
Computing & Information Sciences
Kansas State University

CIS 536/636

Introduction to Computer Graphics
Lecture 19 of 41

William H. Hsu

Department of Computing and Information Sciences, KSU

KSOL course pages: http://bit.ly/hGvXlH / http://bit.ly/eVizrE

Public mirror web site: http://www.kddresearch.org/Courses/CIS636

Instructor home page: http://www.cis.ksu.edu/~bhsu

Readings:

Today: §5.3 – 5.5, Eberly 2e – see http://bit.ly/ieUq45; CGA handout

Next class: §10.4, 12.7, Eberly 2e, Mesh handout

Videos: http://www.kddresearch.org/Courses/CIS636/Lectures/Videos/

Skinning & Morphing
Videos 2: Special Effects (SFX)

Lecture 19 of 41

Computing & Information Sciences
Kansas State University

2

CIS 536/636

Introduction to Computer Graphics
Lecture 19 of 41

 Reading for Last Class: §4.4 – 4.7, Eberly 2e

 Reading for Today: §5.3 – 5.5, Eberly 2e, CGA handout

 Reading for Next Class: §10.4, 12.7, Eberly 2e, Mesh handout

 Last Time: Scene Graph Rendering

 State: transforms, bounding volumes, render state, animation state

 Managing renderer and animation state

 Rendering: object-oriented message passing overview

 Today: Skinning and Morphing

 Skins: surface meshes for faces, character models

 Morphing: animation techniques – gradual transition between skins

 Vertex tweening

 Using Direct3D n (Shader Model m, m n - 6)

 GPU-based interpolation: texture arrays, vertex texturing, hybrid

 Videos: Special Effects (SFX)

Lecture Outline

Computing & Information Sciences
Kansas State University

3

CIS 536/636

Introduction to Computer Graphics
Lecture 19 of 41

Where We Are

Computing & Information Sciences
Kansas State University

4

CIS 536/636

Introduction to Computer Graphics
Lecture 19 of 41

Acknowledgements:
Computer Animation Intro

Acknowledgment: slides by Misha Kazhdan, Allison Klein, Tom Funkhouser, Adam Finkelstein and David Dobkin
http://bit.ly/eB1Oj4

Jason Lawrence
Assistant Professor

Department of Computer Science

University of Virginia

http://www.cs.virginia.edu/~jdl/

Thomas A. Funkhouser
Professor

Department of Computer Science

Computer Graphics Group

Princeton University

http://www.cs.princeton.edu/~funk/

Computing & Information Sciences
Kansas State University

5

CIS 536/636

Introduction to Computer Graphics
Lecture 19 of 41

Review [1]:
Linear Interpolation aka Lerping

© 2010 J. Lawrence, University of Virginia
CS 4810: Introduction to Computer Graphics – http://bit.ly/hPIXdi

Computing & Information Sciences
Kansas State University

6

CIS 536/636

Introduction to Computer Graphics
Lecture 19 of 41

Review [2]:
Cubic Curve (Spline) Interpolation

© 2010 J. Lawrence, University of Virginia
CS 4810: Introduction to Computer Graphics – http://bit.ly/hPIXdi

Computing & Information Sciences
Kansas State University

7

CIS 536/636

Introduction to Computer Graphics
Lecture 19 of 41

Review [3]:
Scene Graph State – Transforms

Adapted from 3D Game Engine Design © 2000 D. H. Eberly
See http://bit.ly/ieUq45 for second edition

 Local

 Translation, rotation, scaling, shearing

 All within parent’s coordinate system

 World: Position Child C With Respect to Parent P (Depends on Local)

 Both Together Part of Modelview Transformation

Computing & Information Sciences
Kansas State University

8

CIS 536/636

Introduction to Computer Graphics
Lecture 19 of 41

 Bounding Volume Hierarchies (BVHs)

 Root: entire scene

 Interior node: rectangle (volume in general) enclosing other nodes

 Leaves: primitive objects

 Often axis-aligned (e.g., axis-aligned bounding box aka AABB)

 Used

 Visible surface determination (VSD) – especially occlusion culling

 Other intersection testing: collisions, ray tracing

Bounding Volume Hierarchy (BVH) © 2009 Wikipedia
http://en.wikipedia.org/wiki/Bounding_volume_hierarchy

