
Computing & Information Sciences
Kansas State University

CIS 536/636

Introduction to Computer Graphics
Lecture 19 of 41

William H. Hsu

Department of Computing and Information Sciences, KSU

KSOL course pages: http://bit.ly/hGvXlH / http://bit.ly/eVizrE

Public mirror web site: http://www.kddresearch.org/Courses/CIS636

Instructor home page: http://www.cis.ksu.edu/~bhsu

Readings:

Today: §5.3 – 5.5, Eberly 2e – see http://bit.ly/ieUq45; CGA handout

Next class: §10.4, 12.7, Eberly 2e, Mesh handout

Videos: http://www.kddresearch.org/Courses/CIS636/Lectures/Videos/

Skinning & Morphing
Videos 2: Special Effects (SFX)

Lecture 19 of 41

Computing & Information Sciences
Kansas State University

2

CIS 536/636

Introduction to Computer Graphics
Lecture 19 of 41

 Reading for Last Class: §4.4 – 4.7, Eberly 2e

 Reading for Today: §5.3 – 5.5, Eberly 2e, CGA handout

 Reading for Next Class: §10.4, 12.7, Eberly 2e, Mesh handout

 Last Time: Scene Graph Rendering

 State: transforms, bounding volumes, render state, animation state

 Managing renderer and animation state

 Rendering: object-oriented message passing overview

 Today: Skinning and Morphing

 Skins: surface meshes for faces, character models

 Morphing: animation techniques – gradual transition between skins

 Vertex tweening

 Using Direct3D n (Shader Model m, m n - 6)

 GPU-based interpolation: texture arrays, vertex texturing, hybrid

 Videos: Special Effects (SFX)

Lecture Outline

Computing & Information Sciences
Kansas State University

3

CIS 536/636

Introduction to Computer Graphics
Lecture 19 of 41

Where We Are

Computing & Information Sciences
Kansas State University

4

CIS 536/636

Introduction to Computer Graphics
Lecture 19 of 41

Acknowledgements:
Computer Animation Intro

Acknowledgment: slides by Misha Kazhdan, Allison Klein, Tom Funkhouser, Adam Finkelstein and David Dobkin

http://bit.ly/eB1Oj4

Jason Lawrence
Assistant Professor

Department of Computer Science

University of Virginia

http://www.cs.virginia.edu/~jdl/

Thomas A. Funkhouser
Professor

Department of Computer Science

Computer Graphics Group

Princeton University

http://www.cs.princeton.edu/~funk/

Computing & Information Sciences
Kansas State University

5

CIS 536/636

Introduction to Computer Graphics
Lecture 19 of 41

Review [1]:
Linear Interpolation aka Lerping

© 2010 J. Lawrence, University of Virginia
CS 4810: Introduction to Computer Graphics – http://bit.ly/hPIXdi

Computing & Information Sciences
Kansas State University

6

CIS 536/636

Introduction to Computer Graphics
Lecture 19 of 41

Review [2]:
Cubic Curve (Spline) Interpolation

© 2010 J. Lawrence, University of Virginia
CS 4810: Introduction to Computer Graphics – http://bit.ly/hPIXdi

Computing & Information Sciences
Kansas State University

7

CIS 536/636

Introduction to Computer Graphics
Lecture 19 of 41

Review [3]:
Scene Graph State – Transforms

Adapted from 3D Game Engine Design © 2000 D. H. Eberly
See http://bit.ly/ieUq45 for second edition

 Local

 Translation, rotation, scaling, shearing

 All within parent’s coordinate system

 World: Position Child C With Respect to Parent P (Depends on Local)

 Both Together Part of Modelview Transformation

Computing & Information Sciences
Kansas State University

8

CIS 536/636

Introduction to Computer Graphics
Lecture 19 of 41

 Bounding Volume Hierarchies (BVHs)

 Root: entire scene

 Interior node: rectangle (volume in general) enclosing other nodes

 Leaves: primitive objects

 Often axis-aligned (e.g., axis-aligned bounding box aka AABB)

 Used

 Visible surface determination (VSD) – especially occlusion culling

 Other intersection testing: collisions, ray tracing

Bounding Volume Hierarchy (BVH) © 2009 Wikipedia
http://en.wikipedia.org/wiki/Bounding_volume_hierarchy

