CIS 536/636

Lecture 16 of 41

Transparency, Painter’s Algorithm, & Z-Buffer
Lab 3a: Shading & Transparency

William H. Hsu
Department of Computing and Information Sciences, KSU

KSOL course pages: http://bit.ly/hGvXIH / http://bit.ly/eVizrE
Public mirror web site: http://www.kddresearch.org/Courses/CIS636
Instructor home page: http://www.cis.ksu.edu/~bhsu

Readings:
Today: §2.6, 20.1 Eberly 2¢

OpenGL: A Primer on shading, alpha blending
Khronos Group docs on transparency: http://bit.ly/hRaQgk
Wikipedia, Painter’s Algorithm: http://bit.ly/eeebCN
Wikipedia, Z-buffering: http://bit.ly/gGRFMA =

Computing & Information Sciences

Lecture 16 of 41

Introduction to Computer Graphics Kansas State University

Lecture Outline

Reading for Last Class: §4.1 — 4.3, Eberly 2¢; CGA handout
Reading for Today: §2.6, 20.1, Eberly 2¢; OpenGL primer material
Reading for Next Class: §5.1 — 5.2, Eberly 2¢

Last Time: Scene Graphs; CGA Demos, Videos

* Scene graphs and state — main topic

* State of CGA: videos and discussion
* Demos to download
> Adobe Maya: http://students.autodesk.com
> NewTek Lightwave: http://www.newtek.com/lightwave/

® Today: Shading and Transparency in OpenGL
* Transparency revisited
#* OpenGL how-to: http://bit.ly/hRaQgk
> Alpha blending (15.020, 15.040)
» Screen-door transparency (15.030)

* Painter’s algorithm & depth buffering (z-buffering) /—

CIS 536/636 Computing & Information Sciences

Lecture 16 of 41

Introduction to Computer Graphics Kansas State University

Where We Are

Lecture | Topic Primary Source(s)

0 Course Ovenview Chapter 1, Eberly 2°

1 CG Basics: Transformation Matrices; Lab 0 | Sections (§) 2.1, 2.2

2 Viewing 1: Overview, Projections §223-224,28

3 Viewing 2: Viewing Transformation 8§23 esp 2.34; FVFH slides

4 Lab 1a: Flash & OpenGL Basics Ch. 2, 16', Angel Primer

] Viewing 3: Graphics Pipeline §23esp. 23.7,26,2.7

6 Scan Conversion 1: Lines, Midpoint Algorithm | §2.5.1, 3.1; FVFH s ;

rd Viewing 4: Clipping & Culling; Lab 1b §2.3.5,24 313

8 Scan Conversion 2: Polygons, Clipping Intro §24,25e5p.254,3.16

9 Surface Detail 1: llumination & Shading §25,261-262 432 202

10 Lab 2a: Direct3D / DirectX Intro § 2.7, Direct3D handout

11 Surface Detail 2: Textures; OpenGL Shading §26.3, 203204, Pimer

12 Surface Detail 3: Mappings; OpenGL Textures | § 205-20.13

13 Surface Detail 4: Pixel/Vertex Shad.; Lab 2b | § 3.1

14 Surface Detail 5. Direct3D Shading; OGLSL & 3.2 — 3.4, Direct3D handout
Demos 1: CGA_Fun: Scene Graphs: State &41—-43 CGA handout
AnIMation 1. B ., Reyitammes, HW/EXJI | § 9.1 — 9.
Exam 1 review; Hour Exam 1 (evening) Chapters 1-4, 20

18 Scene Graphs: Rendering; Lab 3b: Shader | §4.4-4.7

19 Demos 2: SFX; Skinning, Morphing § 5.3 - 5.5, CGA handout

20 Demos 3: Surfaces; B-reps/Volume Graphics | § 10.4, 12.7, Mesh handout

Lightly-shaded entries denote the due date of a written problem set; heavily-shaded entries, that of a
machine problem (programming assignment); blue-shaded entries, that of a paper review; and the green-
shaded entry, that of the term project.

Green, blue and red letters denote exam review, exam, and exam solution review dates.

