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 Reading for Last Class: §4.4 – 4.7, Eberly 2e

 Reading for Today: §5.3 – 5.5, Eberly 2e, CGA handout

 Reading for Next Class: §10.4, 12.7, Eberly 2e, Mesh handout

 Last Time: Scene Graph Rendering

 State: transforms, bounding volumes, render state, animation state

 Managing renderer and animation state

 Rendering: object-oriented message passing overview

 Today: Skinning and Morphing

 Skins: surface meshes for faces, character models

 Morphing: animation techniques – gradual transition between skins

 Vertex tweening

 Using Direct3D n (Shader Model m, m n - 6)

 GPU-based interpolation: texture arrays, vertex texturing, hybrid

 Videos: Special Effects (SFX)

Lecture Outline
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Where We Are
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Review [1]:
Linear Interpolation aka Lerping

© 2010 J. Lawrence, University of Virginia
CS 4810: Introduction to Computer Graphics – http://bit.ly/hPIXdi  
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Review [2]:
Cubic Curve (Spline) Interpolation

© 2010 J. Lawrence, University of Virginia
CS 4810: Introduction to Computer Graphics – http://bit.ly/hPIXdi  
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Review [3]:
Scene Graph State – Transforms

Adapted from 3D Game Engine Design © 2000 D. H. Eberly
See http://bit.ly/ieUq45  for second edition

 Local

 Translation, rotation, scaling, shearing

 All within parent’s coordinate system

 World: Position Child C With Respect to Parent P (Depends on Local)

 Both Together Part of Modelview Transformation
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 Bounding Volume Hierarchies (BVHs)

 Root: entire scene

 Interior node: rectangle (volume in general) enclosing other nodes

 Leaves: primitive objects

 Often axis-aligned (e.g., axis-aligned bounding box aka AABB)

 Used

 Visible surface determination (VSD) – especially occlusion culling

 Other intersection testing: collisions, ray tracing

Bounding Volume Hierarchy (BVH) © 2009 Wikipedia
http://en.wikipedia.org/wiki/Bounding_volume_hierarchy

Review [4]:
Scene Graph State – BVHs
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Review [5]:
Scene Graph State – Renderer State

Adapted from 3D Game Engine Design © 2000 D. H. Eberly

See http://bit.ly/ieUq45  for second edition

 Can Capture Render Information Hierarchically

 Example

 Suppose subtree has all leaf nodes that want textures alpha blended

 Can tag root of subtree with “alpha blend all”

 Alternatively: tag every leaf

 How Traversal Works: State Accumulation

 Root-to-leaf traversal accumulates state to draw geometry

 Renderer checks whether state change is needed before leaf drawn

 Efficiency Considerations

 Minimize state changes

 Reason: memory copy (e.g., system to video memory) takes time

Computing & Information Sciences
Kansas State University

10

CIS 536/636

Introduction to Computer Graphics
Lecture 19 of 41

Review [6]:
Scene Graph State – Animation State

Adapted from 3D Game Engine Design © 2000 D. H. Eberly

See http://bit.ly/ieUq45  for second edition

 Can Capture Animation Information Hierarchically

 Example

 Consider articulated figure from last lecture

 Let each node represent joint of character model

 Neck

 Shoulder

 Elbow

 Wrist

 Knee

 Procedural Transformation

 How It Works: Controllers

 Each node has controller function/method

 Manages quantity that changes over time ( e.g., angle)

© 2002 D. M. Murillo
http://bit.ly/eZ9MA8
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Acknowledgements:
Morphing & Animation

Adapted from “Morphing and Animation ” © 2007 G. J. Katz, University of Pennsylvania

Lecture 12, CIS 565 (formerly 665): GPU Programming and Architecture , http://bit.ly/eFkXmk

“Morphing How-To Guide ”
© 2005 – 2011 B. Ropelato & 

J. C. Weaver
TopTenReviews.com
http://bit.ly/gbufRA
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Morphing Techniques