Review [4]:
Scene Graph State – BVHs

Computing & Information Sciences
Kansas State University

9

CIS 536/636

Introduction to Computer Graphics
Lecture 19 of 41

Review [5]:
Scene Graph State – Renderer State

Adapted from 3D Game Engine Design © 2000 D. H. Eberly

See http://bit.ly/ieUq45 for second edition

 Can Capture Render Information Hierarchically

 Example

 Suppose subtree has all leaf nodes that want textures alpha blended

 Can tag root of subtree with “alpha blend all”

 Alternatively: tag every leaf

 How Traversal Works: State Accumulation

 Root-to-leaf traversal accumulates state to draw geometry

 Renderer checks whether state change is needed before leaf drawn

 Efficiency Considerations

 Minimize state changes

 Reason: memory copy (e.g., system to video memory) takes time

Computing & Information Sciences
Kansas State University

10

CIS 536/636

Introduction to Computer Graphics
Lecture 19 of 41

Review [6]:
Scene Graph State – Animation State

Adapted from 3D Game Engine Design © 2000 D. H. Eberly

See http://bit.ly/ieUq45 for second edition

 Can Capture Animation Information Hierarchically

 Example

 Consider articulated figure from last lecture

 Let each node represent joint of character model

 Neck

 Shoulder

 Elbow

 Wrist

 Knee

 Procedural Transformation

 How It Works: Controllers

 Each node has controller function/method

 Manages quantity that changes over time (e.g., angle)

© 2002 D. M. Murillo
http://bit.ly/eZ9MA8

Computing & Information Sciences
Kansas State University

11

CIS 536/636

Introduction to Computer Graphics
Lecture 19 of 41

Acknowledgements:
Morphing & Animation

Adapted from “Morphing and Animation ” © 2007 G. J. Katz, University of Pennsylvania

Lecture 12, CIS 565 (formerly 665): GPU Programming and Architecture , http://bit.ly/eFkXmk

“Morphing How-To Guide ”
© 2005 – 2011 B. Ropelato &

J. C. Weaver
TopTenReviews.com
http://bit.ly/gbufRA

Computing & Information Sciences
Kansas State University

12

CIS 536/636

Introduction to Computer Graphics
Lecture 19 of 41

Morphing Techniques

Adapted from “Morphing and Animation ” © 2007 G. J. Katz, University of Pennsylvania

Lecture 12, CIS 565 (formerly 665): GPU Programming and Architecture , http://bit.ly/eFkXmk

 Vertex Tweening

 Two key meshes are blended

 Varying by time

 Morph Targets

 Represent by relative vectors

 From base mesh

 To target meshes

 Geometry: mesh represents model

 Samples: corresponding images

 Applications

 Image morphing (see videos)

 Lip syncing (work of Elon Gasper)
© 1987 Exxon Mobil, Inc.

http://youtu.be/Vi5PlrZpG40

Computing & Information Sciences
Kansas State University

13

CIS 536/636

Introduction to Computer Graphics
Lecture 19 of 41

Morph Target Animation [1]:
Definition

Adapted from “Morphing and Animation ” © 2007 G. J. Katz, University of Pennsylvania
Lecture 12, CIS 565 (formerly 665): GPU Programming and Architecture , http://bit.ly/eFkXmk

 Idea

 One base mesh

 Can morph into multiple targets at same time

 Effects

 Facial animation, e.g., Alphabet Blocks (1992) – http://bit.ly/hSKCE3

 Muscle deformation

Computing & Information Sciences
Kansas State University

14

CIS 536/636

Introduction to Computer Graphics
Lecture 19 of 41

Morph Target Animation [2]:
Interpolation

Adapted from “Morphing and Animation ” © 2007 G. J. Katz, University of Pennsylvania
Lecture 12, CIS 565 (formerly 665): GPU Programming and Architecture , http://bit.ly/eFkXmk

Linear Interpolation

Relative: PositionOutput = PositionSource + (PositionDestination * Factor)

Absolute: PositionOutput = PositionSource + (PositionDestination – PositionSource)*Factor

