Lecture 12 of 41

Surface Detail 3 of 5: Mappings
OpenGL Textures

William H. Hsu
Department of Computing and Information Sciences, KSU

KSOL course pages: http://bit.ly/hGvXIH / http://bit.ly/eVizrE
Public mirror web site: http://www.kddresearch.org/Courses/CIS636
Instructor home page: http://www.cis.ksu.edu/~bhsu

Readings:
Today: Sections 20.5 — 20.13, Eberly 2¢ — see http://bit.ly/lieUq45
Next class: Section 3.1, Eberly 2e
Brown CS123 slides on Polygons/Texture Mapping — http://bit.ly/h2VZn8
Wayback Machine archive of Brown CS123 slides: http://bit.ly/gAhJbh
Groller & Jeschke slides on Texturing — http://bit.ly/dJFYq9 5 -

CIS 536/636 Computing & Information Sciences

Lecture 12 of 41

Introduction to Computer Graphics Kansas State University

Lecture Outline

Reading for Last Class: §2.6.3, 20.3 — 20.4, Eberly 2¢
Reading for Today: §20.5 — 20.13, Eberly 2¢ (Many Mappings)
Reading for Next Class: §3.1, Eberly 2¢

Last Time: Texture Mapping Explained

* Definitions and design principles
* Enclosing volumes: cylinder, sphere, box
* Mapping methods
> reflected ray — bounce ray off object O
> object normal - ray from face normal of object (polygon mesh)
> object center — ray from center of object
> intermediate surface normal - ray from inside of enclosing S
® Today: Mappings, OpenGL Texturing
* Shadow, reflection/environment, transparency, bump, displacement
* Other mappings: gloss, volumetric fog, skins, rainbows, water
#* OpenGL texture mapping how-to /—

CIS 536/636 Computing & Information Sciences

Lecture 12 of 41

Introduction to Computer Graphics Kansas State University

Where We Are

Lecture | Topic Primary Source(s)

0 Course Ovenview Chapter 1, Eberly 2°

1 CG Basics: Transformation Matrices; Lab 0 | Sections (§) 2.1, 2.2

2 Viewing 1: Overview, Projections §223-224,28

3 Viewing 2: Viewing Transformation & 23 esp. 2.3.4; FVFH slides
4 Lab 1a: Flash & OpenGL Basics Ch. 2, 16', Angel Primer

] Viewing 3: Graphics Pipeline §23esp. 23.7,26,2.7

6 Scan Conversion 1: Lines, Midpoint Algorithm | §2.5.1, 3.1; FVFH s ;

rd Viewing 4: Clipping & Culling; Lab 1b §2.3.5,24 313

8 Scan Conversion 2: Polygons, Clipping Intro §24,25e5p.254,3.16

9 Surface Detail 1: llumination & Shading §25,261-262 432 202
10 §2.7, leectuD handout

Lah 2a: Dlrec13D J' Dlrectx Intro

5 205 2[}13

14 Surface Detail 5 DlrectaD Shading; OGLSL § 3.2 — 3.4, Direct3D handout
15 Demos 1: CGA, Fun; Scene Graphs: State § 4.1 -4.3, CGA handout
16 Lab 3a: Shading & Transparency § 2.8, 20.1, Primer
17 Animation 1: Basics, Keyframes; HW/Exam | §5.1-5.2

Exam 1 review: Hour Exam 1 (evening) Chapters 1-4, 20
18 Scene Graphs: Rendering; Lab 3b: Shader | §4.4-4.7
19 Demos 2: SFX; Skinning, Morphing § 5.3 - 5.5, CGA handout
20 Demos 3: Surfaces; B-reps/Volume Graphics | § 10.4, 12.7, Mesh handout

Lightly-shaded entries denote the due date of a written problem set; heavily-shaded entries. that of a

machine problem (programming assignment); blue-shaded entries, that of a paper review; and the green-

shaded entry, that of the term project.

Green, blue and red letters denote exam review, exam, and exam solution review dates.

CIS 536/636 Computing & Information Sciences

Lecture 12 of 41 Kansas State University

Introduction to Computer Graphics

‘ Review:
OpendGL Shading (Overview)

® Set Up Point Light Sources

+ Directional light given by “position” vector

GLfloat light_position[] = {-1.0, 1.0, -1.0, 0.0};
glLightfv(GL_LIGHTO, GL_POSITION, light_position);

» Point source given by “position” point

GLiloat light_position[] = {-1.0, 1.0, -1.0, 1.0};
glLightfv(GL_LIGHTO, GL_POSITION, light_position);