Adapted from “Morphing and Animation ” © 2007 G. J. Katz, University of Pennsylvania

Lecture 12, CIS 565 (formerly 665): GPU Programming and Architecture , http://bit.ly/eFkXmk

 Vertex Tweening

 Two key meshes are blended

 Varying by time

 Morph Targets

 Represent by relative vectors

 From base mesh

 To target meshes

 Geometry: mesh represents model

 Samples: corresponding images

 Applications

 Image morphing (see videos)

 Lip syncing (work of Elon Gasper)
© 1987 Exxon Mobil, Inc.

http://youtu.be/Vi5PlrZpG40
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Morph Target Animation [1]:
Definition

Adapted from “Morphing and Animation ” © 2007 G. J. Katz, University of Pennsylvania
Lecture 12, CIS 565 (formerly 665): GPU Programming and Architecture , http://bit.ly/eFkXmk

 Idea

 One base mesh

 Can morph into multiple targets at same time

 Effects

 Facial animation, e.g., Alphabet Blocks (1992) – http://bit.ly/hSKCE3

 Muscle deformation
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Morph Target Animation [2]:
Interpolation

Adapted from “Morphing and Animation ” © 2007 G. J. Katz, University of Pennsylvania
Lecture 12, CIS 565 (formerly 665): GPU Programming and Architecture , http://bit.ly/eFkXmk

Linear Interpolation

Relative:  PositionOutput = PositionSource + (PositionDestination * Factor)

Absolute: PositionOutput = PositionSource + (PositionDestination – PositionSource)*Factor

1

2

3
4

5
6 7 8

9

10

11

121
2 3 4 5

6
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11 12
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Relative vs. Absolute
Coordinates

Adapted from “Morphing and Animation ” © 2007 G. J. Katz, University of Pennsylvania

Lecture 12, CIS 565 (formerly 665): GPU Programming and Architecture , http://bit.ly/eFkXmk

4

3 < 7, 3, 9 >

< 4, 3, 5 >

Relative Absolute
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Constraints

Adapted from “Morphing and Animation ” © 2007 G. J. Katz, University of Pennsylvania

Lecture 12, CIS 565 (formerly 665): GPU Programming and Architecture , http://bit.ly/eFkXmk

 Constraints on Source, Target Mesh

1. Number of vertices must be the same

2. Faces and attributes must be the same

3. Material must be equal

4. Textures must be the same

5. Shaders, etc. must be the same

 Useful Only Where Skinning Fails!
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Data Structures for Morphing

Adapted from “Morphing and Animation ” © 2007 G. J. Katz, University of Pennsylvania

Lecture 12, CIS 565 (formerly 665): GPU Programming and Architecture , http://bit.ly/eFkXmk

 DirectX allows for flexible vertex formats

 So does OpenGL: http://bit.ly/fJ9U3Y

 Position 1 holds the relative position for the morph target 

D3DVERTEXELEMENT9 pStandardMeshDeclaration[] =

{

{ 0, 0, D3DDECLTYPE_FLOAT3, D3DDECLMETHOD_DEFAULT,

D3DDECLUSAGE_POSITION, 0 },

{ 0, 12, D3DDECLTYPE_FLOAT3, D3DDECLMETHOD_DEFAULT,

D3DDECLUSAGE_POSITION,  1 },

{ 0, 24, D3DDECLTYPE_FLOAT3, D3DDECLMETHOD_DEFAULT,

D3DDECLUSAGE_NORMAL, 0 },

{ 0, 32, D3DDECLTYPE_FLOAT3, D3DDECLMETHOD_DEFAULT,

D3DDECLUSAGE_TEXCOORD, 0 },

D3DDECL_END()

}
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Skeletal Animation

Adapted from “Morphing and Animation ” © 2007 G. J. Katz, University of Pennsylvania

Lecture 12, CIS 565 (formerly 665): GPU Programming and Architecture , http://bit.ly/eFkXmk