Review [4]:
Scene Graph State – BVHs

Computing & Information Sciences
Kansas State University

9

CIS 536/636

Introduction to Computer Graphics
Lecture 19 of 41

Review [5]:
Scene Graph State – Renderer State

Adapted from 3D Game Engine Design © 2000 D. H. Eberly
See http://bit.ly/ieUq45 for second edition

 Can Capture Render Information Hierarchically

 Example

 Suppose subtree has all leaf nodes that want textures alpha blended

 Can tag root of subtree with “alpha blend all”

 Alternatively: tag every leaf

 How Traversal Works: State Accumulation

 Root-to-leaf traversal accumulates state to draw geometry

 Renderer checks whether state change is needed before leaf drawn

 Efficiency Considerations

 Minimize state changes

 Reason: memory copy (e.g., system to video memory) takes time

Computing & Information Sciences
Kansas State University

10

CIS 536/636

Introduction to Computer Graphics
Lecture 19 of 41

Review [6]:
Scene Graph State – Animation State

Adapted from 3D Game Engine Design © 2000 D. H. Eberly
See http://bit.ly/ieUq45 for second edition

 Can Capture Animation Information Hierarchically

 Example

 Consider articulated figure from last lecture

 Let each node represent joint of character model

 Neck

 Shoulder

 Elbow

 Wrist

 Knee

 Procedural Transformation

 How It Works: Controllers

 Each node has controller function/method

 Manages quantity that changes over time (e.g., angle)

© 2002 D. M. Murillo
http://bit.ly/eZ9MA8

Computing & Information Sciences
Kansas State University

11

CIS 536/636

Introduction to Computer Graphics
Lecture 19 of 41

Acknowledgements:
Morphing & Animation

Adapted from “Morphing and Animation” © 2007 G. J. Katz, University of Pennsylvania
Lecture 12, CIS 565 (formerly 665): GPU Programming and Architecture, http://bit.ly/eFkXmk

“Morphing How-To Guide”
© 2005 – 2011 B. Ropelato &

J. C. Weaver
TopTenReviews.com

http://bit.ly/gbufRA

Computing & Information Sciences
Kansas State University

12

CIS 536/636

Introduction to Computer Graphics
Lecture 19 of 41

Morphing Techniques

Adapted from “Morphing and Animation” © 2007 G. J. Katz, University of Pennsylvania
Lecture 12, CIS 565 (formerly 665): GPU Programming and Architecture, http://bit.ly/eFkXmk

 Vertex Tweening

 Two key meshes are blended

 Varying by time

 Morph Targets

 Represent by relative vectors

 From base mesh

 To target meshes

 Geometry: mesh represents model

 Samples: corresponding images

 Applications

 Image morphing (see videos)

 Lip syncing (work of Elon Gasper)
© 1987 Exxon Mobil, Inc.

http://youtu.be/Vi5PlrZpG40

Computing & Information Sciences
Kansas State University

13

CIS 536/636

Introduction to Computer Graphics
Lecture 19 of 41

Morph Target Animation [1]:
Definition

Adapted from “Morphing and Animation” © 2007 G. J. Katz, University of Pennsylvania
Lecture 12, CIS 565 (formerly 665): GPU Programming and Architecture, http://bit.ly/eFkXmk

 Idea

 One base mesh

 Can morph into multiple targets at same time

 Effects

 Facial animation, e.g., Alphabet Blocks (1992) – http://bit.ly/hSKCE3

 Muscle deformation

Computing & Information Sciences
Kansas State University

14

CIS 536/636

Introduction to Computer Graphics
Lecture 19 of 41

Morph Target Animation [2]:
Interpolation

Adapted from “Morphing and Animation” © 2007 G. J. Katz, University of Pennsylvania
Lecture 12, CIS 565 (formerly 665): GPU Programming and Architecture, http://bit.ly/eFkXmk

Linear Interpolation

Relative: PositionOutput = PositionSource + (PositionDestination * Factor)

Absolute: PositionOutput = PositionSource + (PositionDestination – PositionSource)*Factor

