Lecture 25 of 41

Spatial Sorting: Binary Space Partitioning
Quadtrees & Octrees

William H. Hsu
Department of Computing and Information Sciences, KSU

KSOL course pages: http:/bit.ly/hGvXIH / http://bit.ly/eVizrE
Public mirror web site: http://www.kddresearch.org/Courses/CIS636
Instructor home page: http://www.cis.ksu.edu/~bhsu

Readings:
Today: Chapter 6, esp. §6.1, Eberly 2¢— see http://bit.ly/ieUq45
Next class: Chapter 7, §8.4, Eberly 2
Wikipedia, Binary Space Partitioning: http://bit.ly/eE10lc
Wikipedia, Quadtree (http://bit.ly/ky0Xy) & Octree (http://bit.ly/dVrthx)

CIS 536/636 Computing & Information Sciences

Lecture 25 of 41

Introduction to Computer Graphics Kansas State University

Lecture Outline

Reading for Last Class: §2.4.3, 8.1, Eberly 2¢, GL handout
Reading for Today: Chapter 6, Esp. §6.1, Eberly 2¢
Reading for Next Class: Chapter 7, §8.4, Eberly 2¢

Last Time: Collision Handling, Part 1 of 2

* Static vs. dynamic objects, testing vs. finding intersections
* Distance vs. intersection methods
* Triangle point containment test
% Method of separating axes
® Today: Adaptive Spatial Partitioning
* Visible Surface Determination (VSD) revisited
* Constructive Solid Geometry (CSG) trees
* Binary Space Partitioning (BSP) trees
* Quadtrees: adaptive 2-D (planar) subdivision
% Octrees: adaptive 3-D (spatial) subdivision
® Coming Soon: Volume Graphics & Voxels 0

CIS 536/636 Computing & Information Sciences

Lecture 25 of 41

Introduction to Computer Graphics Kansas State University

Where We Are

21 Lab 4a: Animation Basi Flash animation handout
22 Animation 2: Rotations; Dynamics, Kinematics | Chapter 17, esp. §17.1-17.2
23 Demos 4 Modellnq & Simulation; Rotations Ch_pter 10‘ 137, 8173175
2 . A L h
Lab 5a: Interactlon Handllng
28 Collisions 2: Dynamic, Pariicle Systems em
Exam 2 review; Hour Exam 2 (evening) Chapters 5-6,7 -8, 12 17
29 Lab 5b: Particle Systems Particle system handout
30 Animation 3: Control & IK § 5.3, CGA handout
31 Ray Tracing 1: intersections, ray trees Chapter 14
32 Lab 6a: Ray Tracing Basics with POV-Ray RT handout
33 Ray Tracing 2: advanced fopic survey Chapter 15, RT handout
34 Visualization 1: Data (Quantities & Evidence) | Tufie handout (1)
35 Lab 6b: More Ray Tracing RT handout
36 Visualization 2: Objects Tufte handout
37 Color Basics; Term Project Prep Color handout
38 Lab 7: Fractals & Terrain Generation Fractals/Terrain handout
39 Visualization 3: Processes; Final Review 1 | Tufte handout (3)
40 Project presentations 1; Final Review 2 -
41 Project presentations 2 -
Final Exam Ch.1-8,10-15,17, 20

Lightly-shaded entries denote the due date of a written problem set; heavily-shaded entries. that of a
machine problem (programming assignment); blue-shaded entries, that of a paper review; and the green- FJ_
shaded entry, that of the term project

Green, blue and red letters denote exam review, exam, and exam solution review dates.