 Hierarchical Animation

 Mesh vertex attached to exactly one bone

 Transform vertex using inverse of bone ’s world matrix

 Issues

 Buckling

 Occurs at regions where two bones connected
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Skeletal Subspace Deformation

Adapted from “Morphing and Animation ” © 2007 G. J. Katz, University of Pennsylvania
Lecture 12, CIS 565 (formerly 665): GPU Programming and Architecture , http://bit.ly/eFkXmk

 Vertices Attached to Multiple Bones by Weighting

1. Move every vertex into associated bone space by multiplying 
inverse of initial transformation

2. Apply current world transformation

3. Resulting vertices blended using morphing

 Compare: Scene Graph for Transformations from Previous Lecture
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Demo: Dawn
(Nvidia, Direct3D v.9 / Shader 2.0)

Adapted from “Morphing and Animation ” © 2007 G. J. Katz, University of Pennsylvania
Lecture 12, CIS 565 (formerly 665): GPU Programming and Architecture , http://bit.ly/eFkXmk

 Compare: Scene Graph for Transformations from Previous Lecture

 Wikipedia: http://en.wikipedia.org/wiki/Dawn_(demo)

Dawn © 2004 Jim Henson’s Creature Shop & Nvidia
http://youtu.be/4D2meIv08rQ

http://hdps.wikia.com/wiki/Dawn
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GPU Animation [1]:
Speedups

Adapted from “Morphing and Animation ” © 2007 G. J. Katz, University of Pennsylvania

Lecture 12, CIS 565 (formerly 665): GPU Programming and Architecture , http://bit.ly/eFkXmk

 Can Skip Processing of Unused Scene Elements

 Elements 

 Bones

 Morph targets

 Need hardware support for dynamic branching

 Can Separate Independent Processes

 Processes

 Modification

 Rendering

 Need hardware support for:

 Four component floating point texture formats

 Multiple render targets: normal map, position map, tangent map
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GPU Animation [2]:
Method 1

Adapted from “Morphing and Animation ” © 2007 G. J. Katz, University of Pennsylvania

Lecture 12, CIS 565 (formerly 665): GPU Programming and Architecture , http://bit.ly/eFkXmk

 Hold Vertex Data in Texture Arrays

 Manipulate Data in Pixel Shader / Fragment Shader

 Re-output to Texture Arrays

 Pass Output as Input to Vertex Shader (NB: Usually Other Way Around!)

Computing & Information Sciences
Kansas State University

23

CIS 536/636

Introduction to Computer Graphics
Lecture 19 of 41

GPU Animation [3]:
Storage Procedures

Adapted from “Morphing and Animation ” © 2007 G. J. Katz, University of Pennsylvania

Lecture 12, CIS 565 (formerly 665): GPU Programming and Architecture , http://bit.ly/eFkXmk

index2D.x = index % textureWidth;

index2D.y = index / textureWidth;

index = index2D.y * textureWidth + index2D.x;

If:

vertex array is one-dimensional

frame buffer is two-dimensional
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float4 VS(float4 index2D: POSITION0, 

          out float4 outIndex2D : TEXCOORD0) : POSITION

{

outIndex2D = index2D;

return float4(2 * index2D.x – 1, -2 * index2D.y + 1, 0, 1);

}

GPU Animation [4]:
Vertex Program

Adapted from “Morphing and Animation ” © 2007 G. J. Katz, University of Pennsylvania

Lecture 12, CIS 565 (formerly 665): GPU Programming and Architecture , http://bit.ly/eFkXmk

 Draw Rectangle of Coordinates

 (0, 0), (0, 1), (1, 1), (1, 0)

 (-1, -1), (-1, 1), (1, 1), (1, -1)

 Remap Them using Vertex Program Below
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GPU Animation [5]:
Pixel Shader

Adapted from “Morphing and Animation ” © 2007 G. J. Katz, University of Pennsylvania
Lecture 12, CIS 565 (formerly 665): GPU Programming and Architecture , http://bit.ly/eFkXmk

float2 halfTexel = float2(.5/texWidth, .5/texHeight);

float4 PS(float4 index2D : TEXCOORD0, 

out float4 position : COLOR0,

out float4 normal : COLOR1, ...) 