1

2

3
4

5
6 7 8

9

10
11

121
2 3 4 5

6

7 8 9 10
11 12

Computing & Information Sciences
Kansas State University

15

CIS 536/636

Introduction to Computer Graphics
Lecture 19 of 41

Relative vs. Absolute
Coordinates

Adapted from “Morphing and Animation” © 2007 G. J. Katz, University of Pennsylvania
Lecture 12, CIS 565 (formerly 665): GPU Programming and Architecture, http://bit.ly/eFkXmk

4

3 < 7, 3, 9 >

< 4, 3, 5 >

Relative Absolute

Computing & Information Sciences
Kansas State University

16

CIS 536/636

Introduction to Computer Graphics
Lecture 19 of 41

Constraints

Adapted from “Morphing and Animation” © 2007 G. J. Katz, University of Pennsylvania
Lecture 12, CIS 565 (formerly 665): GPU Programming and Architecture, http://bit.ly/eFkXmk

 Constraints on Source, Target Mesh

1. Number of vertices must be the same

2. Faces and attributes must be the same

3. Material must be equal

4. Textures must be the same

5. Shaders, etc. must be the same

 Useful Only Where Skinning Fails!

Computing & Information Sciences
Kansas State University

17

CIS 536/636

Introduction to Computer Graphics
Lecture 19 of 41

Data Structures for Morphing

Adapted from “Morphing and Animation” © 2007 G. J. Katz, University of Pennsylvania
Lecture 12, CIS 565 (formerly 665): GPU Programming and Architecture, http://bit.ly/eFkXmk

 DirectX allows for flexible vertex formats

 So does OpenGL: http://bit.ly/fJ9U3Y

 Position 1 holds the relative position for the morph target

D3DVERTEXELEMENT9 pStandardMeshDeclaration[] =

{

{ 0, 0, D3DDECLTYPE_FLOAT3, D3DDECLMETHOD_DEFAULT,

D3DDECLUSAGE_POSITION, 0 },

{ 0, 12, D3DDECLTYPE_FLOAT3, D3DDECLMETHOD_DEFAULT,

D3DDECLUSAGE_POSITION, 1 },

{ 0, 24, D3DDECLTYPE_FLOAT3, D3DDECLMETHOD_DEFAULT,

D3DDECLUSAGE_NORMAL, 0 },

{ 0, 32, D3DDECLTYPE_FLOAT3, D3DDECLMETHOD_DEFAULT,

D3DDECLUSAGE_TEXCOORD, 0 },

D3DDECL_END()

}

Computing & Information Sciences
Kansas State University

18

CIS 536/636

Introduction to Computer Graphics
Lecture 19 of 41

Skeletal Animation

Adapted from “Morphing and Animation” © 2007 G. J. Katz, University of Pennsylvania
Lecture 12, CIS 565 (formerly 665): GPU Programming and Architecture, http://bit.ly/eFkXmk

 Hierarchical Animation

 Mesh vertex attached to exactly one bone

 Transform vertex using inverse of bone ’s world matrix

 Issues

 Buckling

 Occurs at regions where two bones connected

Computing & Information Sciences
Kansas State University

19

CIS 536/636

Introduction to Computer Graphics
Lecture 19 of 41

Skeletal Subspace Deformation

Adapted from “Morphing and Animation” © 2007 G. J. Katz, University of Pennsylvania
Lecture 12, CIS 565 (formerly 665): GPU Programming and Architecture, http://bit.ly/eFkXmk

 Vertices Attached to Multiple Bones by Weighting

1. Move every vertex into associated bone space by multiplying
inverse of initial transformation

2. Apply current world transformation

3. Resulting vertices blended using morphing

 Compare: Scene Graph for Transformations from Previous Lecture

Computing & Information Sciences
Kansas State University

20

CIS 536/636

Introduction to Computer Graphics
Lecture 19 of 41

Demo: Dawn
(Nvidia, Direct3D v.9 / Shader 2.0)

Adapted from “Morphing and Animation” © 2007 G. J. Katz, University of Pennsylvania
Lecture 12, CIS 565 (formerly 665): GPU Programming and Architecture, http://bit.ly/eFkXmk

 Compare: Scene Graph for Transformations from Previous Lecture

 Wikipedia: http://en.wikipedia.org/wiki/Dawn_(demo)