® Set Up Materials, Turn Lights On

GLfloat mat_specular[]={0.0, 0.0, 0.0, 1.0};
GLfloat mat_diffuse[]={0.8, 0.6, 0.4, 1.0};
GLfloat mat_ambient[]={0.8, 0.6, 0.4, 1.0};
Frank Pfenning GLfloat mat_shininess={20.0};
. glMaterialfv(GL_FRONT, GL_SPECULAR, mat_specular);
Professor of Computer Science gIMaterialfv(GL_FRONT, GL_AMBIENT, mat_ambient):

School of Computer Science glMaterialfv(GL_FRONT, GL_DIFFUSE, mat_diffuse);

Carnegie Mellon University glMaterialf(GL_FRONT, GL_SHININESS, mat_shininess);

http://www.cs.cmu.edu/~fp/ glShadeModel(GL_SMQOOTH); /*enable smooth shading */
glEnable(GL_LIGHTING); /* enable lighting */

See also: OpenGL: A Primer, 3¢ (Angel) glEnable(GL_LIGHTO); /* enable light 0 */

http://bit.ly/hVcVWN

® Start Drawing (glBegin .. glEnd)

Adapted from slides © 2003 F. Pfenning, Carnegie Mellon University ;
http://bit.ly/g1J2nj &

CIS 536/636 Computing & Information Sciences

Lecture 12 of 41

Introduction to Computer Graphics Kansas State University

Acknowledgements:
Many Mappings

Eduard Groller

Associate Professor
Director, Visualization Working Group

http://bit.ly/hUUM94

Stefan Jeschke

Research Assistant
http://bit.ly/hUUM94

Institute of Computer Graphics and Algorithms
Technical University of Vienna

Institut fir Computergraphik und Algorithmen
Arbeitsbereich Computergraphik

le TECHNISCHE UNIVERSITAT WIEN

Texturing material from slides © 2002 E. Groller & S. Jeschke, Vienna University of Technology
http://bit.ly/dJFYq9

Ji\\?k\i\ﬁ\‘%m

N

|

Mapping material from slides © 1995 — 2009 P. Hanrahan, Stanford University
http://bit.ly/hZfsjZ (CS 348B, Computer Graphics: Image Synthesis Techniques)

cliz 536’/,"36’ . Lecture 12 of 41
Introduction to Computer Graphics

Computing & Information Sciences

Kansas State University

: Overview of Mappings:
Eberly 2¢ Chapter 20 Sections

® Fine Surface Detail: Bump (§20.5 Eberly 2¢)
® Material Effects: Gloss (§20.6)
® Enclosing Volumes
* Sphere (§20.7)
* Cube (§20.8)
® Light
* Refraction for Transparency (§20.9)
* Reflection aka Environment (§20.10)
® Shadow
* Shadow Maps (§20.11, 20.13)
* Projective Textures (§20.12)
® More Special Effects (SFX)

* Fog (§20'14) Babylon 5
* Skinning (§201 5) © 1993 — 1998 Warner Brothers Entertalnnc.
* Iridescence (§20.16), Water (§20.17) %*/_;

CIS 536/636 Computing & Information Sciences

Lecture 12 of 41

Introduction to Computer Graphics Kansas State University

Shadow Mapping [1]:
Basic Concept

® Process for Adding Shadows in 3-D CG
® Compatible with Local lllumination

#* Global method: shadow rays

* Not needed here as in raytracing
* Instead, use decaling

® Decals
* “Paste” surface detail onto model
* Semi-transparent: alpha blending
* Can simulate many attributes

Shadow Mapping © 2007 XVR Wiki
http://wiki.vrmedia.it/index.php?title=Shadow_Mapping

Shadow Mapping © 2005 Wikipedia
http://en.wikipedia.org/wiki/Shadow_mapping

Without shadow map With shadow map

CIS 536/636

Computing & Information Sciences
Introduction to Computer Graphics Kansas State University

Lecture 12 of 41

: Shadow Mapping [2]:
Techniques

® Ways to Handle Shadows
* Projected planar shadows: works well on flat surfaces only
* Shadow stencil buffer: powerful, excellent results possible; hard!

Projected
planar
shadows

Shadow
volumes

Shadow Stencil Buffer

Light maps
® OpenGL Shadow Mapping Tutorials
* Beginner/Intermediate (Baker, 2003): http://bit.ly/e1LA2N

* Advanced (Octavian et al., 2000): http://bit.ly/f1iRYB (old NeHe #27)

Adapted from “Shadow Mapping” © 2001 C. Everitt, nVidia i
http://developer.nvidia.com/object/shadow mapping.html &

CIS 536/636 Computing & Information Sciences

Lecture 12 of 41

Introduction to Computer Graphics Kansas State University

: Shadow Mapping [3]:
Advanced Methods & Research

® Shadow Mattes (Hanrahan)

UberLight()
{

Projected Texture

Clip to near/far planes
Clip to shape boundary
foreach superelliptical blocker

atten *= ..

foreach cookie texture
atten *= ..

foreach slide texture
color *= .