CIS 536/636 Computing & Information Sciences
Introduction to Computer Graphics Kansas State University

Lecture 25 of 41

Acknowledgements:
Intersections, Containment — Eberly 1¢

David H. Eberly Last lecture’s material:
Chief Technology Officer ® View Frustum clipping
Geometric Tools, LLC -

http://www.geometrictools.com < §2-4-3; p- 70 - 77, 2¢

http://bit.lylenKbfs > §3.4.3,p.93-99, & §3.7.2, p. 133 — 136, 1¢
® Collision detection: separating axes

> §8.1,p. 393 — 443, 2¢

3 D > §6.4.p. 203 — 214, 1¢
Later:

Game Engine ® Distance methods
Design > Chapter 14, p. 639 — 679, 2¢
> §2.6,p.38-77,1¢
® Intersection methods
> Chapter 15, p. 681 — 717, 2¢
> §6.2-6.5p. 188 — 243, 1¢

to Real-Time

Computer

Graphics

David H. Eberly

3D Game Engine Design © 2000 D. H. Eberly

See http://bit.ly/ieUg45 for second edition table of contents (TOC)

CIS 536/636 Computing & Information Sciences
Lecture 25 of 41 S
Introduction to Computer Graphics Kansas State University

5 Review [1]:
View Frustum Clipping

ph)n

Figure 3.4 Four configurations for triangle splitting. Only the triangles in the shaded region are
important, se the quadrilaterals outside are not split.

3D Game Engine Design © 2000 D. H. Eberly —
See http://bit.ly/ieUq45 for second edition table of contents (TOC) &

Computing & Information Sciences

CIS 536/636
e A5 6ff 412 Kansas State University

Introduction to Computer Graphics

¢ Review [2]:
Collision Detection vs. Response

m Collision Detection
Collision detection is a geometric problem

Given two moving objects defined in an initial and
final configuration, determine if they intersected at
some point between the two states

m Collision Response

The response to collisions is the actual physics
problem of determining the unknown forces (or
impulses) of the collision

Adapted from slides ¥ 2004 — 2005 S. Rotenberg, UCSD

CSE169: Computer Animation, Winter 2005, http://bit.ly/fOViAN = UCSD

Computing & Information Sciences
Kansas State University

@ 536/?3@ : Lecture 25 of 41
Introduction to Computer Graphics

7 Review [3]:
Queries — Test- vs. Find-Intersection

® Test-Intersection: Determine If Objects Intersect

* Static: test whether they do at given instant
#* Dynamic: test whether they intersect at any point along trajectories
® Find-Intersection: Determine Intersection (or Contact) Set of Objects

* Static: intersection set (compare: A N B)
% Dynamic: contact time (interval of overlap), sets (depends on time)

Ber
Adapted from 3D Game Engine Design © 2000 D. H. Eberly | —
See http://bit.ly/ieUq45 for second edition table of contents (TOC) & &

CIS 536/636 Computing & Information Sciences

Lecture 25 of 41

Introduction to Computer Graphics Kansas State University

G Review [4]:
Queries — Distance vs. Intersection

® Distance-Based
% Parametric representation of object boundaries/interiors
* Want: closest points on two objects (to see whether they intersect)
* Use: constrained minimization to solve for closest points

® |ntersection-Based

* Also uses parametric representation
% Want: overlapping subset of interior of two objects
* General approach: equate objects, solve for parameters
% Use one of two kinds of solution methods
» Analytical (when feasible to solve exactly — e.g., OBBs)
» Numerical (approximate region of overlap)
% Solving for parameters in equation
% Harder to compute than distance-based; use only when needed

Ber
Adapted from 3D Game Engine Design © 2000 D. H. Eberly | —
See http://bit.ly/ieUq45 for second edition table of contents (TOC) & &

CIS 536/636 Computing & Information Sciences

Lecture 25 of 41

Introduction to Computer Graphics Kansas State University

2 Review [5]:
Segment vs. Triangle — Solution

m First, compute signed distances of a and b to plane
d =(a-v,)n s
db:(.b_vo)'n |

0
m Reject if both are above or both are below triangle

m Otherwise, find intersection point x
db-d,a
X=——"-—
de=d

Adapted from slides ¥ 2004 — 2005 S. Rotenberg, UCSD :