Dawn © 2004 Jim Henson’s Creature Shop & Nvidia
http://youtu.be/4D2meIv08rQ

http://hdps.wikia.com/wiki/Dawn

Computing & Information Sciences
Kansas State University

21

CIS 536/636

Introduction to Computer Graphics
Lecture 19 of 41

GPU Animation [1]:
Speedups

Adapted from “Morphing and Animation” © 2007 G. J. Katz, University of Pennsylvania
Lecture 12, CIS 565 (formerly 665): GPU Programming and Architecture, http://bit.ly/eFkXmk

 Can Skip Processing of Unused Scene Elements

 Elements

 Bones

 Morph targets

 Need hardware support for dynamic branching

 Can Separate Independent Processes

 Processes

 Modification

 Rendering

 Need hardware support for:

 Four component floating point texture formats

 Multiple render targets: normal map, position map, tangent map

Computing & Information Sciences
Kansas State University

22

CIS 536/636

Introduction to Computer Graphics
Lecture 19 of 41

GPU Animation [2]:
Method 1

Adapted from “Morphing and Animation” © 2007 G. J. Katz, University of Pennsylvania
Lecture 12, CIS 565 (formerly 665): GPU Programming and Architecture, http://bit.ly/eFkXmk

 Hold Vertex Data in Texture Arrays

 Manipulate Data in Pixel Shader / Fragment Shader

 Re-output to Texture Arrays

 Pass Output as Input to Vertex Shader (NB: Usually Other Way Around!)

Computing & Information Sciences
Kansas State University

23

CIS 536/636

Introduction to Computer Graphics
Lecture 19 of 41

GPU Animation [3]:
Storage Procedures

Adapted from “Morphing and Animation” © 2007 G. J. Katz, University of Pennsylvania
Lecture 12, CIS 565 (formerly 665): GPU Programming and Architecture, http://bit.ly/eFkXmk

index2D.x = index % textureWidth;

index2D.y = index / textureWidth;

index = index2D.y * textureWidth + index2D.x;

If:

vertex array is one-dimensional

frame buffer is two-dimensional

Computing & Information Sciences
Kansas State University

24

CIS 536/636

Introduction to Computer Graphics
Lecture 19 of 41

float4 VS(float4 index2D: POSITION0,

 out float4 outIndex2D : TEXCOORD0) : POSITION

{

outIndex2D = index2D;

return float4(2 * index2D.x – 1, -2 * index2D.y + 1, 0, 1);

}

GPU Animation [4]:
Vertex Program

Adapted from “Morphing and Animation” © 2007 G. J. Katz, University of Pennsylvania
Lecture 12, CIS 565 (formerly 665): GPU Programming and Architecture, http://bit.ly/eFkXmk

 Draw Rectangle of Coordinates

 (0, 0), (0, 1), (1, 1), (1, 0)

 (-1, -1), (-1, 1), (1, 1), (1, -1)

 Remap Them using Vertex Program Below

Computing & Information Sciences
Kansas State University

25

CIS 536/636

Introduction to Computer Graphics
Lecture 19 of 41

GPU Animation [5]:
Pixel Shader

Adapted from “Morphing and Animation” © 2007 G. J. Katz, University of Pennsylvania
Lecture 12, CIS 565 (formerly 665): GPU Programming and Architecture, http://bit.ly/eFkXmk

float2 halfTexel = float2(.5/texWidth, .5/texHeight);

float4 PS(float4 index2D : TEXCOORD0,

out float4 position : COLOR0,

out float4 normal : COLOR1, ...)

{

 index2D.xy += halfTexel;

 float4 vertAttr0 = tex2Dlod(Sampler0, index2D);

 float4 vertAttr1 = tex2Dlod(Sampler1, index2D);

 ...

 ...

 // perform modifications and assign the final

 // vertex attributes to the output registers

}

Computing & Information Sciences
Kansas State University

26

CIS 536/636

Introduction to Computer Graphics
Lecture 19 of 41

GPU Animation [6]:
Analysis

Adapted from “Morphing and Animation” © 2007 G. J. Katz, University of Pennsylvania
Lecture 12, CIS 565 (formerly 665): GPU Programming and Architecture, http://bit.ly/eFkXmk

 Advantages

 Keeps vertex, geometry processing units ’ workload at minimum
(Why is this good?)