1

2

3
4

5
6 7 8

9

10

11

121
2 3 4 5

6

7 8 9 10
11 12

Computing & Information Sciences
Kansas State University

15

CIS 536/636

Introduction to Computer Graphics
Lecture 19 of 41

Relative vs. Absolute
Coordinates

Adapted from “Morphing and Animation ” © 2007 G. J. Katz, University of Pennsylvania

Lecture 12, CIS 565 (formerly 665): GPU Programming and Architecture , http://bit.ly/eFkXmk

4

3 < 7, 3, 9 >

< 4, 3, 5 >

Relative Absolute

Computing & Information Sciences
Kansas State University

16

CIS 536/636

Introduction to Computer Graphics
Lecture 19 of 41

Constraints

Adapted from “Morphing and Animation ” © 2007 G. J. Katz, University of Pennsylvania

Lecture 12, CIS 565 (formerly 665): GPU Programming and Architecture , http://bit.ly/eFkXmk

 Constraints on Source, Target Mesh

1. Number of vertices must be the same

2. Faces and attributes must be the same

3. Material must be equal

4. Textures must be the same

5. Shaders, etc. must be the same

 Useful Only Where Skinning Fails!

Computing & Information Sciences
Kansas State University

17

CIS 536/636

Introduction to Computer Graphics
Lecture 19 of 41

Data Structures for Morphing

Adapted from “Morphing and Animation ” © 2007 G. J. Katz, University of Pennsylvania

Lecture 12, CIS 565 (formerly 665): GPU Programming and Architecture , http://bit.ly/eFkXmk

 DirectX allows for flexible vertex formats

 So does OpenGL: http://bit.ly/fJ9U3Y

 Position 1 holds the relative position for the morph target

D3DVERTEXELEMENT9 pStandardMeshDeclaration[] =

{

{ 0, 0, D3DDECLTYPE_FLOAT3, D3DDECLMETHOD_DEFAULT,

D3DDECLUSAGE_POSITION, 0 },

{ 0, 12, D3DDECLTYPE_FLOAT3, D3DDECLMETHOD_DEFAULT,

D3DDECLUSAGE_POSITION, 1 },

{ 0, 24, D3DDECLTYPE_FLOAT3, D3DDECLMETHOD_DEFAULT,

D3DDECLUSAGE_NORMAL, 0 },

{ 0, 32, D3DDECLTYPE_FLOAT3, D3DDECLMETHOD_DEFAULT,

D3DDECLUSAGE_TEXCOORD, 0 },

D3DDECL_END()

}

Computing & Information Sciences
Kansas State University

18

CIS 536/636

Introduction to Computer Graphics
Lecture 19 of 41

Skeletal Animation

Adapted from “Morphing and Animation ” © 2007 G. J. Katz, University of Pennsylvania

Lecture 12, CIS 565 (formerly 665): GPU Programming and Architecture , http://bit.ly/eFkXmk

 Hierarchical Animation

 Mesh vertex attached to exactly one bone

 Transform vertex using inverse of bone ’s world matrix

 Issues

 Buckling

 Occurs at regions where two bones connected

Computing & Information Sciences
Kansas State University

19

CIS 536/636

Introduction to Computer Graphics
Lecture 19 of 41

Skeletal Subspace Deformation

Adapted from “Morphing and Animation ” © 2007 G. J. Katz, University of Pennsylvania
Lecture 12, CIS 565 (formerly 665): GPU Programming and Architecture , http://bit.ly/eFkXmk

 Vertices Attached to Multiple Bones by Weighting

1. Move every vertex into associated bone space by multiplying
inverse of initial transformation

2. Apply current world transformation

3. Resulting vertices blended using morphing

 Compare: Scene Graph for Transformations from Previous Lecture

Computing & Information Sciences
Kansas State University

20

CIS 536/636

Introduction to Computer Graphics
Lecture 19 of 41

Demo: Dawn
(Nvidia, Direct3D v.9 / Shader 2.0)

Adapted from “Morphing and Animation ” © 2007 G. J. Katz, University of Pennsylvania
Lecture 12, CIS 565 (formerly 665): GPU Programming and Architecture , http://bit.ly/eFkXmk

 Compare: Scene Graph for Transformations from Previous Lecture

 Wikipedia: http://en.wikipedia.org/wiki/Dawn_(demo)