CIS 536/636

Lecture 16 of 41

Computing & Information Sciences

Introduction to Computer Graphics

Kansas State University

+ Review [1]:
Scene Graphs

® Scene Graph: General Data Structure used in CG

* Used to: compute visibility, set up rendering pipeline
* Actual graph: general graph, forest, or rooted tree

® Scene Graph Traversal: Initial Step — Drives Rendering
® Features of Scene Graphs
* Spatial partitioning: e.g., using bounding volume hierarchies

* Leaves: primitive components
* Interior nodes: assembly operations, modelview transformations

* Root(s): scene or major objects

5
F
K
un | | Soldie = |
s
Images © 2007 A. Bar-Zeev | ——
http://bit.ly/gxy9ed & =

CIS 536/636 Computing & Information Sciences

Lecture 16 of 41

Introduction to Computer Graphics Kansas State University

5 Review [2]:
Aesthetic Considerations

® Non-Photorealistic Rendering: Aimed at Achieving Natural Aesthetic
* Cartoon shaders: use sharp gradient (thresholded)

* Pencil shaders: blurring, stippling © b=
® CGA and Realism ¢<;<§4~5v
® Aliasing (see Wikipedia: http://bit.ly/flkCkr) e o
. . © 2004 - 2009 Wikipedia, Jaggies
* Term from signal processing http://bit.Iy/flkCkr

* Two sampled signals indistinguishable from (aliases of) one another

* Examples: jaggies, Moiré vibration (Moiré pattern)

* Anti-aliasing: operations to prevent such effects
® Temporal Aliasing

#* Similar effect in animation

* Small artifact can be much more jarring!
. . o . © 2004 — 2009 Wikipedia, Aliasing
* Example: think of flecks in traditional film reels http://bit.ly/fIkCkr

CIS 536/636 Computing & Information Sciences

Lecture 16 of 41

Introduction to Computer Graphics Kansas State University

Review[3]: CG Feature Films & Shorts

Tron: Legacy
© 2010 Walt Disney Pictures
http://youtu.be/plwXwVJZ3BY

Monsters Inc. 2
© 2012 Disney/Pixar
http://youtu.be/cJHU9IYVWUg

PREPARE FOR AWESOMENESS

| WANT YOU
ror PIXAR

MEARLET RECAUSTindG STATIOMN

Toy Story 3
© 2010 Disney/Pixar

Happy Feet http:/lyoutu.be/JcpWXaA2qe
© 2006 p://lyoutu. P qeg

Warner Brothers
http://bit.ly/gTnp2V

Wall-E

Shrek Forever After © 2008 Disney/Pixar

© 2010 DreamWorks http://bit.ly/eKDwkk
Animation SKG

Luxo Jr. = . http:/lyoutu.be/u7__TG7swg0

© 1986 Pixar Animation Studios
http:/lyoutu.be/L_olL_27KqgU

Kung-Fu Panda
© 2008 DreamWorks
Animation SKG

http://bit.ly/h8krLv

CIS 536/636

Computing & Information Sciences
Introduction to Computer Graphics Kansas State University

Lecture 16 of 41

Z Review [4]:
OpendGL Shading (Overview)

® Set Up Point Light Sources

+ Directional light given by “position” vector

GLfloat light_position[] = {-1.0, 1.0, -1.0, 0.0};
glLightfv(GL_LIGHTO, GL_POSITION, light_position);

» Point source given by “position” point

GLiloat light_position[] = {-1.0, 1.0, -1.0, 1.0};
glLightfv(GL_LIGHTO, GL_POSITION, light_position);

® Set Up Materials, Turn Lights On

GLfloat mat_specular[]={0.0, 0.0, 0.0, 1.0};
GLfloat mat_diffuse[]={0.8, 0.6, 0.4, 1.0};
GLfloat mat_ambient[]={0.8, 0.6, 0.4, 1.0};
Frank Pfenning GLfloat mat_shininess={20.0};
. glMaterialfv(GL_FRONT, GL_SPECULAR, mat_specular);
Professor of Computer Science gIMaterialfv(GL_FRONT, GL_AMBIENT, mat_ambient):

School of Computer Science glMaterialfv(GL_FRONT, GL_DIFFUSE, mat_diffuse);

Carnegie Mellon University glMaterialf(GL_FRONT, GL_SHININESS, mat_shininess);

http://www.cs.cmu.edu/~fp/ glShadeModel(GL_SMQOOTH); /*enable smooth shading */
glEnable(GL_LIGHTING); /* enable lighting */

See also: OpenGL: A Primer, 3¢ (Angel) glEnable(GL_LIGHTO); /* enable light 0 */

http://bit.ly/hVcVWN

® Start Drawing (glBegin .. glEnd)

Adapted from slides © 2003 F. Pfenning, Carnegie Mellon University ;
http://bit.ly/g1J2nj &

CIS 536/636 Computing & Information Sciences

Lecture 16 of 41

Introduction to Computer Graphics Kansas State University

: Transparency in OpenGL [1]:
Transparent vs. Translucent, Blended

Documentation Coding Resources Products Community About OpenGL Khronos Group

15 Transparency, Translucency, and Blending

15.010 What is the difference between transparent, translucent, and blended primitives?

A transparent physical material shows objects behind it as unobscured and doesn't reflect light off
its surface. Clear glass is a nearly transparent material. Although glass allows most light to pass
through unobscured, in reality it also reflects some light. A perfectly transparent material is
completely invisible.