CSE169: Computer Animation, Winter 2005, http://bit.ly/fOViAN = UCSD
CIS 536/636 Lecture 25 of 41 Computing & Information Sciences
Introduction to Computer Graphics Kansas State University

o Review [6]:
Segment vs. Triangle — Point Test

m |s point X inside the triangle?
(X-Vg) ((v-vg)xn) > 0O
m Testall 3 edges

Vo-Vg

Adapted from slides ¥ 2004 — 2005 S. Rotenberg, UCSD
CSE169: Computer Animation, Winter 2005, http://bit.ly/fOViAN

CIS 536/636 Computing & Information Sciences
Lecture 25 of 41 -
Introduction to Computer Graphics Kansas State University

= Review [7]:
Faster Triangle — Point Containment

= Reduce to 2D: remove smallest dimension
s Compute barycentric coordinates
=X-V
=V1-Vo
€,=Vr-Vy
a=(x"xey)/(esxe,)

B=(x'xeyy/(eqxe,)
= Rejectif a<0, g<0 or a+g >1

Adapted from slides ¥ 2004 — 2005 S. Rotenberg, UCSD

CSE169: Computer Animation, Winter 2005, http://bit.ly/fOViAN = UCSD
CIS 536/636 Lecture 25 of 41 Computing & Information Sciences
Introduction to Computer Graphics Kansas State University

= Review [8]:
Sphere-Swept Volumes & Distances

Wikipedia: Sphere

http://bit.ly/90WjQi - |
Image © 2008 ClipArtOf.com Capsule Lozenge
http://bit.ly/eKhE2f Image © 2007 Remotion Wiki Image © 2011 Jasmin Studio Crafts
http://bit.ly/huEzZNW http://bit.ly/euEopw
“Table 6.1 Relationship between sphere-swept volumes and distance calculators (pnt, point; seg,
line segment; rct, rectangle).
Sphere Capsule Lozenge
Sphere dist(pnt,pnt) dist(pnt,seg) dist(pnt,rct)
Capsule dist(seg,pnt) dist(seg,seg) dist(seg,rct)
Lozenge dist(rct,pnt) disi(rct,seg) dist(ret,ret)
Adapted from 3D Game Engine Design © 2000 D. H. Eberly | e

See http://bit.ly/ieUq45 for second edition table of contents (TOC)

CIS 536/636 Computing & Information Sciences

Lecture 25 of 41

Introduction to Computer Graphics Kansas State University

= Review [4]:
Method of Separating Axes

Table 6.7 Values for R, Ry, and R for the separating axis test R > Ry + R, for two boxes in the
direction of motion.

E» Ry R, R

W x Ag arlaz| + azle| Yo bileuas — caa| |Ap- W x DI

W x A aplaz| + azle| Y2, bilcoioz — cuao| 1Ay W x D)

W x Zz apley| + aylecg) E,Ln b; lcoroy — criceal]Z;_ W% ﬁ]

W xBo Yigailcnfz—ciafil LAEARRAT |Bo- W x D

Wx Bl TigailcioBz — cizbol byl B2l + b2l Bol By - W x DI

Wx By Yl_ailcioBi — cinfol byl Bl + b1l Bol |B.- W x D

Ber

3D Game Engine Design © 2000 D. H. Eberly |
See http://bit.ly/ieUq45 for second edition table of contents (TOC) & &

CIS 536/636

¢) Lecture 25 of 41 Computing & Information S;:zmc'es
Introduction to Computer Graphics Kansas State University

& Acknowledgements:
Collisions, BSP/Quadtrees/Octrees

Steve Rotenberg

Visiting Lecturer

Graphics Lab %UCSD

University of California — San Diego
CEO/Chief Scientist, PixelActive

http://graphics.ucsd.edu

Glenn G. Chappell
Associate Professor UNIVERSITY OF
Department of Computer Science w II. S |N(

= AN

University of Alaska Fairbanks
http://www.cs.uaf.edu/~chappell/

CIS 536/636

Computing & Information Sciences
Introduction to Computer Graphics Kansas State University

