinning, Morphing 53-5.5, CGA handout Columbia University
20 Demos 3: Surfaces: B-reps/Volume Graphics 10.4, 12.7. Mesh handout
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Lightly-shaded entries denote the due date of a written problem set. hieavily-shaded enfries that of a
machine problem (programming assignment); bilie-shaded eniies, that of a paper review; and the green-
shaded entry, that of the term project

Green, blue and red letters denote exam review, exam, and exam solution review dates.
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Review: ¢ Review:
Types of Projections Synthetic Camera for 3-D Viewing
Planar geometric * The synthetic camera is the programmer’s model
projections to specify 3D view projection parameters to the
computer
* General synthetic camera: each package has its
Parallel Perspective own but they are all (nearly) equivalent. (PHIGS™

Camera, Computer Graphics: Principles and
Practice, ch. 6 and 7)

Orthographic Obligue  One-point
- position of camera

- orientation

(;Il;x:‘) Cabinet Two-point ~ field of view (wide angle, normal...)
Front
slevation

Axonometric  cayalier - depth of field (near distance, far distance)

Three-point
- focal distance
Side —_— ~tilt of view/film plane (if not normal to view
elevation direction, produces oblique projections)
- perspective or parallel projection? (camera near
objects or an infinite distance away)

Isometric
Other

CS123 uses a simpler, slightly less powerful

* Parallel projections used for engineering and model than the book’s
architecture because they can be used for - omit tilt of view/film plane, focal distance
measurements (blurring)

* Perspective imitates eyes or camera and
looks more natural

7 This package s no longer In use but stil has the most general
synthetic camera model for perspective and parallel projections.

Adapted from slides © 1997 — 2010 van Dam et al., Brown University
http://bit.ly/hiSt0f Reused with permission. [ S

Adapted from slides © 1997 — 2010 van Dam et al., Brown University
http://bit.ly/hiSt0f Reused with permission.
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G Review:
Look and Up Vectors

More concrete way to say the same thing as orientation

- soon you'll learn how to express orientation in terms of
Look and Up vectors

Look Vector

- the direction the camera Is pointing

- three degrees of freedom; can be any vector in 3-space
Up Vector

- determines how the camera is rotated around the Look
vector

- for example, whether you're holding the camera
horizontally or vertically (or in between)

- Up vector must not be parallel to Look vector (Up vector
may be specified at an arbitrary angle to its Look
vector)

Projection Up vector

g Look vector

Note: For ease of
specification, the Up vector
need not bé orthogonal to
the Look vector as long as
they are not paraliel

Adapted from slides © 1997 — 2010 van Dam et al., Brown University
http://bit.ly/hiSt0f Reused with permission.
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Review: View Volume for
Pevrspective Projection

Projection of
up vector

Width Angle

Up
vector

Height
Angle

|=— Near Distance —=|

I Far Distance |

* Removes objects too far from Position, which
otherwise would merge into “blobs”

* Removes objects too close to Position (would be
excessively distorted)

Adapted from slides © 1997 — 2010 van Dam et al., Brown University
http://bit.ly/hiSt0f Reused with permission.
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Stage 1:
Specifying View Volume

Lecture roadmap

- mathematics of planar geometric projections

+ how to get from view specification to 2D
image?

- deriving 2D image from 3D view
parameters is a hard problem

— easier to take a picture from

canonical view volume (3D parallel
projection cuboid)

canonical view position (camera at the
origin, looking down the negative z-axis)

— break into three stages:

1. get parameters for view specification
(covered in last lecture)

2. transform from specified view volume into
canonical view volume

3. using canonical view, clip, project, and
rasterize scene to make 2D image

Adapted from slides © 1997 — 2010 van Dam et al., Brown University
http://bit.ly/hiSt0f Reused with permission.
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Review: View Volume for
Pavrallel Projection

N\

Width

Far
distance

4
l Height
P

Neaf
distance
N

Projection of

up vector

U

P
vector Position

Limiting view volume useful for eliminating
extraneous objects

Orthographic parallel projection has width and
height view angles of zero

Adapted from slides © 1997 — 2010 van Dam et al., Brown University
http://bit.ly/hiSt0f Reused with permission.

s of Computing & Info
Lecture 5 of 41 g &
o Computer Graphics K

w

Viewing in Three Dimensions:
Mathematics of Projections

+ Reduce degrees of freedom; four steps
to specifying view volume
1. Position camera (and therefore its
view/film plane)
2. Orient camera to point at what you
want to see
3. Define field of view
perspective: aspect ratio of film
and angle of view: between wide
angle, normal, and zoom
parallel: width and height

4. Choose perspective or parallel
projection

(Optional: Specify a focal distance and exposure
time. Our camera won't do this.)