 Good for copy operations, vertex tweening

 Disadvantages

 Per-vertex data has to be accessed through texture lookups

 Number of constant registers is less in pixel shader (224) than
vertex shader (256)

 Can not divide modification process into several pieces because
only single quad is drawn

 Therefore: constant registers must hold all bone matrices and
morph target weights for entire object

Computing & Information Sciences
Kansas State University

27

CIS 536/636

Introduction to Computer Graphics
Lecture 19 of 41

GPU Animation [7]:
Method 2

Adapted from “Morphing and Animation” © 2007 G. J. Katz, University of Pennsylvania
Lecture 12, CIS 565 (formerly 665): GPU Programming and Architecture, http://bit.ly/eFkXmk

 Apply Modifications in Vertex Shader, Do Nothing in Pixel Shader

 Destination pixel is specified explicitly as vertex shader input

 Still writing all vertices to texture

 Advantage: Can Easily Segment Modification Groups

 Disadvantage: Speed Issues Make This Method Impractical

Computing & Information Sciences
Kansas State University

28

CIS 536/636

Introduction to Computer Graphics
Lecture 19 of 41

GPU Animation [8]:
Accessing Modified Data

Adapted from “Morphing and Animation” © 2007 G. J. Katz, University of Pennsylvania
Lecture 12, CIS 565 (formerly 665): GPU Programming and Architecture, http://bit.ly/eFkXmk

 Do Not Want to Send Data Back to CPU, Except in One Case

 Solution 1: DirectRenderToVertexBuffer

 Problem: DirectRenderToVertexBuffer doesn’t exist yet!

 … but we can always dream

 Solution 2: Transfer Result to Graphics Card

 From: render target

 To: Vertex Buffer Object (VBO) on graphics card

 Use OpenGL’s ARB_pixel_buffer_object

 Solution 3: Vertex Textures (Use RenderTexture Capability)

 Access texture in vertex shader (VS)

 Store texture lookop in vertices’ texture coordinates

 Problem: slow; can’t look up in parallel with other instructions

Computing & Information Sciences
Kansas State University

29

CIS 536/636

Introduction to Computer Graphics
Lecture 19 of 41

GPU Animation [9]:
Performance Issues

Adapted from “Morphing and Animation” © 2007 G. J. Katz, University of Pennsylvania
Lecture 12, CIS 565 (formerly 665): GPU Programming and Architecture, http://bit.ly/eFkXmk

 Prefer to Perform Modification, Rendering in Single Pass

 Vertex Texturing: Slow

 Copy within video memory: fast

 Accessing vertex attributes using vertex texturing always slower

 Application Overhead

 Accessing morph in vertex texture slows down app

 Must use constants

Computing & Information Sciences
Kansas State University

30

CIS 536/636

Introduction to Computer Graphics
Lecture 19 of 41

GPU Animation [10]:
Hybrid CPU/GPU System

Adapted from “Morphing and Animation” © 2007 G. J. Katz, University of Pennsylvania
Lecture 12, CIS 565 (formerly 665): GPU Programming and Architecture, http://bit.ly/eFkXmk

 Use Hybrid CPU/GPU Approach to Get Real Speed Advantage

1. Let CPU compute final vertex attributes used during rendering
frames n, n + k

2. Let GPU compute vertex tweening at frames greater than n, smaller
than n + k

3. Phase shift animations between characters so processors do not
have peak loads

 Advantages

 Vertex tweening supported on almost all hardware

 Modification algorithms performed on CPU, so no restrictions

Computing & Information Sciences
Kansas State University

31

CIS 536/636

Introduction to Computer Graphics
Lecture 19 of 41

Massive Character Animation [1]:
Agent State

Adapted from “Morphing and Animation” © 2007 G. J. Katz, University of Pennsylvania
Lecture 12, CIS 565 (formerly 665): GPU Programming and Architecture, http://bit.ly/eFkXmk

 Can Perform Simple Artificial Intelligence (AI) Effects

 Reactive planning: finite state machine (FSM) for behavior

 e.g., obstacle/pursuer avoidance

 Also: flocking & herding (later: Reynolds’ boid model)