Lecture 25 of 41

= Data Structures for Scenes [1]:
Four Tree Representations

® Scene Graphs
* Organized by how scene is constructed
% Nodes hold objects
® Constructive Solid Geometry (CSG) Trees
* Organized by how scene is constructed
% Leaves hold 3-D primitives
* Internal nodes hold set operations
® Binary Space Partitioning (BSP) Trees
* Organized by spatial relationships in scene
% Nodes hold facets (in 3-D, polygons)
® Quadtrees & Octrees
% Organized spatially
* Nodes represent regions in space
* Leaves hold objects

Adapted from slides ¥ 2004 G. G. Chappell, UAF w ""[’“g*l’(” i —a,
CS 481/681: Advanced Computer Graphics, Spring 2004, http:/bit.ly/eivvVc N 5 TREAN [

CIS 536/636 Computing & Information Sciences

Lecture 25 of 41

n
Introduction to Computer Graphics Kansas State University

= Data Structures for Scenes [2]:
Implementing Scene Graphs

® We think of scene graphs as looking like the tree on the left.
® However, it is often convenient to implement them as shown on the
right.
* Implementation is a B-tree.
* Child pointers are first-logical-child and next-logical-sibling.

* Then traversing the logical tree is a simple pre-order traversal of the
physical tree. This is how we draw.

Logical Tree Physical Tree
==
Adapted from slides ¥ 2004 G. G. Chappell, UAF w ""[’“g*l’(” | —a
CS 481/681: Advanced Computer Graphics, Spring 2004, http://bit.ly/eivvVc Al Fal ANKS & &

CIS 536/636 Information Sciences

Lecture 25 of 41

Introduction to Computer Graphics ansas State University

= Data Structures for Scenes [3]:
Constructive Solid Geometry Trees

® In Constructive Solid Geometry (CSG), we construct a scene out of
primitives representing solid 3-D shapes. Existing objects are combined
using set operations (union, intersection, set difference).
® We represent a scene as a binary tree.
* Leaves hold primitives.

* Internal nodes, which always have two
children, hold set operations.

#* Order of children matters!

® CSG trees are useful for things other than rendering.
* Intersection tests (collision detection, etc.) are not too hard. (Thus: ray tracing.)
® CSG does not integrate well with pipeline-based rendering, so we are not
covering it in depth right now.
#* How about a project on CSG?

Adapted from slides ¥ 2004 G. G. Chappell, UAF w ""'L’E'“S”IV(W I
CS 481/681: Advanced Computer Graphics, Spring 2004, http:/bit.ly/eivvVc N 5 TREAN [

CIS 536/636 Computing & Information Sciences

Lecture 25 of 41

Introduction to Computer Graphics Kansas State University

& Binary Space Partitioning Trees [1]:
ldea

® BSP tree: very different way to represent a scene

* Nodes hold facets

* Structure of tree encodes spatial information about the scene
® Applications

* Visible Surface Determination (VSD) aka Hidden Surface
Removal

* Wikipedia: Visible Surface Determination, http://bit.ly/et2yNQ
* Related applications: portal rendering (http://bit.ly/fYO5T6), etc.

Adapted from slides ¥ 2004 G. G. Chappell, UAF w ""'L’E'“S”IV(W I
CS 481/681: Advanced Computer Graphics, Spring 2004, http://bit.ly/eivvVc N B TREAN [

CIS 536/636 Computing & Information Sciences

Lecture 25 of 41

Introduction to Computer Graphics Kansas State University

“ Binary Space Partitioning Trees [2]:
Definition

® BSP tree: type of binary tree
% Nodes can have 0, 1, or two children
* Order of child nodes matters, and if a node has just 1 child, it
matters whether this is its left or right child
® Each node holds a facet
* This may be only part of a facet from original scene
* When constructing a BSP tree, we may need to split facets

® Organization

* Each facet lies in a unique plane
= In 2-D, a unique line

* For each facet, we choose one side of its plane to be “outside

Other direction: “inside”

= This can be the side the normal vector points toward

* Rule: For each node
= Its left descendant subtree holds only facets “inside” it
= Its right descendant subtree holds only facets “outside” it