Shadow Matte foreach noise texture

atten, color *= ..
foreach shadow map

atten, color *= ..
Calculate intensity fall-off
Calculate beam distribution

© 2010 M. Gryka

® Can Be Layered (See Maya 2011 Tutorial by Maciek Gryka) ~ "*"*“"""*

Adapted from slides © 1995 — 2009 P. Hanrahan, Stanford University
http://bit.ly/hZfsjZ (CS 348B)

CIS 536/636

Computing & Information Sciences
Introduction to Computer Graphics Kansas State University

Lecture 12 of 41

= Reflection/Environment Mapping [1]:
Basic Concept

® Reflection Maps (Special Type) ~ Environment Maps (General Case)
* For a given viewing direction
* For each normal direction
* For each incoming direction (hemispherical integral)
* Evaluate reflection equation
® |dea: Take Picture of Scene Faced by Object, Apply as Map to Object
® Requirements: Need to Take Account of Projective Distortions

Ray Traced Environment Map

Adapted from slides © 1995 — 2009 P. Hanrahan, Stanford University
http://bit.ly/hZfsjZ (CS 348B)

CIS 536/636 Computing & Information Sciences

Lecture 12 of 41

Introduction to Computer Graphics Kansas State University

a2 Reflection/Environment Mapping [2]:
Techniques
® Gazing Ball (Mirrorball)

Photo © 2009 K. Turkowski m Photograph of reflective ball

u Reflection indexed by normal

m Maps entire field of view to circle

m Resolution fi of ori i d head-on
]

Fish eye camera lens similar

® Reflection Functions
* Diffuse: irradiance map
* Glossy: radiance map
* Anisotropic: for each tangent direction
* Mirror: reflection map (related to environment map)
® lllumination Functions: Environment Map or Procedural Light Sources

Adapted from slides © 1995 — 2009 P. Hanrahan, Stanford University f ‘
http://bit.ly/hZfsjZ (CS 348B) F=

CIS 536/636 Computing & Information Sciences

Lecture 12 of 41

Introduction to Computer Graphics Kansas State University

2 Reflection/Environment Mapping [3]:
Advanced Methods & Research

® How To Create Direction Maps
* Latitude-Longitude (Map Projections) - paint
* Gazing Ball - photograph reflective sphere
* Fisheye Lens - standard (wide-angle) camera lens

% Cubical Environment Map - rendering program or photography

» Easy to produce ﬁ
> "Uniform" resolution mﬁﬁ
» Simple texture coordinates calculation
® Old NeHe OpenGL Mapping Tutorials (2000) .
* #6 (texture map onto cube) — Beginner (Molofee): http://bit.ly/gKj2Nb
* #23 (sphere) — Intermediate (Schmick & Molofee): http://bit.ly/e3Zb8h
® nVidia Tutorial: OpenGL Cube Map (1999): http://bit.ly/eJEdAM
® Issues: Non-Linear Mapping, Area Distortion, Converting Between Maps

Adapted from slides © 1995 — 2009 P. Hanrahan, Stanford University ; ‘
http://bit.ly/hZfsjZ (CS 348B) F=

CIS 536/636 Computing & Information Sciences

Lecture 12 of 41

Introduction to Computer Graphics Kansas State University

. Transparency Mapping [1]:
Basic Concept

® Transparency: One Term for Many Techniques

APBROVES

Source: RenderMan Companion, Pls. 12 & 13
® Goal: “See Through” Objects (Could Be Real Decals)
® |deas: Render Background Object, Then Foreground Object or Material
* Blend in color of (semi-)transparent/translucent foreground object
* Simulate little holes in foreground material (screen door)

Adapted from slides © 1995 — 2009 P. Hanrahan, Stanford University P—% —
http://bit.ly/hZfsjZ (CS 348B) o 7O

CIS 536/636 Computing & Information Sciences

Lecture 12 of 41

Introduction to Computer Graphics Kansas State University

4 Transparency Mapping [2]:
Techniques

® Alpha Compositing aka Alpha Blending

* Combine colors of transparent foreground, opaque background

* Uses alpha channel A of (R, G, B, A) — think “% transparency”
* Wikipedia: http://bit.ly/ePpwoh (see also RGBA, http://bit.ly/ePpwoh)

Alpha blending: Lim (2010), http://bit.ly/6TsJrb Screen door: Viola et al. (2004), http://bit.ly/dVEa7I
Goon Creative, Maya Transparency Tutorial Technical University of Vienna, IEEE Vis 2004

® Screen Door Transparency

* Simulate little holes in foreground material (screen door)
#* Result: visual effect of being able to see through foreground | —

CIS 536/636 Computing & Information Sciences

Lecture 12 of 41

Introduction to Computer Graphics Kansas State University

- Transparency Mapping [3]:
Advanced Methods & Research

® OpenGL Transparency How-To at OpenGL.org: http://bit.ly/hRaQgk
® Screen Door Transparency
* Use glPolygonStipple (), glEnable (GL POLYGON STIPPLE)
* See http://bit.ly/g1hQpJ
® Glass-Like Transparency using Alpha Blending
* Use glEnable (GL_BLEND), glBlendFunc(...)