A translucent physical material shows objects behind it, but those objects are obscured by the
translucent material. In addition, a translucent material reflects some of the light that hits it.
making the material visible. Physical examples of translucent materials include sheer cloth, thin
plastic, and smoked glass.

Transparent and translucent are often used synonymously. Materials that are neither transparent
nor translucent are opague.

Blending is OpenGL's mechanism for combining color already in the framebuffer with the color of
the incoming primitive. The result of this combination is then stored back in the framebuffer.
Blending is frequently used to simulate translucent physical materials. One example is rendering
the smoked glass windshield of a car. The driver and interior are still visible, but they are
obscured by the dark color of the smoked glass.

B=r
© 1997 — 2011 Khronos Group i e
http://bit.ly/hRaQgk 7 o

CIS 536/636 Computing & Information Sciences

Lecture 16 of 41 yo—-
Introduction to Computer Graphics Kansas State University

: Transparency in OpenGL [2]:
Blending vs. Screen Door

15.020 How can | achieve a transparent effect?

OpenGL doesn't support a direct interface for rendering translucent (partially opague) primitives.
However, you can create a transparency effect with the blend feature and carefully ordering your
primitive data. You might also consider using screen door transparency.

An OpenGL application typically enables blending as follows:

glEnzble (EL_BLEND);
glBlendFunc (GL SRC RLPHR, GL ONE MINUS SRC ALPHA);

After blending is enabled, as shown above, the incoming primitive color is blended with the color
already stored in the framebuffer. giBlendFunc() controls how this blending occurs. The typical
use described above modifies the incoming color by its associated alpha value and modifies the
destination color by one minus the incoming alpha value. The sum of these two colors is then
written back into the framebuffer.

The primitive's opacity is specified using giColord*(). RGB specifies the color, and the alpha
parameter specifies the opacity.

When using depth buffering in an application, you need to be careful about the order in which
you render primitives. Fully opaque primitives need to be rendered first, followed by partially
opaque primitives in back-to-front order. If you don't render primitives in this order, the primitives,
which would otherwise be visible through a partially opague primitive, might lose the depth test
entirely.

© 1997 — 2011 Khronos Group ? ——0,
http://bit.ly/hRaQgk 7 o

Computing & Information Sciences
Kansas State University

CIS 536/636 Lecture 16 of 41

Introduction to Computer Graphics

N Transparency in OpenGL [3]:
Screen Door

15.030 How can | create screen door transparency?

This is accomplished by specifying a polygon stipple pattern with giPolygonStipple() and by
rendering the transparent primitive with polygon stippling enabled
(glEnable(GL_POLYGON_STIPPLE)). The number of bits set in the stipple pattern determine the
amount of translucency and opacity; setting more bits result in a more opague object, and setting
fewer bits results in a more translucent object. Screendoor transparency is sometimes preferable

to blending, becuase it's order independent (primitives don't need to be rendered in back-to-front
order).

Screen door: Viola et al. (2004), http://bit.ly/dVEa7]
Technical University of Vienna, IEEE Vis 2004

© 1997 — 2011 Khronos Group 0
http://bit.ly/hRaQgk & =

CIS 536/636 Lecture 16 of 41 Computing & Information Sciences

Introduction to Computer Graphics Kansas State University

N Transparency in OpenGL [4]:
Glass

15.040 How can | render glass with OpenGL?

This question is difficult to answer, because what looks like glass to one person might not to
another. What follows is a general algorithm to get you started.

First render all opague objects in your scene. Disable lighting, enable blending, and render your
glass geometry with a small alpha value. This should result in a faint rendering of your object in
the framebuffer. (Note: You may need to sort your glass geometry, so it's rendered in back to
front Z order.)

Now, you need to add the specular highlight. Set your ambient and diffuse material colors to
black, and your specular material and light colors to white. Enable lighting. Set
glDepthFunc(GL_EQUAL), then render your glass object a second time.