Adapted from slides ¥ 2004 G. G. Chappell, UAF w UNIiERSéle(OF pi—
CS 481/681: Advanced Computer Graphics, Spring 2004, http:/bit.ly/eivvVc N 5 TREAN [

”

CIS 536/636 Computing & Information Sciences

Lecture 25 of 41

Introduction to Computer Graphics Kansas State University

& Binary Space Partitioning Trees [3]:
Construction

® To construct a BSP tree, we need
* List of facets (with vertices)
* “Outside” direction for each
® Procedure
* Begin with empty tree
Iterate through facets, adding new node to tree for each new facet
First facet goes in root node.

For each subsequent facet, descend through tree, going left or right
depending on whether facet lies inside or outside the facet stored in
relevant node

= If facet lies partially inside & partially outside, split it along plane [line]
of facet

= Facet becomes two “partial” facets

= Each inherits its “outside” direction from original facet

= Continue descending through tree with each partial facet separately
* Finally, (partial) facet is added to current tree as leaf

»* * *

Adapted from slides ¥ 2004 G. G. Chappell, UAF w UNIiERSéle(OF pi—
CS 481/681: Advanced Computer Graphics, Spring 2004, http://bit.ly/eivvVc N B TREAN [

CIS 536/636 & Information Sciences

Lecture 25 of 41

Introduction to Computer Graphics ansas State University

= Binary Space Partitioning Trees [4]:
Simple Example

® Suppose we are given the following (2-D) facets and
“outside” directions: 2
° 1 3[—'

We iterate through the facets in numerical order
#* Facet 1 becomes the root
#* Facet 2 is inside of 1
#* Thus, after facet 2, we have the following BSP tree:

® Facet 3 is partially inside facet 1 and partially outside.
#* We split facet 3 along the line containing facet 1

#* The resulting facets are 3a and 3b - - _33 -
* They inherit their “outside” directions from facet 3 1 3b
® We place facets 3a and 3b separately
#* Facet 3a is inside facet 1 and outside facet 2
#* Facet 3b is outside facet 1
® The final BSP tree looks like this:
=
Adapted from slides ¥ 2004 G. G. Chappell, UAF w ""'L’“gTI’(W | —
CS 481/681: Advanced Computer Graphics, Spring 2004, http://bit.ly/eivvVc AhMl. FAIRBANKS & &

CIS 536/636 Computing & Information Sciences

Lecture 25 of 41

Introduction to Computer Graphics Kansas State University

22

BSP Tree Traversal [1]

® Important use of BSP trees: provide back-to-front (or front-to-back)
ordering of facets in scene, from point of view of observer

* When we say “back-to-front” ordering, we mean that no facet
comes before something that appears directly behind it

* This still allows nearby facets to precede those farther away
* Key idea: All descendants on one side of facet can come before
facet, which can come before all descendants on other side
® Procedure
* For each facet, determine on which side of it observer lies

* Back-to-front ordering: in-order traversal of tree where subtree
opposite from observer comes before subtree on same side

2

Adapted from slides ¥ 2004 G. G. Chappell, UAF w ""'L’E'“S”IV(W I
CS 481/681: Advanced Computer Graphics, Spring 2004, http://bit.ly/eivvVc N B TREAN [

CIS 536/636 Computing & Information Sciences

Lecture 25 of 41

Introduction to Computer Graphics Kansas State University

BSP Tree Traversal [2]

® Procedure:
* For each facet, determine on which side of it the observer lies.
#* Back-to-front ordering: Do an in-order traversal of the tree in which the
subtree opposite from the observer comes before the subtree on the same
side as the observer.
® Our observer is inside 1, outside 2, inside 3a, outside 3b.
e\
‘2 ©
3a
—_—— — = —
® Resulting back-to-front ordering: 3b, 1, 2, 3a.
® |s this really back-to-front?
Ber
Adapted from slides ¥ 2004 G. G. Chappell, UAF VY EE | —a
CS 481/681: Advanced Computer Graphics, Spring 2004, http://bit.ly/eivvVc w F AlfR n!i L(x s & &

CIS 536/636 Computing & Information Sciences
K.

e A5 6ff 412 ansas State University

Introduction to Computer Graphics

= BSP Trees:
What Are They Good For?