Adapted from slides © 1997 — 2010 van Dam et al., Brown University
http://bit.ly/hiSt0f Reused with permission.
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Examples of View Volume [1]:
Perspective (Frustum)
« Perspective Projection: Truncated
Pyramid - Frustum

_ -
Up Vect .
p Vector S+~ Width Angle

TN

'\ Height
- / ) Angle
Position T

|+—Near Distance —+|

= Far Distance -

+ Look vector is the center line of the
pyramid, the vector that lines up with
“the barrel of the lens”

Adapted from slides © 1997 — 2010 van Dam et al., Brown University
http://bit.ly/hiSt0f Reused with permission.
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Examples of View Volume [2]:
Parallel (Cuboid)

» Orthographic Parallel Projection: Truncated
View Volume - Cuboid

Viewing Transformation:
World (%, y, 2) to Camera (u, v, w)

Placement of view volume (visible part of world) specified
by camera’s position and orientation

intersect at Position

-~ Position (a point) A
\ - Look and Up vectors —i ] [
y G - Shape of view volume specified by -
Width = i
horizontal and vertical view angles  perspective projaction
% Far ~ front and back clipping planes
distance 5 «  Perspective projection: projectors N =

Parallel projection: projectors parallel

e
to Look vector, but never intersect proecion

(or intersect at infinity)

P
l Height
~

Coordinate Systems

- world coordinates - standard right-handed xyz
3-space

- camera coordinates - camera-space right handed
coordinate system
(u, v, w); origin at Position
and axes rotated by
orientation; used for
transforming arbitrary
view into canonical view

Position

+ Orthographic parallel projection has no view Arbitrary Perspective Frustum
angle parameter

# v isn't srictl the Up vector but the projection of Up

Adapted from slides © 1997 — 2010 van Dam et al., Brown University
http://bit.ly/hiSt0f Reused with permission. [

Adapted from slides © 1997 — 2010 van Dam et al., Brown University
http://bit.ly/hiSt0f Reused with permission.
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Arbitrary View Volume
Too Complex

We have specified arbitrary view with viewing parameters

Problem: map arbitrary view specification to 2D image of
scene. This is hard, both for clipping and for projection

Solution: reduce to a simpler problem and solve

— there is a view specification from which it is easy to
take a picture. We'll call it the canonical view: from
the origin, looking down the negative z-axis

- think of the scene as lying behind a window and
we're looking through that window

- parallel projection
- sits at origin:
Position = (0, 0, 0)
- looks along negative z-axis:
ook Look vector = (0, 0, ~1)
~ oriented upright:
Up vector = (0, 1, 0)
- film plane extending from -1 to 1

Normalizing to Canonical View Volume

+ Goal: transform arbitrary view and world to
canonical view volume, maintaining
relationship between view volume and world,
then take picture

- for parallel vlew volume, transformation is

up of linear transformations

(rotatlons and scales) and translation/shift

- in case of a perspective view volume, it
also contains a non-affine perspective
transformation that turns a frustum into a
parallel view volume, a cuboid

- composite transformation to transform
arbitrary view volume to canonical view
volume, named the normallzmg
transformation, is still a
homogeneous matrix that typlcally has an
inverse

- easy to clip against this canonical view
volume; clipping planes are axis-aligned!