Dawn © 2004 Jim Henson’s Creature Shop & Nvidia
http://youtu.be/4D2meIv08rQ

http://hdps.wikia.com/wiki/Dawn

Computing & Information Sciences
Kansas State University

21

CIS 536/636

Introduction to Computer Graphics
Lecture 19 of 41

GPU Animation [1]:
Speedups

Adapted from “Morphing and Animation ” © 2007 G. J. Katz, University of Pennsylvania

Lecture 12, CIS 565 (formerly 665): GPU Programming and Architecture , http://bit.ly/eFkXmk

 Can Skip Processing of Unused Scene Elements

 Elements

 Bones

 Morph targets

 Need hardware support for dynamic branching

 Can Separate Independent Processes

 Processes

 Modification

 Rendering

 Need hardware support for:

 Four component floating point texture formats

 Multiple render targets: normal map, position map, tangent map

Computing & Information Sciences
Kansas State University

22

CIS 536/636

Introduction to Computer Graphics
Lecture 19 of 41

GPU Animation [2]:
Method 1

Adapted from “Morphing and Animation ” © 2007 G. J. Katz, University of Pennsylvania

Lecture 12, CIS 565 (formerly 665): GPU Programming and Architecture , http://bit.ly/eFkXmk

 Hold Vertex Data in Texture Arrays

 Manipulate Data in Pixel Shader / Fragment Shader

 Re-output to Texture Arrays

 Pass Output as Input to Vertex Shader (NB: Usually Other Way Around!)

Computing & Information Sciences
Kansas State University

23

CIS 536/636

Introduction to Computer Graphics
Lecture 19 of 41

GPU Animation [3]:
Storage Procedures

Adapted from “Morphing and Animation ” © 2007 G. J. Katz, University of Pennsylvania

Lecture 12, CIS 565 (formerly 665): GPU Programming and Architecture , http://bit.ly/eFkXmk

index2D.x = index % textureWidth;

index2D.y = index / textureWidth;

index = index2D.y * textureWidth + index2D.x;

If:

vertex array is one-dimensional

frame buffer is two-dimensional

Computing & Information Sciences
Kansas State University

24

CIS 536/636

Introduction to Computer Graphics
Lecture 19 of 41

float4 VS(float4 index2D: POSITION0,

 out float4 outIndex2D : TEXCOORD0) : POSITION

{

outIndex2D = index2D;

return float4(2 * index2D.x – 1, -2 * index2D.y + 1, 0, 1);

}

GPU Animation [4]:
Vertex Program

Adapted from “Morphing and Animation ” © 2007 G. J. Katz, University of Pennsylvania

Lecture 12, CIS 565 (formerly 665): GPU Programming and Architecture , http://bit.ly/eFkXmk

 Draw Rectangle of Coordinates

 (0, 0), (0, 1), (1, 1), (1, 0)

 (-1, -1), (-1, 1), (1, 1), (1, -1)

 Remap Them using Vertex Program Below

Computing & Information Sciences
Kansas State University

25

CIS 536/636

Introduction to Computer Graphics
Lecture 19 of 41

GPU Animation [5]:
Pixel Shader

Adapted from “Morphing and Animation ” © 2007 G. J. Katz, University of Pennsylvania
Lecture 12, CIS 565 (formerly 665): GPU Programming and Architecture , http://bit.ly/eFkXmk

float2 halfTexel = float2(.5/texWidth, .5/texHeight);

float4 PS(float4 index2D : TEXCOORD0,

out float4 position : COLOR0,

out float4 normal : COLOR1, ...)

{

 index2D.xy += halfTexel;

 float4 vertAttr0 = tex2Dlod(Sampler0, index2D);

 float4 vertAttr1 = tex2Dlod(Sampler1, index2D);

 ...

 ...

 // perform modifications and assign the final

 // vertex attributes to the output registers

}

Computing & Information Sciences
Kansas State University

26

CIS 536/636

Introduction to Computer Graphics
Lecture 19 of 41

GPU Animation [6]:
Analysis

Adapted from “Morphing and Animation ” © 2007 G. J. Katz, University of Pennsylvania
Lecture 12, CIS 565 (formerly 665): GPU Programming and Architecture , http://bit.ly/eFkXmk

 Advantages

 Keeps vertex, geometry processing units ’ workload at minimum
(Why is this good?)