%* See http://bit.ly/hs82Za

oy~

B ¥ e s

Viola et al. (2004), http://bit.ly/dVEa7I
Technical University of Vienna, IEEE Vis 2004 r

CIS 536/636 Computing & Information Sciences

Lecture 12 of 41

Introduction to Computer Graphics Kansas State University

i Bump Mapping [1]:
Basic Concept

® Goal: Create lllusion of Textured Surface

+ . =

Bump Mapping © 2010 Wikipedia
http://len.wikipedia.org/wiki/Bump mapping

® |dea
* Start with regular smooth object
* Make height map (by hand and/or using program, i.e., procedurally)

* Use map to perturb surface normals
* Plug new normals into illumination equation
® Will This Look Realistic? Why/Why Not? | —0

CIS 536/636 Computing & Information Sciences

Lecture 12 of 41

Introduction to Computer Graphics Kansas State University

& %@ Bump Mapping [2]:

Techniques
S~ s Aﬁjz@
P(u,v)
S =2, .- SEEEN)
v
N(u , v} — S X T

B Displacement
P'(u,v) =P(u,v)+h(u,v)N(u,v)

B Perturbed normal

N'(u,v) =P xP From Blinn 1976
=N+h,(TxN)+h (SXN)
Adapted from slides © 1995 — 2009 P. Hanrahan, Stanford University =3
http://bit.ly/hZfsjZ (CS 348B) @

CIS 536/636 Computing & Information Sciences

Lecture 12 of 41

Introduction to Computer Graphics Kansas State University

. Bump Mapping [3]:
Advanced Methods & Research

® Bump Mapping Tutorial for OpenGL (Baker, 2003): http://bit.ly/fun4a5

Hey, wait a minute!

... what’s wrong with the one on the left?

® Right Ball (Displacement Mapped) Casts Rough Shadow
® Left Ball (Bump Mapped) Casts Smooth Shadow — Why?
® Bump Mapping Only Perturbs Normals (Surface Only!) —0

CIS 536/636 Computing & Information Sciences

Lecture 12 of 41

Introduction to Computer Graphics Kansas State University

& Displacement Mapping [1]:
Basic Concept

® Remember What We Did to Perform Bump Mapping?
T

—~ N1

P(u,v)
S(u,v)=

T(u,v) =

AP(u,v) dP(u,v)
J dv

N(u.v)=SxT

B Displacement
P'(u,v) =P(u,v) + h(u,v)N(u,v)

B Perturbed normal
N'(u,v)=P xP/
=N+h (TxN)+h (SxN)

From Blinn 1976

® Q: Can We Make This Permanent? How?
Let Perturbed Normals Define New Surface; Save Out Vertices

® A: Sure!

Adapted from slides © 1995 — 2009 P. Hanrahan, Stanford University : =
http://bit.ly/hZfsjZ (CS 348B) ==

Computing & Information Sciences
Lecture 12 of 41 Kansas State University

CIS 536/636
Introduction to Computer Graphics

2 Displacement Mapping [2]:
Techniques

® Displacement Map: Similar to Bump Map — Contains Delta Values

ORIGINAL MESH

ABC

DISPLACEMENT MAP

|

Displacement Mapping:
For Real!

MESH WITH DISPLACEMENT

Displacement Mapping © 2005 Wikipedia
http://len.wikipedia.org/wiki/Displacement_mapping

® Displacement Mapping: Uses Open GL Shading Language (GLSL)
® Tutorial using GLSL (Guinot, 2006): http://bit.ly/dWXNya —0

CIS 536/636 Computing & Information Sciences

Lecture 12 of 41

Introduction to Computer Graphics Kansas State University

2 Displacement Mapping [3]:
Advanced Methods & Research

® When To Consider Using Displacement Mapping
* Very “deep” texture effect: veins, ridges, efc.
* Shadows expected

