

Introduction to Computer Graphics

Lecture 22 of 41

Computing & Information Kansas State Univer

Č		Where We Are		
	•••	21	Lab 4a: Animation Basics	Flash animation handout
		22	Animation 2: Rotations: Dynamics, Kinematics	Chapter 17, esp. §17,1 – 17,2
		23	Demos 4: Modeling & Simulation; Rotations	Chapter 10 ¹ , 13 ² , §17.3 – 17.5
		24	Collisions 1: axes, OBBs, Lab 4b	§2.4.3, 8.1, GL handout
		25	Spatial Sorting: Binary Space Partitioning	Chapter 6, esp. §6.1
		26	Demos 5: More CGA; Picking; HW/Exam	Chapter 7 ² ; § 8.4
		27	Lab 5a: Interaction Handling	§ 8.3 - 8.4; 4.2, 5.0, 5.6, 9.1
		28	Collisions 2: Dynamic, Particle Systems	§ 9.1, particle system handout
			Exam 2 review; Hour Exam 2 (evening)	Chapters 5 - 6, 7 ² - 8, 12, 17
		29	Lab 5b: Particle Systems	Particle system handout
		30	Animation 3: Control & IK	§ 5.3, CGA handout
		31	Ray Tracing 1: intersections, ray trees	Chapter 14
		32	Lab 6a: Ray Tracing Basics with POV-Ray	RT handout
		33	Ray Tracing 2: advanced topic survey	Chapter 15, RT handout
		34	Visualization 1: Data (Quantities & Evidence)	Tufte handout (1)
		35	Lab 6b: More Ray Tracing	RT handout
		36	Visualization 2: Objects	Tufte handout (2 & 4)
		37	Color Basics; Term Project Prep	Color handout
		38	Lab 7: Fractals & Terrain Generation	Fractals/Terrain handout
		39	Visualization 3: Processes; Final Review 1	Tufte handout (3)
		40	Project presentations 1; Final Review 2	-
		41	Project presentations 2	-
			Final Exam	Ch. 1 – 8, 10 – 15, 17, 20
		Lightly-sl machine shaded e Green, b	haded entries denote the due date of a written problem set; h problem (programming assignment); blue-shaded entries, tha entry, that of the term project.	eavily-shaded entries, that of a at of a paper review; and the green-
			,,,	
IS 536	6/636		Lecture 22 of 41	Computing & Information Science

References: Maya Character Rigging

Aaron Ross Founder, Digital Arts Guild http://dr-yo.com http://bit.ly/fzxN74 http://www.youtube.com/user/DigitalArtsGuild

Jim Lammers President Trinity Animation http://www.trinity3d.com http://bit.ly/i6yfyV

Larry Neuberger

Associate Professor, Alfred State SUNY College of Technology Online Instructor, Art Institute of Pittsburgh http://poorhousefx.com

CIS 536/636 Introduction to Computer Graphics

Lecture 22 of 41

Computing & Information Sciences Kansas State University

Acknowledgements: CGA Rotations, Dynamics & Kinematics

Rick Parent

Professor **Department of Computer Science and Engineering Ohio State University** http://www.cse.ohio-state.edu/~parent/

David C. Brogan

Visiting Assistant Professor, Computer Science Department, University of Virginia http://www.cs.virginia.edu/~dbrogan/ Susquehanna International Group (SIG) http://www.sig.com

€UCSD

Steve Rotenberg Visiting Lecturer **Graphics Lab** University of California - San Diego **CEO/Chief Scientist, PixelActive** http://graphics.ucsd.edu

Lecture 22 of 41

Computing & Information Scie Kansas State University

CIS 536/636 Introduction to Computer Graphics

Method 6 – Exponential Maps

We can formulate an exponential map from R^3 to S^3 as follows:

$$e^{[0,0,0]^{\mathrm{T}}} = \begin{bmatrix} 0,0,0,1 \end{bmatrix}^{\mathrm{T}} \quad \text{and for } \mathbf{v} \neq \mathbf{0} \qquad e^{\mathrm{v}} = \sum_{n=1}^{\infty} (\frac{1}{2} \widetilde{\mathbf{v}})^{m} = \left[\sin(\frac{1}{2}\theta) \widehat{\mathbf{v}}, \quad \cos(\frac{1}{2}\theta) \right]^{\mathrm{T}} ,$$
$$\mathbf{q} = e^{\mathrm{v}} = \left[\sin(\frac{1}{2}\theta) \frac{\mathbf{v}}{\theta}, \quad \cos(\frac{1}{2}\theta) \right]^{\mathrm{T}} = \left[\frac{\sin(\frac{1}{2}\theta)}{\theta} \mathbf{v}, \quad \cos(\frac{1}{2}\theta) \right]^{\mathrm{T}}$$

Original paper, Journal of Graphics Tools: Grassia (1998), http://bit.ly/gwHQnt

Wikipedia: Exponential Map,

$$\begin{split} \exp(\tilde{\boldsymbol{\omega}}) &= \exp\left(\begin{bmatrix} 0 & -z\theta & y\theta \\ z\theta & 0 & -x\theta \\ -y\theta & x\theta & 0 \end{bmatrix} \right) \\ &= \begin{bmatrix} 2(x^2 - 1)s^2 + 1 & 2xys^2 - 2zcs & 2xzs^2 + 2ycs \\ 2xys^2 + 2zcs & 2(y^2 - 1)s^2 + 1 & 2yzs^2 - 2xcs \\ 2xzs^2 - 2ycs & 2yzs^2 + 2xcs & 2(z^2 - 1)s^2 + 1 \end{bmatrix}, \end{split}$$

Wikipedia: Rotation Matrix, http://bit.ly/edluTR

CIS 536/636 Introduction to Computer Graphics

Lecture 22 of 41

Computing & Information Sciences Kansas State University

CIS 536/636 Introduction to Computer Graphics

Lecture 22 of 41

Computing & Information Sciences Kansas State University