® BSP trees are primarily useful when a back-to-front
or front-to-back ordering is desired:
* For HSR
* For translucency via blending

® Since it can take some time to construct a BSP
tree, they are useful primarily for:
* Static scenes
* Some dynamic objects are acceptable

® BSP-tree techniques are generally a waste of effort
for small scenes. We use them on:
* Large, complex scenes

Adapted from slides ¥ 2004 G. G. Chappell, UAF w ""'l‘.’f'“s”l"(w pi—
CS 481/681: Advanced Computer Graphics, Spring 2004, http://bit.ly/eivvVc N B TREAN [

CIS 536/636 Information Sciences

Lecture 25 of 41

Introduction to Computer Graphics ansas State University

BSP Tree Optimization

® Order in which we iterate through the facets can matter a great deal
% Consider our simple example again
* If we change the ordering, we can obtain a simpler BSP tree

1 3

numbers
reversed ~—

® If a scene is not going to change, and the BSP tree will be used
many times, then it may be worth a large amount of preprocessing
time to find the best possible BSP tree

Adapted from slides ¥ 2004 G. G. Chappell, UAF w ""'l‘.’f'“s”l"(w pi—
CS 481/681: Advanced Computer Graphics, Spring 2004, http:/bit.ly/eivvVc N 5 TREAN [

CIS 536/636 Computing & Information Sciences

Lecture 25 of 41

Introduction to Computer Graphics Kansas State University

= BSP Trees:
Finding Inside/Outside [1]

® When dealing with BSP trees, we need to determine inside or
outside many times. What exactly does this mean?
* A facet lies entirely on one side of a plane if all of its vertices lie
on that side.
* Vertices are points. The position of the observer is also a point.
#* Thus, given a facet and a point, we need to be able to determine
on which side of the facet’s plane the point lies.
® We assume we know the normal vector of the facet (and that
it points toward the “outside”).
* If not, compute the normal using a cross product.
* If you are using vecpos .h, and three non-colinear vertices of
the facet are stored in pos variables p1, p2, p3, then you can
find the normal as follows.

vec n = cross (p2-pl, p3-pl) .normalized();

Adapted from slides ¥ 2004 G. G. Chappell, UAF w ""'l‘.’f'“s”l"(w pi—
CS 481/681: Advanced Computer Graphics, Spring 2004, http://bit.ly/eivvVc N B TREAN [

CIS 536/636 & Information Sciences

Lecture 25 of 41

Introduction to Computer Graphics ansas State University

27 BSP Trees:
Finding Inside/Outside [2]

® To determine on which side of a facet’s plane a point lies:
* Let N be the normal vector of the facet
* Let p be a point in the facet’s plane
= Maybe p is a vertex of the facet?
* Let z be the point we want to check
* Compute (z-p) - N
= If this is positive, then z is on the outside
= Negative: inside
= Zero: on the plane
® Using vecpos.h, and continuing from previous slide:

pos z = ...; // point to check
if (dot(z-pl, n) >= 0.)
// Outside or on plane

else
// Inside
=5
Adapted from slides ¥ 2004 G. G. Chappell, UAF w UNIiERSéle(OF p—
CS 481/681: Advanced Computer Graphics, Spring 2004, http:/bit.ly/eivvVc A, FATRBANKS [

CIS 536/636 Computing & Information Sciences

Lecture 25 of 41

Introduction to Computer Graphics Kansas State University

22 BSP Trees:
Splitting Polygons [1]

® May need to split facet when constructing BSP tree

® Example
* Suppose we have the facet shown below.
* If all vertices are (say) outside, then no split required

* But if A, E, and F are outside (+), and B, C, and D are inside
(-), then we must split into two facets

E + - D
+ -
F Cc
A + - B
=
Adapted from slides ¥ 2004 G. G. Chappell, UAF w UNIiERSéle(OF p—
CS 481/681: Advanced Computer Graphics, Spring 2004, http://bit.ly/eivvVc AM. FATRBANKS [

CIS 536/636 & Information Sciences

Lecture 25 of 41

Introduction to Computer Graphics ansas State University

BSP Trees:
Splitting Polygons [2]

® Where do we split?