The “Imp™ © Kenneth Scott, id Software 2008

The “Imp” © 2008 K. Scott, id Software
Bjorn3D, http://bit.ly/i78SiP

Like Many Mappings and Other Effects, Wanted In Hardware! T

CIS 536/636 Computing & Information Sciences

Lecture 12 of 41

Introduction to Computer Graphics Kansas State University

2 Acknowledgements:
Texture Mapping Slides

Andy van Dam

T. J. Watson University Professor of
Technology and Education &
Professor of Computer Science

Brown University
http://www.cs.brown.edu/~avd/

Texture Mapping

Beautification of Surfaces

Adapted from slides © 1997 — 2010 van Dam et al., Brown University =
http://bit.ly/hiSt0f Reused with permission. =

CIS 536/636 Lecture 12 of 41 Computing & Information Sciences

Introduction to Computer Graphics Kansas State University

23

Texture Mapping Technique [1]

» Texture mapping is the process of mapping a geometric pointin spaceto a
value (color, normal, other...) in a texture
» Ourgoal is to map any arbitrary geometry to a texture of any dimension
» This is done in two steps:

Map a point on the geometry to a point on the unit square

Map the unit square point to point on the texture

— |

(1.0, 1.0)

I] EF N

-

9 —_—
s (0.0, 0.0) i

» Second mapping is much easier, we'll present it first.

Adapted from slides © 2010 van Dam et al., Brown University
http://bit.ly/hiSt0f Reused with permission. & &

CIS 536/636 Computing & Information Sciences

Lecture 12 of 41

Introduction to Computer Graphics Kansas State University

24

Texture Mapping Technique [2]

» Mapping a point in the unit u, v square to a texture of arbitrary dimension:

» Ingeneral, any point (u, v) on the unit square, the corresponding point on the
texture of length [pixels and height h pixelsis (u * [, v = h).

"3 {1.0,12.0)
= {200, 100)
unit texture
square /—/—;—- : .
| >}
(o, o) texture map
(0.0, 0.0) u o

» Above: (0.0, 0.0) -> (0, 0); (1.0, 1.0) -> (200, 100); (.7, .45) -> (140, 45)
» Once we have coordinates for the texture, we just need to look up the color of
the texture at these coordinates

» Coordinates not always a discrete point on texture as they come from
continuous space. May need to average neighboring texture pixels (i.e. filter)

Adapted from slides © 2010 van Dam et al., Brown University .
http://bit.ly/hiSt0f Reused with permission. & &

CIS 536/636 Computing & Information Sciences

Lecture 12 of 41

Introduction to Computer Graphics Kansas State University

25

Texture Mapping Technique [3]

» Texture mapping polygons
» (u,v)texture coordinates are pre-calculated and specified per vertex
» Vertices may have different texture coordinates for different faces

(u,0) = (0,1)

(,0) = (0,0)d (u0) = (1,0)

» Texture coordinates are linearly interpolated across polygon

(a,04)
(ug,0,) /\(“w) scanline
1
(1, 7)
(uc,vc)
(ug, vg)
Adapted from slides © 2010 van Dam et al., Brown University rikj
http://bit.ly/hiSt0f Reused with permission. & =

CIS 536/636 Computing & Information Sciences

Lecture 12 of 41

Introduction to Computer Graphics Kansas State University

2 Interpolation Trick:
Barycentric Coordinates

» Consider interpolating between two values along a line

» Given two colors C, and Cj,, you can compute any value along the "line”
between the two colors by evaluating:

Ct)=(A-t)C,+tC, 0<t<1
» This equation can be written as:
C(s, t) =sC, +tC, s+t=1 st=0

» s andt are the Barycentric Coordinates of the line segment between C, and G,

» The EQ of the line is a convex linear combination of its endpoeints. We've seen
this before (splines, color theory)

» Barycentric coordinates can be generalized to triangles
C(s,t,u) = sC, + tCpy + uc, s+t+u=1 s tu=0

Adapted from slides © 2010 van Dam et al., Brown University .
http://bit.ly/hiSt0f Reused with permission. & =

CIS 536/636 Computing & Information Sciences

Lecture 12 of 41

Introduction to Computer Graphics Kansas State University

27

Applying Barycentric Coordinates

» When you intersect a ray with a polyhedral object (not needed for our intersect/ray
projects): A,
» return the vertex data of the triangle intesected
» return the Barycentric coordinates (ty, t3, t3) of the intersection point

» These coordinates can be used to interpolate between vertex colors,
normals, texture coordinates, or other data

» What weights do we hang on each vertex such that the triangle
would be perfectly balanced on a pin at point P 1

» Alternatively, think of a mobile suspended from P with
2arms A, Q and A,4,. Ay Az

» Compute Q as intersection of line through 44 and P and
line through 4, and 44

r t3' =10 — 4]