 Good for copy operations, vertex tweening

 Disadvantages

 Per-vertex data has to be accessed through texture lookups

 Number of constant registers is less in pixel shader (224) than
vertex shader (256)

 Can not divide modification process into several pieces because
only single quad is drawn

 Therefore: constant registers must hold all bone matrices and
morph target weights for entire object

Computing & Information Sciences
Kansas State University

27

CIS 536/636

Introduction to Computer Graphics
Lecture 19 of 41

GPU Animation [7]:
Method 2

Adapted from “Morphing and Animation ” © 2007 G. J. Katz, University of Pennsylvania

Lecture 12, CIS 565 (formerly 665): GPU Programming and Architecture , http://bit.ly/eFkXmk

 Apply Modifications in Vertex Shader, Do Nothing in Pixel Shader

 Destination pixel is specified explicitly as vertex shader input

 Still writing all vertices to texture

 Advantage: Can Easily Segment Modification Groups

 Disadvantage: Speed Issues Make This Method Impractical

Computing & Information Sciences
Kansas State University

28

CIS 536/636

Introduction to Computer Graphics
Lecture 19 of 41

GPU Animation [8]:
Accessing Modified Data

Adapted from “Morphing and Animation ” © 2007 G. J. Katz, University of Pennsylvania

Lecture 12, CIS 565 (formerly 665): GPU Programming and Architecture , http://bit.ly/eFkXmk

 Do Not Want to Send Data Back to CPU, Except in One Case

 Solution 1: DirectRenderToVertexBuffer

 Problem: DirectRenderToVertexBuffer doesn’t exist yet!

 … but we can always dream

 Solution 2: Transfer Result to Graphics Card

 From: render target

 To: Vertex Buffer Object (VBO) on graphics card

 Use OpenGL’s ARB_pixel_buffer_object

 Solution 3: Vertex Textures (Use RenderTexture Capability)

 Access texture in vertex shader (VS)

 Store texture lookop in vertices’ texture coordinates

 Problem: slow; can’t look up in parallel with other instructions

Computing & Information Sciences
Kansas State University

29

CIS 536/636

Introduction to Computer Graphics
Lecture 19 of 41

GPU Animation [9]:
Performance Issues

Adapted from “Morphing and Animation ” © 2007 G. J. Katz, University of Pennsylvania

Lecture 12, CIS 565 (formerly 665): GPU Programming and Architecture , http://bit.ly/eFkXmk

 Prefer to Perform Modification, Rendering in Single Pass

 Vertex Texturing: Slow

 Copy within video memory: fast

 Accessing vertex attributes using vertex texturing always slower

 Application Overhead

 Accessing morph in vertex texture slows down app

 Must use constants

Computing & Information Sciences
Kansas State University

30

CIS 536/636

Introduction to Computer Graphics
Lecture 19 of 41

GPU Animation [10]:
Hybrid CPU/GPU System

Adapted from “Morphing and Animation ” © 2007 G. J. Katz, University of Pennsylvania

Lecture 12, CIS 565 (formerly 665): GPU Programming and Architecture , http://bit.ly/eFkXmk

 Use Hybrid CPU/GPU Approach to Get Real Speed Advantage

1. Let CPU compute final vertex attributes used during rendering
frames n, n + k

2. Let GPU compute vertex tweening at frames greater than n, smaller
than n + k

3. Phase shift animations between characters so processors do not
have peak loads

 Advantages

 Vertex tweening supported on almost all hardware

 Modification algorithms performed on CPU, so no restrictions

Computing & Information Sciences
Kansas State University

31

CIS 536/636

Introduction to Computer Graphics
Lecture 19 of 41

Massive Character Animation [1]:
Agent State

Adapted from “Morphing and Animation ” © 2007 G. J. Katz, University of Pennsylvania
Lecture 12, CIS 565 (formerly 665): GPU Programming and Architecture , http://bit.ly/eFkXmk

 Can Perform Simple Artificial Intelligence (AI) Effects

 Reactive planning: finite state machine (FSM) for behavior

 e.g., obstacle/pursuer avoidance

 Also: flocking & herding (later: Reynolds’ boid model)