- projection using canonical view volume is

in x and
¥ even easier: just omit z-coordinate
- for oblique parallel projection, a shearing
transform is part of composite transform,
to “de-oblique” view volume
+ Note: Look vector along negative, not positive, z-axls is ¥ Afine ianformatons reseve parllelar bk v ngths and anges The
arbitrary but makes math easier; ditto choosing - <1 Eansformation, which docs not preserve porliiem Tt

Adapted from slides © 1997 — 2010 van Dam et al., Brown University
http://bit.ly/hiSt0f Reused with permission. [

Adapted from slides © 1997 — 2010 van Dam et al., Brown University
http://bit.ly/hiSt0f Reused with permission.
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Viewing Transformation *

Building Viewing Transformation
Normalizing Transformation

From View Specification

+  We know tdhe vlew speclﬁcatlon Position, Look
«  Problem of “taking a picture” has now been vector, and Upi
g Need to derive an afﬂne transformation from
reduced to problem of flndlng correct these parameters to translate and rotate the
normalizing transformation

canonical view into our arbitrary view

- tl’;ethscallng of \the F;rrg (i.e. kthe cross-section
-7 2 3 ol of e view volume) to make a square cross-

+ Finding rotation component of normalizing section will happen at a later stage, s wil

transformation is hard. glippin

Translation is easy to find: we want to translate

the origin to the point Position; therefore, the

translation matrix is

- Easier to find inverse of rotational
component (as you will see in a few slides.)

. . 100 P
+ Digression: %
. 9 o s T(Position) = 0 1 0 Pos,
- find inverse of normalizing transformation @osttiom = o 1 Pos.

- called the viewing transformation 0 0/0 1

« turns the canonical view into the arbitrary

B Rotation is harder: how do we generate a rotation
view matrix from the viewing specifications to turn

X, ¥, 2 intou, v, w?
(X, ¥, 2) to (u, v, w) - a digression on rotation will help answer this

Adapted from slides © 1997 — 2010 van Dam et al., Brown University
http://bit.ly/hiSt0f Reused with permission. [

Adapted from slides © 1997 — 2010 van Dam et al., Brown University
http://bit.ly/hiSt0f Reused with permission.
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Rotation [1]

3 x 3 rotation matrices

+  We learned about 3 x 3 matrices that “rigid-body
rotate” the world (we're leaving out

homogeneous coordinate for simplicity)

When they do, the three unit vectors that used to

point along the x, y, and z axes are rotated to a new
orientation

Because It is a rigid-body rotation

- resulting vectors are still unit length

- resulting vectors are still perpendicular to each other
~ resulting vectors still satisfy the “right hand rule”

Any matrix transformation with these three properties
is a rotation about some axis by some amount!

Let's call the three x-axis, y-axis, and z-axis-aligned
unit vectors e, e, &;

Writing out:

1 0
e=|0 e=|1
0 0

Adapted from slides © 1997 — 2010 van Dam et al., Brown University
http://bit.ly/hiSt0f Reused with permission.
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Rotation [3]

First, solve easier problem of finding the inverse of a
rotation matrix

As we learned in the transformations lecture, for a
rotation matrix with columns v,

~ columns must be unit vectors: |[v;[| = 1
~ columns are perpendicular: v, + v, = 0 (i =)
Therefore

livil =1
but all other
Viev=0G=7)

We can write this matrix dot products as M7M =1
where M7 is a matrix whose rows are v, v, and v3

Also, for matrices in general, M-1M = I, (actually, M-
exists only for “well-behaved" matrices)

Therefore, for rotation matrices, we have just shown
that M7 is simply M7

MM=I A MM=I o> M=M!
+ MTis trivial to compute, M- takes considerable work:
big win!

Adapted from slides © 1997 — 2010 van Dam et al., Brown University
http://bit.ly/hiSt0f Reused with permission.
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Construction of Orientation Matrix

« Know how to invert a rotation matrix, but
how do we build it from the viewing
specification to to normalize the camera-
space unit vector axes (u, v, w) located at
the origin into the world-space axes (x, y, z).
— rotation matrix M will turn (x, y, 2) into (u, v, w)
and has columns (u, v, w) - viewing matrix
- conversely, M2=MT turns (u, v, w) into (x, y, 2).
MT has rows (u, v, w) - normalization
matrix
Reduces the problem of finding the correct
rotation matrix into finding the correct
perpendicular unit vectors u, v, and w
Restatement of rotation problem:
Using Position, Look vector, and Up vector,
compute viewing rotation matrix M with
columns u, v, and w, then use its inverse,
the transpose M7, with row vectors u, v, w to
get the normalization rotation matrix