Lhth
r ot =1Q — 4]
b =1 F
. t
r (b1t ts) = (81,85, 85) /(s + tz + t) '
fy I
A, Q Ay
» Another way of thinking about this is by triangle
area. The weight at 44 should be proportional to © 1999 — 2011 Wolfram Research
the area of the triangle P, A5, A3, and so on... http://bit.ly/dGGdlc
Adapted from slides © 2010 van Dam et al., Brown University E —~
http://bit.ly/hiSt0f Reused with permission. & &

CIS 536/636 Computing & Information Sciences

Lecture 12 of 41

Introduction to Computer Graphics Kansas State University

e Texture Mapping Technique [4]:
Map Point to Object on (u, v) Square

» Texture mapping in “Ray”: mapping solids
» Using ray tracing, we obtain an intersection point (x, y, z) in object space

» We need to map this point to a point on the (u, v) unit square, so we can map that to
a texture value

» Three easy cases: planes, cylinders, and spheres

» Easiestto compute the mapping from (x, y, z)
coordinates in object space to (u, v)

» Can cause unwanted texture scaling

» Texture filtering is an option in most graphics
libraries

Adapted from slides © 2010 van Dam et al., Brown University
http://bit.ly/hiSt0f Reused with permission. & =

CIS 536/636 Computing & Information Sciences

Lecture 12 of 41

Introduction to Computer Graphics Kansas State University

224

Texture Mapping Technique [5]

» Texture mapping large quads:
» How to map a point on a very large quad to a point on the unit square?
» Tiling: texture is repeated over and over across infinite plane

» Given coordinates (x, y) of a point on an arbitrarily large quad that we want to
tile with quads of size (w, h), the (u, v) coordinates on the unit square
representing a texture with arbitrary dimensions are:

= (52, 0250)

A
=Z |y - _____w A nl{})
. o __ l _‘:_ (—_ [’.Wts.rture-hl‘exture)
o S f—0
g (w,) ’
(0.0,0.0) u > (e, 0 texture map
unit plane

0,0 >y

infinite plane

Be=r

Adapted from slides © 2010 van Dam et al., Brown University
http://bit.ly/hiSt0f Reused with permission. /

Computing & Information Sciences
Kansas State University

CIS 536/636 Lecture 12 of 41

Introduction to Computer Graphics

30
Texture Mapping Technique [6]
» How to texture map cylinders and cones: — —
» Given a point P on the surface: s
g -
Ifit's on one of the caps, map as though the cap is a plane "
-~ %-:)_"_“"—_>“
Ifit's on the curved surface: - r T a
O Use the position of the point around the perimeter to determineu |~ e -t
O Use the height of the point to determine v > . -
u
4
» Mapping v is trivial, [-.5, .5] gets mapped to [0.0, 1.0] just by adding .5
Adapted from slides © 2010 van Dam et al., Brown University rikj
http://bit.ly/hiSt0f Reused with permission. & &

Computing & Information Sciences

CIS 536/636
Lecture 12 of 41 Kansas State University

Introduction to Computer Graphics

=ik

Texture Mapping Technique [7]

» Computing the u coordinate for cones and cylinders:
» We need to map all the points on the perimeter of the object to [o, 1].

» The easiest wayistosayu = 21, but computing 8 can be tricky
m

0=-%2 u=025 6 =atan2 (P,, P,)
8<0 9
6=-x if0<0 u = 3 [00,05]
u=05 % u=0.0 o
B=n X i)
ifrez0 u=1 o [0.5, 1.0]
fd - Mote: arrows point in the
620 B=mn/2 u=075 direction of in[;n.-aﬁing i, ok B

» Standard atan function computes a result for 8 but its always betweenocand
and it maps two positions on the perimeter to the same 6 value.

Example: atan(z, 1) = atan(-1, -1) = %

» atanz(x, y) yields values between —m and m, but isn't continuous. See above
diagram.

Adapted from slides © 2010 van Dam et al., Brown University .
http://bit.ly/hiSt0f Reused with permission. & &

CIS 536/636 Computing & Information Sciences

Lecture 12 of 41

Introduction to Computer Graphics Kansas State University

32

Texture Mapping Technique [8]

» Texture mapping spheres:

» Find (u, v) coordinates for P =

» We compute u the same we do Yolaifnde

for cylinders and cones

-
y U= longitude «—
3] Y 10

KA 05

» fv=0o0rv=1,thereisa
singularity. Setu to some : "o
predefined value. (.5 is good)

» wisafunction of the latitude of P

I T
— en1-¥ —— T =radius
= 5in o
¢ - 2 =93
¢
v=—+.5
T
Adapted from slides © 2010 van Dam et al., Brown University rikj
http://bit.ly/hiSt0f Reused with permission. & =

Computing & Information Sciences
Kansas State University

CIS 536/636 Lecture 12 of 41

Introduction to Computer Graphics

- Texture Mapping Style [1]:

» We want to create a brick wall with a brick pattern texture

» A brick pattern is very repetitive, we can use a small texture and "tile” it across
the wall

Texture

Without Tiling

» Tiling allows you to scale
repetitive textures to make
texture elements just the right
size.