 Each Pixel of Output Texture Holds One Character ’s State

 Pixel Shader Computes Next State

 State Used to Determine Which Animation to Use

 More Advanced AI Techniques (See: CIS 530 / 730)

 Follow-the-leader

 Target acquisition & fire control (ballistics)

 Pursuer-evader

 Attack planning (may use inverse kinematics)

Computing & Information Sciences
Kansas State University

32

CIS 536/636

Introduction to Computer Graphics
Lecture 19 of 41

Massive Character Animation [2]:
Simulating Character Behavior

Adapted from “Morphing and Animation ” © 2007 G. J. Katz, University of Pennsylvania
Lecture 12, CIS 565 (formerly 665): GPU Programming and Architecture , http://bit.ly/eFkXmk

Walk

Turn

If no Obstacle

Run

If Chased

If Obstacle

If Chased

If Obstacle

 Implement Finite State Machine (FSM) in Pixel Shader

 Pixel Values Represent States

 Can Also Capture Transitions using Pixels!

Computing & Information Sciences
Kansas State University

33

CIS 536/636

Introduction to Computer Graphics
Lecture 19 of 41

Massive Character Animation [3]:
Implementing FSMs on GPUs

Adapted from “Morphing and Animation ” © 2007 G. J. Katz, University of Pennsylvania

Lecture 12, CIS 565 (formerly 665): GPU Programming and Architecture , http://bit.ly/eFkXmk

 Use Dependent Texture Lookups

 Agent-Space Maps: Contain Information About State of Characters

 Position

 State

 Frame

 World-Space Image Maps: Contain Information About Environment

 Influences behavior of character

 e.g., preprocessed obstacles

 FSM Maps: Contain State, Transition Info

 Behavior for each state

 Transition functions between states

 Rows: group transitions within same state

 Columns: conditions to trigger transitions

Computing & Information Sciences
Kansas State University

34

CIS 536/636

Introduction to Computer Graphics
Lecture 19 of 41

Preview:
Software Simulations

 Massive Software: Grew Out of WETA Digital ’s Work

 The Lord of the Rings movie trilogy

 Since then: advertising, Narnia, King Kong, Avatar, many more

 Multi-Agent Simulation in Virtual Environments

 See: http://www.massivesoftware.com

Avatar © 2009 20th Century Fox
http://youtu.be/d1_JBMrrYw8

King Kong © 2005 Universal Pictures
http://youtu.be/stMN1hwCJg0

Narnia © 2005 20th Century Fox
http://youtu.be/pYcGFLgJ8Uo

Computing & Information Sciences
Kansas State University

35

CIS 536/636

Introduction to Computer Graphics
Lecture 19 of 41

Summary

 Reading for Last Class: §5.1 – 5.2, Eberly 2e

 Reading for Today: §4.4 – 4.7, Eberly 2e

 Reading for Next Class: §10.4, 12.7, Eberly 2e, Mesh handout

 Last Time: Scene Graph Rendering

 State: transforms, bounding volumes, render state, animation state

 Updating and culling

 Rendering: object-oriented message passing overview

 Today: Skinning and Morphing

 Morphing defined

 GPU-based interpolation: methods

 Texture arrays – need to use constant registers

 Vertex texturing – too slow

 Hybrid – works best

 Getting agents cheap using GPU-based finite state machines

 More Videos: Special Effects (SFX)

Computing & Information Sciences
Kansas State University

36

CIS 536/636

Introduction to Computer Graphics
Lecture 19 of 41

Terminology

 Shading and Transparency in OpenGL: Alpha, Painter ’s, z-buffering

 Animation – Modeling Change Over Time According to Known Actions

 Keyframe Animation – Interpolating Between Set Keyframes

 State in Scene Graphs

 Transforms – local & global TRS to orient parts of model

 Bounding volumes – spheres, boxes, capsules, lozenges, ellipsoids

 Renderer state – lighting, shading/textures/alpha

 Animation state – TRS transformations (especially R), controllers

 Skins – Surface Meshes for Faces, Character Models

 Morphing

 Animation techniques – gradual transition between skins

 Vertex tweening – texture arrays, vertex texturing, or hybrid method

 GPU computing – offload some tasks to GPU

 Finite state machine – simple agent model