* Since the expression (z — p) - N is positive at E and negative at D, it must
be zero somewhere on the line segment joining D and E. Call this point
S. This is one place where the facet splits.

* Let k, be the value of (z — p) - N at D, and let k, be the value at E.
* Then S = (1/(k; — ky)) (koD — kE).
* Point T (shown in the diagram) is computed similarly.

® Using vecpos.h (continuing from earlier slides):

double k1 dot (D-pl, n);

double k2 dot (E-pl, n);

pos S = affinecomb(k2, D, -kl1l, E);
// Explanation of above line?

Adapted from slides ¥ 2004 G. G. Chappell, UAF w ""[’“g*l’(”
CS 481/681: Advanced Computer Graphics, Spring 2004, http://bit.ly/eivvVc Iy B TRBAN

CIS 536/636 Computing & Information Sciences

Lecture 25 of 41 Syl
Introduction to Computer Graphics Kansas State University

20 BSP Trees:
Splitting Polygons [3]

® We were given vertices A, B, C, D, E, F in order
® We computed Sand T
* S lies between D and E
* T lies between A and B
® We have A, (splitatT), B, C, D, (splitatS), E, F
® We form two polygons as follows:
* Start through vertex list
#* When we get to split, use that vertex, and skip to other split

* Result: A, T,S,E, F E D
% Do the same with the part we skipped
% Result: B,C,D,S, T F c
A B s
Adapted from slides ¥ 2004 G. G. Chappell, UAF w UNIiERSéle(OF p—
CS 481/681: Advanced Computer Graphics, Spring 2004, http://bit.ly/eivvVc AM. FATRBANKS [

CIS 536/636 & Information Sciences

Lecture 25 of 41

Introduction to Computer Graphics ansas State University

* Quadtrees & Octrees [1]:
Background

® Idea of binary space partition: good general applicability
® Variations used in several different structures
% BSP trees (of course)
= Split along planes containing facets e BN N
% Quadtrees & octrees (next) ;@ RN
= Split along pre-defined planes. =
* K-d trees (Lecture 28) M

= Split along planes parallel to coordinate axes, so as to split
up the objects nicely.

= How about a project on K-d trees?
® Quadtrees used to partition 2-D space; octrees are for 3-D
% Two concepts are nearly identical
#* Unfortunate that they are given different names

Adapted from slides ¥ 2004 G. G. Chappell, UAF w ""'l‘."'“s”l’(w | —
CS 481/681: Advanced Computer Graphics, Spring 2004, http://bit.ly/eivvVc N B TREAN [

CIS 536/636 Computing & Information Sciences

Lecture 25 of 41

n
Introduction to Computer Graphics Kansas State University

& Quadtrees & Octrees [2]:
Definition

® |n general
% Quadtree: tree in which each node has at most 4 children
* Octree: tree in which each node has at most 8 children
#* Binary tree: tree in which each node has at most 2 children
® |n practice, however, we use “quadtree” and “octree” to mean
something more specific
% Each node of the tree corresponds to a square (quadtree) or
cubical (octree) region
* If a node has children, think of its region being chopped into 4
(quadtree) or 8 (octree) equal subregions
#* Child nodes correspond to these smaller subregions of parent’s
region
% Subdivide as little or as much as is necessary
* Each internal node has exactly 4 (quadtree) or 8 (octree) children

Adapted from slides ¥ 2004 G. G. Chappell, UAF w ""'l‘."'“s”l’(w | —
CS 481/681: Advanced Computer Graphics, Spring 2004, http://bit.ly/eivvVc hM. TRBAN [