== e WithTiling

Adapted from slides © 2010 van Dam et al., Brown University B
http://bit.ly/hiSt0f Reused with permission. 0

CIS 536/636 Lecture 12 of 41 Computing & Information Sciences

Introduction to Computer Graphics Kansas State University

) Texture Mapping Style [2]:
Stretching

» With non-repetitive textures, we have less flexibility

» Have to fill an arbitrarily large object with a texture of finite size
» Can'ttile, have to stretch

» Example, creating a sky backdrop:

Applied with stretching

Texture

Adapted from slides © 2010 van Dam et al., Brown University
http://bit.ly/hiSt0f Reused with permission.

cliz 536’/7’3" . Lecture 12 of 41
Introduction to Computer Graphics

Computing & Information Sciences
Kansas State University

= Texture Mapping
Complex Geometry [1]

» Sometimes, reducing objects to primitives for texture mapping doesn't
achieve the right result.

» Consider a simple house shape as an example
» If we texture map it by our old methods, we get discontinuities at some edges.

» Solution: Pretend object is a sphere and texture map using the sphere (u, v)
map

Adapted from slides © 2010 van Dam et al., Brown University
http://bit.ly/hiSt0f Reused with permission.

CIS 536/636 Computing & Information Sciences

Lecture 12 of 41

Introduction to Computer Graphics Kansas State University

o Texture Mapping
Complex Geometry [2]
» Intuitive approach: Place a bounding sphere around the complex object

» Find ray’s object space intersection with bounding sphere
» Convert to (u, v) coordinates

Stage one: intersect ray with Stage two: calculate intersection
bounding sphere point's wv-coords
bounding
sphere’s
uv-mapper

» We actually don't need a bounding sphere!

» Once we have the intersection point with the object, we just treat it as though it
were on the sphere. Same results, but be careful with radii.

Adapted from slides © 2010 van Dam et al., Brown University .
http://bit.ly/hiSt0f Reused with permission. & =

CIS 536/636 Computing & Information Sciences

Lecture 12 of 41

Introduction to Computer Graphics Kansas State University

o Texture Mapping
Complex Geometry [3]

» When we treat the object intersection point as a point on a sphere, our
“sphere” won't always have the same radius

& far
intersection
oint =
arge radius

.nLar N | spheres through
mtersection 4 PR
- 4
oint = . o
P intersection, point
small *P__._
radius ™

» What radius to use?

» Compute the radius as the distance from the center of the complex object to
the intersection point. Use that as the radius for the (u, v) mapping.

Adapted from slides © 2010 van Dam et al., Brown University .
http://bit.ly/hiSt0f Reused with permission. & =

CIS 536/636 Computing & Information Sciences

Lecture 12 of 41

Introduction to Computer Graphics Kansas State University

38

Texture Mapping
Complex Geometry [4]

» Results of spherical (u,) mapping:

» You can use cylindrical or planar mappings
for complex objects as well

» Each has drawbacks

Spherical: warping at the “poles” of the object

Cylindrical: discontinuities at the caps

Planar: one dimension must be ignored

sphere

mapped with sphere mapped
spherical with planar
projection projection

» For best overall results, mapping techniques can be swapped

Adapted from slides © 2010 van Dam et al., Brown University =
http://bit.ly/hiSt0f Reused with permission.

CIS 536/636 Computing & Information Sciences

Kansas State University

3 . Lecture 12 of 41
Introduction to Computer Graphics

o OpenGL Texturing [1]:
Steps

» Create and specify a texture object
— Create a texture object
— Specify the texture image

— Specify how texture has to be applied for each pixel

« Enable texture mapping

« Draw the textured polygons

— ldentify the active texture

— Specify texture coordinates with vertices

Adapted from slides
© 2007 Jacobs, D. W., University of Maryland

CIS 536/636 Lecture 12 of 41 Computing & Information Sciences
Introduction to Computer Graphics Kansas State University

i OpenGL Texturing [2]:
Specify 2-D Texture Object

(GLenum target, GLint level, GLint
internalformat, GLsizei width, GLsizei height, GLint

border, GLenum format, GLenum type, const GLVoid
*texels);
- Eg: (GL_TEXTURE_2D, 0, GL_RGBA, 128, 128,
0, GL_RGBA, GL_UNSIGNED_BYTE, image);
format and type used to specify the way the texels are stored

internalFormat specifies how OpenGL should store the data
internally

width and height have to be powers of 2; you can use
() to scale

Adapted from slides
© 2007 Jacobs, D. W., University of Maryland

CIS 536/636 Lecture 12 of 41 Computing & Information Sciences
Introduction to Computer Graphics Kansas State University