{

      index2D.xy += halfTexel;

      float4 vertAttr0 = tex2Dlod(Sampler0, index2D);

      float4 vertAttr1 = tex2Dlod(Sampler1, index2D);

      ...

      ...

      // perform modifications and assign the final

      // vertex attributes to the output registers

}
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GPU Animation [6]:
Analysis

Adapted from “Morphing and Animation ” © 2007 G. J. Katz, University of Pennsylvania
Lecture 12, CIS 565 (formerly 665): GPU Programming and Architecture , http://bit.ly/eFkXmk

 Advantages

 Keeps vertex, geometry processing units ’ workload at minimum 
(Why is this good?)

 Good for copy operations, vertex tweening

 Disadvantages

 Per-vertex data has to be accessed through texture lookups

 Number of constant registers is less in pixel shader (224) than 
vertex shader (256)

 Can not divide modification process into several pieces because 
only single quad is drawn

 Therefore: constant registers must hold all bone matrices and 
morph target weights for entire object
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GPU Animation [7]:
Method 2

Adapted from “Morphing and Animation ” © 2007 G. J. Katz, University of Pennsylvania

Lecture 12, CIS 565 (formerly 665): GPU Programming and Architecture , http://bit.ly/eFkXmk

 Apply Modifications in Vertex Shader, Do Nothing in Pixel Shader

 Destination pixel is specified explicitly as vertex shader input

 Still writing all vertices to texture

 Advantage: Can Easily Segment Modification Groups

 Disadvantage: Speed Issues Make This Method Impractical
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GPU Animation [8]:
Accessing Modified Data

Adapted from “Morphing and Animation ” © 2007 G. J. Katz, University of Pennsylvania

Lecture 12, CIS 565 (formerly 665): GPU Programming and Architecture , http://bit.ly/eFkXmk

 Do Not Want to Send Data Back to CPU, Except in One Case

 Solution 1: DirectRenderToVertexBuffer

 Problem: DirectRenderToVertexBuffer  doesn’t exist yet!

 … but we can always dream

 Solution 2: Transfer Result to Graphics Card

 From: render target

 To: Vertex Buffer Object (VBO) on graphics card

 Use OpenGL’s ARB_pixel_buffer_object

 Solution 3: Vertex Textures (Use RenderTexture Capability)

 Access texture in vertex shader (VS)

 Store texture lookop in vertices’ texture coordinates

 Problem: slow; can’t look up in parallel with other instructions
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GPU Animation [9]:
Performance Issues

Adapted from “Morphing and Animation ” © 2007 G. J. Katz, University of Pennsylvania

Lecture 12, CIS 565 (formerly 665): GPU Programming and Architecture , http://bit.ly/eFkXmk

 Prefer to Perform Modification, Rendering in Single Pass

 Vertex Texturing: Slow

 Copy within video memory: fast

 Accessing vertex attributes using vertex texturing always slower

 Application Overhead

 Accessing morph in vertex texture slows down app

 Must use constants
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GPU Animation [10]:
Hybrid CPU/GPU System

Adapted from “Morphing and Animation ” © 2007 G. J. Katz, University of Pennsylvania

Lecture 12, CIS 565 (formerly 665): GPU Programming and Architecture , http://bit.ly/eFkXmk

 Use Hybrid CPU/GPU Approach to Get Real Speed Advantage

1. Let CPU compute final vertex attributes used during rendering 
frames n, n + k

2. Let GPU compute vertex tweening at frames greater than n, smaller 
than n + k

3. Phase shift animations between characters so processors do not 
have peak loads

 Advantages

 Vertex tweening supported on almost all hardware

 Modification algorithms performed on CPU, so no restrictions
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Massive Character Animation [1]:
Agent State