Adapted from slides © 1997 — 2010 van Dam et al., Brown University
http://bit.ly/hiSt0f Reused with permission.
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Rotation [2]

Let’s call our rotation matrix M, and let’s label its
columns v, v, and vy

M=[y v v

When we multiply M by e;, what do we get?
1

F T R Me, is the first
- 0 column of M

Similarly for e, and e;:

0

Mey,=[v; v, v]|1|=v, ———s Meis the second
: - ) column of M

5 Mejis the third
column of M

Therefore M = [u v w] where u, v, and w are unit column
vectors, will rotate the x, y, z axes into the u, v, w axes

And M would rotate the u, v, w axes into the x, y, z
axes, which is what we actually want

Therefore we first find M by computing u, v and w from
the viewing specification parameters, and then we need
to find an easy way of getting the inverse of M.

Adapted from slides © 1997 — 2010 van Dam et al., Brown University
http://bit.ly/hiSt0f Reused with permission.
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Rotation [4]

Summary

« If M is a rotation matrix, then its
columns are pairwise perpendicular and
have unit length

Inversely, if the columns of a matrix
are pairwise perpendicular and have
unit length, then the matrix is a
rotation

For such a matrix,

1 00
M'™M={0 10
0 01

Most importantly, then M" =M™ and
this will help us build the normalizing
transformation from the easier to find
viewing transformation.

Adapted from slides © 1997 — 2010 van Dam et al., Brown University
http://bit.ly/hiSt0f Reused with permission.
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Finding (u, v, w) from
Position, Look, and Up [1]

»  We know that we want the (u, v, w) axes to have
the following properties:

— our arbitrary Look Vector will lie along the
negative w-axis

— a projection of the Up Vector into the plane
defined by the w-axis as its normal will lie
along the v-axis

— The u-axis will be mutually perpendicular to
the v and w-axes, and will form a right-handed
coordinate system

+ Plan of attack: first find w from Look, then find v
from the Up and w vector, then find v as a normal
to the plane defined by w and v

Adapted from slides © 1997 — 2010 van Dam et al., Brown University
http://bit.ly/hiSt0f Reused with permission.
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Finding (u, v, w) from
Position, Look, and Up [2]

Finding w

«+ Finding w is easy. Look vector in canonical
volume lies on -z. Since z maps to w, w is a
normalized vector pointing in the opposite
direction from our arbitrary Look vector

— Look

vp=—

[Look]

+ Note that Up and w define a plane, and that
u is a normal to that plane, and that v is a
normal to the plane defined by w and v
Adapted from slides © 1997 — 2010 van Dam et al., Brown University
http://bit.ly/hiSt0f Reused with permission.
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Finding (u, v, w) from
Position, Look, and Up [4]

Finding u

We can use cross-product, but which one should
we use?
- wXvand v X w are both perpendicular to the
plane, but in different directions .

Answer: cross-products are right-handed, so use
v X w to create a right-handed coordinate frame
y

g XW
T vx]

As a reminder, the cross product of two vectors &
and b is:

b —ab,
axb=| ab -ap,

ab,—ab,

Adapted from slides © 1997 — 2010 van Dam et al., Brown University
http://bit.ly/hiSt0f Reused with permission.
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Transforming to Canonical View

T

Given a parallel view specification and vertices of
a bunch of objects, we use the normalizing
transformation, i.e., the inverse viewing
transformation, to normalize the view volume to
a cuboid at the origin, then clip, and then project
those vertices by ignoring their z values

Y

1

Note: it's a cuboid, not a
cube (transformation
arithmetic and
dlipping are easier)

ook
P
E onc ctp P
azs
o
o Cip are
uz
(o
A
Tl ing Pre f I

Normalize the perspective view specification to a
unit frustum at the origin looking down the —z
axis; then transform the perspective view volume
intg'a parallel (cuboic) view volume, simplifying
both clipping and projection