 Each Pixel of Output Texture Holds One Character ’s State

 Pixel Shader Computes Next State

 State Used to Determine Which Animation to Use

 More Advanced AI Techniques (See: CIS 530 / 730)

 Follow-the-leader

 Target acquisition & fire control (ballistics)

 Pursuer-evader

 Attack planning (may use inverse kinematics)

Computing & Information Sciences
Kansas State University

32

CIS 536/636

Introduction to Computer Graphics
Lecture 19 of 41

Massive Character Animation [2]:
Simulating Character Behavior

Adapted from “Morphing and Animation” © 2007 G. J. Katz, University of Pennsylvania
Lecture 12, CIS 565 (formerly 665): GPU Programming and Architecture, http://bit.ly/eFkXmk

Walk

Turn

If no Obstacle

Run

If Chased

If Obstacle

If Chased

If Obstacle

 Implement Finite State Machine (FSM) in Pixel Shader

 Pixel Values Represent States

 Can Also Capture Transitions using Pixels!

Computing & Information Sciences
Kansas State University

33

CIS 536/636

Introduction to Computer Graphics
Lecture 19 of 41

Massive Character Animation [3]:
Implementing FSMs on GPUs

Adapted from “Morphing and Animation” © 2007 G. J. Katz, University of Pennsylvania
Lecture 12, CIS 565 (formerly 665): GPU Programming and Architecture, http://bit.ly/eFkXmk

 Use Dependent Texture Lookups

 Agent-Space Maps: Contain Information About State of Characters

 Position

 State

 Frame

 World-Space Image Maps: Contain Information About Environment

 Influences behavior of character

 e.g., preprocessed obstacles

 FSM Maps: Contain State, Transition Info

 Behavior for each state

 Transition functions between states

 Rows: group transitions within same state

 Columns: conditions to trigger transitions

Computing & Information Sciences
Kansas State University

34

CIS 536/636

Introduction to Computer Graphics
Lecture 19 of 41

Preview:
Software Simulations

 Massive Software: Grew Out of WETA Digital ’s Work

 The Lord of the Rings movie trilogy

 Since then: advertising, Narnia, King Kong, Avatar, many more

 Multi-Agent Simulation in Virtual Environments

 See: http://www.massivesoftware.com

Avatar © 2009 20th Century Fox
http://youtu.be/d1_JBMrrYw8

King Kong © 2005 Universal Pictures
http://youtu.be/stMN1hwCJg0

Narnia © 2005 20th Century Fox
http://youtu.be/pYcGFLgJ8Uo

Computing & Information Sciences
Kansas State University

35

CIS 536/636

Introduction to Computer Graphics
Lecture 19 of 41

Summary

 Reading for Last Class: §5.1 – 5.2, Eberly 2e

 Reading for Today: §4.4 – 4.7, Eberly 2e

 Reading for Next Class: §10.4, 12.7, Eberly 2e, Mesh handout

 Last Time: Scene Graph Rendering

 State: transforms, bounding volumes, render state, animation state

 Updating and culling

 Rendering: object-oriented message passing overview

 Today: Skinning and Morphing

 Morphing defined

 GPU-based interpolation: methods

 Texture arrays – need to use constant registers

 Vertex texturing – too slow

 Hybrid – works best

 Getting agents cheap using GPU-based finite state machines

 More Videos: Special Effects (SFX)

Computing & Information Sciences
Kansas State University

36

CIS 536/636

Introduction to Computer Graphics
Lecture 19 of 41

Terminology

 Shading and Transparency in OpenGL: Alpha, Painter ’s, z-buffering

 Animation – Modeling Change Over Time According to Known Actions

 Keyframe Animation – Interpolating Between Set Keyframes

 State in Scene Graphs

 Transforms – local & global TRS to orient parts of model

 Bounding volumes – spheres, boxes, capsules, lozenges, ellipsoids

 Renderer state – lighting, shading/textures/alpha

 Animation state – TRS transformations (especially R), controllers

 Skins – Surface Meshes for Faces, Character Models

 Morphing

 Animation techniques – gradual transition between skins

 Vertex tweening – texture arrays, vertex texturing, or hybrid method

 GPU computing – offload some tasks to GPU

 Finite state machine – simple agent model