. OpenGL Texturing [3]:
Specify How Texture Is Applied

{i’7}{(GLenum target, GLenum pname, TYPE
param)

- target can be: GL_TEXTURE_1D, GL_TEXTURE_2D, ...

pname param
GL_TEXTURE_WRAP_S GL_CLAMP, GL_REPEAT
GL_TEXTURE WRAP T GL_CLAMP, GL_REPEAT

GL_TEXTURE_MAG_FILTER GL_NEAREST, GL_LINEAR
GL_TEXTURE_MIN_FILTER GL_NEAREST, GL_LINEAR

Adapted from slides
© 2007 Jacobs, D. W., University of Maryland

CIS 536/636 Lecture 12 of 41 Computing & Information Sciences
Introduction to Computer Graphics Kansas State University

- %@ OpenGlL Texturing [4]:

Enable Texture and Draw

(GL_TEXTURE_2D)
— Enable 2D texturing

(GL_FLOAT u, GL_FLOAT v)

— Specify texture coordinates per vertex (just
as normals, color, etc).

Adapted from slides _—a
© 2007 Jacobs, D. W., University of Maryland ——

CIS 536/636 Computing & Information Sciences

Lecture 12 of 41

Introduction to Computer Graphics Kansas State University

. OpenGL Texturing [5]:
Create Texture Object

(GLsizei n, GLuint* texturelDs);
Returns n currently unused texture ID in texturelDs

Each texture ID is an integer greater than O

(GLenum target, Gluint texturelD);
targetis GL_TEXTURE_1D, GL_TEXTURE_2D, or
GL_TEXTURE_3D

if texturelD is being used for the first time a new texture object is
created and assigned the |D = texturelD

if texturelD has been used before, the texture object with ID =
texture/D becomes active

Adapted from slides
© 2007 Jacobs, D. W., University of Maryland

CIS 536/636 Lecture 12 of 41 Computing & Information Sciences
Introduction to Computer Graphics Kansas State University

OpenGlL Texturing [6]:
Putting It All Together

In initialization:

(GL_TEXTURE_2D);
In display:

// Activate the texture defined in
initialization
(GL_TRIANGLES);

Adapted from slides
© 2007 Jacobs, D. W., University of Maryland

CIS 536/636 Lecture 12 of 41 Computing & Information Sciences
Introduction to Computer Graphics Kansas State University

& Preview:
Texturing with Blocks

block

Input texture

B1 B2 B1 B2 B1) B2
N
Random placement Neighbaring blocks Minimal error

of blocks constrained by overlap boundary cut

Adapted from slides ——
© 2007 Jacobs, D. W., University of Maryland &

CIS 536/636 Computing & Information Sciences

Lecture 12 of 41

Introduction to Computer Graphics Kansas State University

s Preview:
Mipmapping

Adapted from slides —
© 1999 — 2007 van Dam, A., Brown University é

CIS 536/636 Computing & Information Sciences

Lecture 12 of 41

Introduction to Computer Graphics Kansas State University

47

Summary

® | ast Time: Texture Mapping Explained
* Definitions and design principles

* Enclosing volumes: cylinder, sphere, box

* Mapping methods

> reflected ray

> object normal

> object center

» intermediate surface normal The Lord of the Rings:
. . The Fellowship of the Ring
® Today: Mappings, OpenGL Texturing ©2001 New Line Cinema

* |dea: define “texture” to simulate surface detail

* Shadow, reflection/environment, transparency, bump, displacement
* Other mappings: gloss, volumetric fog, skins, rainbows, water

* OpenGL texture mapping how-to

Computing & Information Sciences
Introduction to Computer Graphics Kansas State University

CIS 536/636 Lecture 12 of 41

48

Terminology

® Texture Mapping - Adding Detail, Raster Image, Color, etc. to CG Model
* Planar projection: apply flat texture to flat surface(s)
* Enclosing volumes: cylinder, sphere, box
* Mapping methods
> reflected ray — bounce ray off object O
> object normal - ray from face normal of object (polygon mesh)

> object center — ray from center of object
> intermediate surface normal - ray from inside of enclosing S

® Mappings: Apply Image or Simulated Surface Detail to Object
* Shadow: cast planar projective shadows or calculate volume
* Reflection/environment: take picture of scene from “inside” object

* Transparency: take picture of scene “behind” object; refract

* Bump: perturb color based on height map
* Displacement: perturb face normals, recalculate lighting

Computing & Information Sciences
Introduction to Computer Graphics Kansas State University

CIS 536/636 Lecture 12 of 41