Adapted from slides © 1997 — 2010 van Dam et al., Brown University
http://bit.ly/hiSt0f Reused with permission.
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Finding (u, v, w) from
Position, Look, and Up [3]

Finding v

Problem: find a vector, v, perpendicular to w

Solution: project out the w component of the Up
vector and normalize

Up

w is unit length, but Up vector might not be unit
length or perpendicular to w, so we have to
remove the w component and then normalize

By removing the w component from the Up vector,
the resulting vector is the component of Up in a
direction perpendicular to w

To create the orthogonal coordinate frame of the
camera we need a third vector

Adapted from slides © 1997 — 2010 van Dam et al., Brown University
http://bit.ly/hiSt0f Reused with permission.
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Finding (u, v, w) from
Position, Look, and Up [S]
To summarize

— Look
|zook|

Ip—(weUp)w
[t = v e Up)w]

Vxw
o]

+ The viewing transformation is now fully
specified
— knowing u, v, and w, we can rotate the
canonical view into the user-specified
orientation

stte 2lready know how to translate the view
Important Note: we don't actually apply
the forward viewing transformation.

Instead, the inverse viewing transformation,
namely the normalizing transformation, will
be used to map the arbitrary view into the
canonical view

u=

Adapted from slides © 1997 — 2010 van Dam et al., Brown University
http://bit.ly/hiSt0f Reused with permission.
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z Normalizing View Volume:
Overview

The Parallel Case
+ Decomposes into multiple steps

+ Each step defined by a matrix transformation
+ The product of these matrices defines the whole
transformation in one large, composite matrix.
The steps are:
— move the eye/camera to the origin
— transform the view so that (u, v, w) is aligned
with (x, y, 2)
adjust the scales so that the view volume fits
between -1 and 1 in x and y, the back clip plane
lies at z = -1, the front plane at z = 0

The Perspective Case
+ Same as parallel, but add one more step:

— distort pyramid to cuboid to achieve perspective
distortion to align the front clip plane with z = 0

Adapted from slides © 1997 — 2010 van Dam et al., Brown University
http://bit.ly/hiSt0f Reused with permission.
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Normalizing View Volume:
Step 1

Move the eye to the origin
+  We want a matrix to transform
(Pos,, Pos,, Pos;,) to (0, 0, 0)

- Solution: it's just the inverse of the viewing
translation transformation:

(& t,, t;) = (-Pos,, —Pos,, —Pos;)

We will take the matrix:

1 0 0 —Pos,
0 1 0 —Pos
- 2
™10 0 1 —Pos,
000 1

and we will multiply all vertices explicitly (and the
camera implicitly) to preserve the relationship
between camera and scene, i.e., for all vertices p

This will move Position (the “eye point”) to
(0,0,0)

P'=Tpmcl
Adapted from slides © 1997 — 2010 van Dam et al., Brown University
http://bit.ly/hiSt0f Reused with permission.
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Normalizing View Volume:
Step 3

Rotate the view and align with the

world coordinate system

We found out that the view transformation matrix M with

columns u, v, and w would rotate the x, y, z axes into the
u, v, and w axes

We now apply the inverse (transpose) of that rotation, M7,
to the scene. That is, a matrix with rows u, v, and w will
rotate the axes u, v, and w into the axes X, y, and z
~ Define M, to be this rotation matrix transpose
Now every vertex in the scene (and the camera implicitly) is
multiplied by the composite matrix
M_T,

We've translated and rotated, so that the Position is at the
origin, and the (u, v, ) axes and the (x, y, z) axes are

current
situation

Adapted from slides © 1997 — 2010 van Dam et al., Brown University
http://bit.ly/hiSt0f Reused with permission.
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Normalizing View Volume:
Step 5
Scaling Clipping Planes

- Scale independently in x and y:
looking down from above, we see this:

(-1,0,-1)

B (1,0,-1)

+ Want to scale in x to make angle 90 degrees
+ Need to scale in x by
1

« Similarly in y

Adapted from slides © 1997 — 2010 van Dam et al., Brown University
http://bit.ly/hiSt0f Reused with permission.
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Normalizing View Volume:
Step 2

« Position now at origin

But we're hardly done! Still need to:

+ align orientation with x,y,z world coordinate system
+ normalize proportions of the view volume

Adapted from slides © 1997 — 2010 van Dam et al., Brown University
http://bit.ly/hiSt0f Reused with permission.
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= Normalizing View Volume:
Step 4

+ We've gotten things more or less to the right place, but

the proportions of the view volume need to be
normalize

— last affine transformation: scaling

+  Need to be normalized to a square cross-section 2-by-2
units

- why is that preferable to the unit square?