Adapted from “Morphing and Animation ” © 2007 G. J. Katz, University of Pennsylvania
Lecture 12, CIS 565 (formerly 665): GPU Programming and Architecture , http://bit.ly/eFkXmk

 Can Perform Simple Artificial Intelligence (AI) Effects

 Reactive planning: finite state machine (FSM) for behavior

 e.g., obstacle/pursuer avoidance

 Also: flocking & herding (later: Reynolds’ boid model)

 Each Pixel of Output Texture Holds One Character ’s State

 Pixel Shader Computes Next State

 State Used to Determine Which Animation to Use

 More Advanced AI Techniques (See: CIS 530 / 730)

 Follow-the-leader

 Target acquisition & fire control (ballistics)

 Pursuer-evader

 Attack planning (may use inverse kinematics)
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Massive Character Animation [2]:
Simulating Character Behavior

Adapted from “Morphing and Animation ” © 2007 G. J. Katz, University of Pennsylvania
Lecture 12, CIS 565 (formerly 665): GPU Programming and Architecture , http://bit.ly/eFkXmk

Walk

Turn

If no Obstacle

Run

If Chased

If Obstacle

If Chased

If Obstacle

 Implement Finite State Machine (FSM) in Pixel Shader

 Pixel Values Represent States

 Can Also Capture Transitions using Pixels!
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Massive Character Animation [3]:
Implementing FSMs on GPUs

Adapted from “Morphing and Animation ” © 2007 G. J. Katz, University of Pennsylvania

Lecture 12, CIS 565 (formerly 665): GPU Programming and Architecture , http://bit.ly/eFkXmk

 Use Dependent Texture Lookups

 Agent-Space Maps: Contain Information About State of Characters

 Position

 State

 Frame

 World-Space Image Maps: Contain Information About Environment

 Influences behavior of character

 e.g., preprocessed obstacles

 FSM Maps: Contain State, Transition Info

 Behavior for each state

 Transition functions between states

 Rows: group transitions within same state

 Columns: conditions to trigger transitions
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Preview:
Software Simulations

 Massive Software: Grew Out of WETA Digital ’s Work

 The Lord of the Rings  movie trilogy

 Since then: advertising, Narnia, King Kong, Avatar, many more

 Multi-Agent Simulation in Virtual Environments

 See: http://www.massivesoftware.com

Avatar © 2009 20th Century Fox
http://youtu.be/d1_JBMrrYw8

King Kong © 2005 Universal Pictures
http://youtu.be/stMN1hwCJg0

Narnia © 2005 20th Century Fox
http://youtu.be/pYcGFLgJ8Uo
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Summary

 Reading for Last Class: §5.1 – 5.2, Eberly 2e

 Reading for Today: §4.4 – 4.7, Eberly 2e

 Reading for Next Class: §10.4, 12.7, Eberly 2e, Mesh handout

 Last Time: Scene Graph Rendering

 State: transforms, bounding volumes, render state, animation state

 Updating and culling

 Rendering: object-oriented message passing overview

 Today: Skinning and Morphing

 Morphing defined

 GPU-based interpolation: methods

 Texture arrays – need to use constant registers

 Vertex texturing – too slow

 Hybrid – works best

 Getting agents cheap using GPU-based finite state machines

 More Videos: Special Effects (SFX)
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Terminology

 Shading and Transparency in OpenGL: Alpha, Painter ’s, z-buffering

 Animation – Modeling Change Over Time According to Known Actions

 Keyframe Animation – Interpolating Between Set Keyframes

 State in Scene Graphs

 Transforms – local & global TRS to orient parts of model

 Bounding volumes – spheres, boxes, capsules, lozenges, ellipsoids

 Renderer state – lighting, shading/textures/alpha

 Animation state – TRS transformations (especially R), controllers

 Skins – Surface Meshes for Faces, Character Models

 Morphing

 Animation techniques – gradual transition between skins

 Vertex tweening – texture arrays, vertex texturing, or hybrid method

 GPU computing – offload some tasks to GPU

 Finite state machine – simple agent model