Alpha blending: Lim (2010), http://bit.ly/6TsJrb
Goon Creative, Maya Transparency Tutorial

© 1997 — 2011 Khronos Group T —,
http://bit.ly/hRaQgk & &

CIS 536/636 Lecture 16 of 41 Computing & Information Sciences

Introduction to Computer Graphics Kansas State University

2 Transparency in OpengGlL [5]:
Alpha & Painter’s Algorithm

15.050 Do | need to render my primitives from back to front for correct rendering of translucent
primitives to occur?

If your hardware supports destination alpha, you can experiment with different giBlendFunc()
seftings that use destination alpha. However, this won't solve all the problems with depth buffered
translucent surfaces. The only sure way to achieve visually correct results is to sort and render

your primitives from back to front.

Ve a0\

© 2004 - 2009 Wikipedia, Painter’s Algorithm
http://bit.ly/eeebCN

© 1997 — 2011 Khronos Group ; —,
http://bit.ly/hRaQgk & =

CIS 536/636 Computing & Information Sciences
Lecture 16 of 41 Kansas State University

Introduction to Computer Graphics

& Transparency in OpengGlL [é]:
Painter’s algorithm & Z-buffering

15.070 If | draw a translucent primitive and draw another primitive behind it, | expect the second
primitive to show through the first, but it's not there?

Is depth buffering enabled?

If you're drawing a polygon that's behind another polygon, and depth test is enabled, then the
new polygon will typically lose the depth test, and no blending will occur. On the other hand., if
you've disabled depth test, the new polygon will be blended with the existing polygon, regardless
of whether it's behind or in front of it.

© 2009 Wikipedia, Z-buffering

http://bit.lv/aGRFMA A simple three-diéensionalscene

Z-buffer representation

© 1997 — 2011 Khronos Group -
http://bit.ly/hRaQgk r 7O

CIS 536/636 Computing & Information Sciences

Lecture 16 of 41

Introduction to Computer Graphics Kansas State University

) Transparency in OpenGL [6]:
Partial Transparency

15.080 How can | make part of my texture maps transparent or translucent?

It depends on the effect you're trying to achieve.

If you want blending to occur after the texture has been applied, then use the OpenGL blending
feature. Try this:

glEnable (GL_BLEND);
glBlendFunc (GL CNE, GL_ONE);

Y¥ou might want to use the alpha values that result from texture mapping in the blend function. If
s0, (GL_SRC_ALPHA GL_ONE_MINUS_SRC_ALPHA) is always a good function to start with.

However, if you want blending to occur when the primitive is texture mapped (i.e., you want parts
of the texture map to allow the underlying color of the primitive to show through), then don't use
OpenGL blending. Instead, you'd use glTexEnv(), and set the texture environment mode to
GL_BLEMD. In this case, you'd want to leave the texture environment color to its default value of

(0,0,0.00.
=
© 1997 — 2011 Khronos Group i —
http://bit.ly/hRaQgk

CIS 536/636 Computing & Information Sciences

Lecture 16 of 41

Introduction to Computer Graphics Kansas State University

1s

Summary

Reading for Last Class: §4.1 — 4.3, Eberly 2¢; CGA handout
Reading for Today: §2.6, 20.1, Eberly 2¢; OpenGL primer material
Reading for Next Class: §5.1 — 5.2, Eberly 2¢

Last Time: Scene Graphs

* Maintaining state
* Coming up: traversal
® CGA Demos, Videos
* State of CGA: videos
* |Issues: photorealism, hardware, traditional (non-CG) animation
* Techniques showcased: multipass texturing, alpha, portals
® Shading and Transparency in OpenGL
* Alpha blending
* Painter’s algorithm — less efficient, can handle non-opaque objects

* Depth buffering (z-buffering) — in hardware, fast, opaque only

Computing & Information Sciences
Introduction to Computer Graphics Kansas State University

CIS 536/636 Lecture 16 of 41

le

Terminology

® Non-Photorealistic Rendering
% Cartoon shaders

* Pencil shaders
® CGA and Realism
* Aliasing — reconstructed image differs from original

* Alias — artifact in reconstructed image (jaggies, Moiré pattern, etc.)
* Anti-aliasing — techniques (e.g., area sampling) for avoiding aliasing

* Temporal aliasing — aliasing over time (e.g., in animation)
* Temporal anti-aliasing — smoothing out aliasing over time

® Shading and Transparency in OpenGL
* Alpha blending — using A channel of R, G, B, A to combine colors
* Painter’s algorithm aka priority fill — back-to-front rendering

* Depth buffering (z-buffering) — checking z values

CIS 536/636

Computing & Information Sciences
Introduction to Computer Graphics Kansas State University

Lecture 16 of 41