Adjust so that the corners of far clipping plane
eventually lie at (+1, +1, ~1)

+ One mathematical operation works for both parallel and
perspective view volumes

Imagine vectors emanating from origin passing through
comners of far clipping plane. For perspective view
volume, these are edges of volume. For parallel, these
lie inside view volume

First step: force vectors into 45-degree angles with x
and y axes

« We'll do this by scaling in x and y

Adapted from slides © 1997 — 2010 van Dam et al., Brown University
http://bit.ly/hiSt0f Reused with permission.
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Normalizing View Volume:
Step &

The xy scaling matrix

- The scale matrix we need looks like this:

+ S0 our current composite transformation
looks like this:
S, M,,T,

M vot L trans
Adapted from slides © 1997 — 2010 van Dam et al., Brown University
http://bit.ly/hiSt0f Reused with permission.
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Normalizing View Volume:
Step 7

One more scaling matrix

Relative proportions of view volume planes are now
correct, but the back clipping plane is probably lying
at some z # -1, and we want all points inside view
volume to have0 < z < -1

Need to shrink the back (far) plane to be at z = -1

The z distance from the eye to that point has not
changed: it's still far (distance to far clipping plane)

If we scale in z only, proportions of volume will
change; instead we scale uniformly:

k)
Sar

Adapted from slides © 1997 — 2010 van Dam et al., Brown University
http://bit.ly/hiSt0f Reused with permission.
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Normalizing View Volume:
Results

+ Qur near-final composite normalizing
transformation for canonical perspective
view volume:

84S, M, T,

Jar rot* trans

— Tians takes the camera’s Position and
moves the camera to the world origin

- M, takes the Look and Up vectors and
orients the camera to look down the -z
axis

- S,, takes 6,-6,and scales the clipping
planes so that the corners are at (1, +1)

— S, takes the far clipping plane and
scales it to lie on the z=-1 plane

Adapted from slides © 1997 — 2010 van Dam et al., Brown University
http://bit.ly/hiSt0f Reused with permission.
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Perspective Transformation [2]

What is the value of k? Trace through the steps.
p first gets moved to just near - Look

fook vector | v y

look vecror
L35
near dist.” ‘Q
- - -
z Z™ near dist

This point is then rotated to (near)(-e;)
y
4

neardist._y

look vector
The xy scaling has no effect, and the far
scaling changes this to( near| ,so k:M
T far

Adapted from slides © 1997 — 2010 van Dam et al., Brown University
http://bit.ly/hiSt0f Reused with permission.
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Normalizing View Volume:
Step 8

The Current Situation

+ Farplaneatz =

v

(1,1,-1)

(kK]

+ Near clip plane now at z = -k (note k > 0)
Adapted from slides © 1997 — 2010 van Dam et al., Brown University
http://bit.ly/hiSt0f Reused with permission.
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Perspective Transformation [1]

»  We’ve put the perspective view volume into
canonical position, orientation and size

- Let's look at a particular point on the
original near clipping plane lying on the
Look vector:

p = Position + near - Look

It gets moved to a new location
’
P =SuS M TP

on the negative z-axis, say

’
p'=0 0 —k)
Adapted from slides © 1997 — 2010 van Dam et al., Brown University
http://bit.ly/hiSt0f Reused with permission.
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Perspective Transformation [3]

Transform points in standard perspective view
volume between -k and -1 to standard parallel
view volume
“z-buffer,” used for visible surface calculation,
needs z values to be [0 1], not [-1 0]. Perspective
transformation must therefore transform scene to
positive range 0 S z < 1

y 1.1 y (1)

S negz r posz
< LJ

The matrix
that does this: [)::
(Remember that

o<k<1.) Lo
Why not originally align camera to +z axis?

- Choice is perceptual, we think of looking through a
display device into the scene that lies behind window

Note: not 1!

1) Flip the z-axis

0
1
0
0 and unhinge

Adapted from slides © 1997 — 2010 van Dam et al., Brown University
http://bit.ly/hiSt0f Reused with permission.
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Perspective Transformation [4]

+ Take a typical point prior to perspective transform p=

x
and rewrite it as X Y
5 B
—k—d =
1
+ 0<d<l1-Fk; pis parameterized by distance along frustum

- whend = 0, pis on near clip plane; when d = (1-k),
pis on far clip plane

— depending on x, y, and z, p may or may not actually
fall within frustum

« Apply D (from previous slide) to p to get new point p*

x x x 17 x/k+d)
L @ ¥lle+d)
Tl-die-n |7 -k -Dk+d)

1 LT k+d 1

+ Note: w=k+d =1 s in the last step we must divide
through by k+d 111

~ this causes x and y to be “perspectivized”, with points closer to
the near clip plane being scaled up the most

~ this also transforms z, but z is tossed out when we project onto
the film plane so it ultimately doesn't matter

~ understanding homogenous coordinates is essential to graphics
« Try values of d: 0, 1-k, ¥2(1-k), -1, 1

Adapted from slides © 1997 — 2010 van Dam et al., Brown University
http://bit.ly/hiSt0f Reused with permission.
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Perspective Transformation:
End Result

« Final transformation:

P'= DS 1Sy Mot Tyens P

persp

Note that once the viewing parameters (Position,
Up vector, Look vector, Height angle, Aspect ratic
Near, and Far) are known, the matrices

D porips S far s Sy M rors Toyans

can all be computed and multiplied together to
get a single 4x4 matrix that Is applied to all
points of all objects to get them from “world
space” to the standard parallel view volume.

This is a huge win for homogeneous coordinates

NOTE: Slide nomenclature differs from the book:
- kis -cin the book

_ nearisn, faris f
Adapted from slides © 1997 — 2010 van Dam et al., Brown University
http://bit.ly/hiSt0f Reused with permission.
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Clipping

We said that taking the picture from the canonical
view would be easy: final steps are clipping and
projecting onto the film plane

Need to clip scene against sides of view volume

However, we've normalized our view volume into
an axis-aligned cuboid that extends from -1 to 1
inx and y and from 0 to 1 in z

¢1,1,1)

(-1,1,0)
11,0
S
"™\ Front clip plane
) transforme to here
Back dip plane )
Tanstorms to the 21 plane (1,-1,0)

Note: This is the flipped (in z) version of the
canonical view volume

Clipping is easy! Test x and y components of
vertices against +/-1. Test z components against
Oand1

Adapted from slides © 1997 — 2010 van Dam et al., Brown University
http://bit.ly/hiSt0f Reused with permission.
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Perspective Transformation [5]

x/(k+d)
Yik+d)
| -die-kr )
L 1
What happens to x and y when d gets very
large? x—>0and y>0 asd »>»
- note: when we let d increase beyond (1-k), p is
now beyond the frustum (such lines will be clipped)
This result provides perspective foreshortening:
parallel lines converge to a vanishing point

What happens when d is negative?
T ow L i o of e Nt i i, _
possibly behind the eye point

~ result: when (i-d) becomes negative, the signs of
x and y will be flipped: text would be upside-down
and backwards
you won't see these points because they are
clipped
* What happens after perspective transformation?
« Answer: parallel projection is applied to
determine location of points onto the film plane
~ projection is easy: drop z!
~ however, we still need to keep the z ordering
intact for visible surface determination

* Again consider
»

Adapted from slides © 1997 — 2010 van Dam et al., Brown University
http://bit.ly/hiSt0f Reused with permission.
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Stage 3:
Making 2-D Image
+ So far we've
— Specified the view volume

— Transformed from the specified
view volume into the canonical
view volume

+ Last stage involves
— Clipping
— Projecting

Adapted from slides © 1997 — 2010 van Dam et al., Brown University
http://bit.ly/hiSt0f Reused with permission.
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Final Projection:
Viewport Mapping
Can make an image by taking each point and
“ignoring z” to project it onto the xy-plane
© A naint (v.v7) whara
Entire problem can be reduced to a composite
matrix multiplication of vertices, clipping, and a
final matrix multiplication to produce screen
coordinates.

+ Final composite matrix (CTM) is composite of all
modeling (instance) transformations (CMTM)
accumulated during scene graph traversal from
root to leaf, composited with the final composite
normalizing transformation N applied to the
root/world coordinate system:

D N= Dpcr:pSfarSn “ImrTm:n:
2) CTM = N-CMTM
3) P'=CTM . p forevery vertex P defined in

its own coordinate system
4) P, =512-P'+1 foral clipped P’
1 Note thatthese function ae ot exactly corect siac i xoryis ever 1, then we il get
Kory fote 1024 4
cases racefull. Ia mostcases. making s fhat e gt the oo o 5120x+1) will addess
{his problem socethe desed % will e s than 1

Adapted from slides © 1997 — 2010 van Dam et al., Brown University
http://bit.ly/hiSt0f Reused with permission.
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Fixed Function Graphics Pipeline:
Composite Transformation Matrix

+  Entire problem can be reduced to a composite
matrix multiplication of vertices, clipping, and a
final matrix multiplication to produce screen
coordinates.

« Final composite matrix (CTM) is composite of all
modeling (instance) transformations (CMTM)
accumulated during scene graph traversal from
root to leaf, composited with the final composite
normalizing transformation N applied to the
root/world coordinate system:

1 N=D persp N farS;y"\'[m: 1 trans
2) CIM =N -CMTM
3) P'— CTM . p for every vertex P defined in

its own coordinate system

1) P

ereen = 912 P'+1 for all clipped P’

Adapted from slides © 1997 — 2010 van Dam et al., Brown University
http://bit.ly/hiSt0f Reused with permission.
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Putting It All Together:
Coordinate Spaces & Transformations

(See Eberly 2e § 2.3.2-2.3.7, pp. 48-66, especially p. 58)

1. model coordinates / object coordinates Krmodel » (Huora)

2. world coordinates / scene coordinates Xuworld > (Hyiew)

3. camera coordinates / eye coordinates Ko > (Hopro

4. (optional) view coordinates / clip coordinates Xetip » (perspective division)
5. normalized device coordinates (NDC) Kode: > (Huindow)

6. screen coordinates Kuindow

Huota:  modelview transformation

“view matrix” (really NT!)
Hooi:  projection matrix
w: perspective division

Normalizing transformation: Xyeqg — Xnde '{

Huindow: Window matrix
(aka viewport transformation)

Computing &

2

Summary

® Last Time: View Volume Specification and Viewing Transformation
#* View vi : ideal vs. appr

# Specifying view volume in CG: Look and Up vectors
#* Aspect ratio, view angle, front/back clipping planes, focal length
® Today
#* Viewing transformation (NT)
* Rotation
#* Finding camera coordinates (u, v, w) from Look, Up
# Normalizing transformation (NT)
#* Perspective transformation D
# Overall CTM of fixed-function pipeline
#* Intro to clipping
® Coming Week
# Lab: OpenGL basics
#* Drawing lines, polygons
#* Parametric clipping
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Terminology

® Today: View Volumes, Viewing Transformation
# Parallel projection (cuboid) view volume vs. perspective projection frustum
Front/back (near/far) clipping planes

User coordinates (arbitary): (u, v, w), aka (u, v, n) or (R, U, D) in Eberly
Perspective transformation D: “morphs” frustum into cuboid
# Normalizing transformation: inverse of viewing transformation (easier)
® Other Topics
# Clipping
» Given view volume

*
# World coordinates (canonical): (x, y, z)
*
*

> Problem of determining visible elements of scene
# Cumulative Transformation Matrices (CTM)

» Translation, Rotation, Scaling (TRS)

»> Used to map arbitrary view to canonical view

> Then “ready to take picture”
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