CIS 536/636 Information Sciences

Lecture 25 of 41

Introduction to Computer Graphics ansas State University

. Quadtrees & Octrees [3]:
Example

® Root node of quadtree corresponds
to square region in space

* Generally, this encompasses A
entire “region of interest”

® |[f desired, subdivide along lines

parallel to the coordinate axes, Q
forming four smaller identically 9 G Q = ¢
sized square regions
* Child nodes correspond to these D .
® Some or all of these children may Q

be subdivided further

® Octrees work in a similar fashion, He
but in 3-D, with cubical regions @) wa
subdivided into 8 parts
==
Adapted from slides ¥ 2004 G. G. Chappell, UAF w ""'L’E'“S”I’(w |
CS 481/681: Advanced Computer Graphics, Spring 2004, http://bit.ly/eivvVc A, FAIRBANKS & &

CIS 536/636 Computing & Information Sciences

Lecture 25 of 41

Introduction to Computer Graphics Kansas State University

. Quadtrees & Octrees [4]:
What Are They Good For?

® Handling Observer-Object Interactions
* Subdivide the quadtree/octree until each leaf’s region intersects only a
small number of objects
* Each leaf holds a list of pointers to objects that intersect its region

* Find out which leaf the observer is in. We only need to test for
interactions with the objects pointed to by that leaf

® Inside/Outside Tests for Odd Shapes
* The root node represent a square containing the shape

* If node’s region lies entirely inside or entirely outside shape, do not
subdivide it

* Otherwise, do subdivide (unless a predefined depth limit has been
exceeded)

* Then the quadtree or octree contains information allowing us to check
quickly whether a given point is inside the shape

® Sparse Arrays of Spatially-Organized Data
* Store array data in the quadtree or octree
* Only subdivide if that region of space contains interesting data
* This is how an octree is used in the BLUIsculpt program
Adapted from slides v 2004 G. G. Chappell, UAF)) w UNICE“SHIV(OF i e
CS 481/681: Advanced Computer Graphics, Spring 2004, http://bit.ly/eivvVc % B 1 AN & é

CIS 536/636 Computing & Information Sciences

Lecture 25 of 41

Introduction to Computer Graphics Kansas State University

35

Summary

Reading for Last Class: §2.4.3, 8.1, Eberly 2¢, GL handout
Reading for Today: Chapter 6, Esp. §6.1, Eberly 2¢
Reading for Next Class: Chapter 7, §8.4, Eberly 2¢

Last Time: Collision Detection Part 1 of 2

* Static vs. dynamic, testing vs. finding, distance vs. intersection

* Triangle point containment test

* Lots of intersections: spheres, capsules, lozenges

% Method of separating axes
® Today: Adaptive Spatial Partitioning

* Visible Surface Determination (VSD) revisited

% Constructive Solid Geometry (CSG) trees

* Binary Space Partitioning (BSP) trees

* Quadtrees: adaptive 2-D (planar) subdivision

% Octrees: adaptive 3-D (spatial) subdivision r—-
® Coming Soon: Volume Graphics & Voxels 0,

CIS 536/636 Computing & Information Sciences

Lecture 25 of 41

Introduction to Computer Graphics Kansas State University

36

Terminology

® Collision Detection

* Static vs. dynamic objects

* Queries: test-intersection vs. find-intersection

% Parametric methods: distance-based, intersection-based
® Bounding Objects

* Axis-aligned bounding box

* Oriented bounding box: can point in arbitrary direction

% Sphere

% Capsule

* Lozenge
® Constructive Solid Geometry Tree: Regularized Boolean Set Operators
® Adaptive Spatial Partitioning: Calculating Intersection, Visibility

* Binary Space Partitioning tree — 2-way decision tree/surface
* Quadtree — 4-way for 2-D =2
% Octree — 8-way for 3-D O

CIS 536/636 Computing & Information Sciences

Lecture 25 of 41

Introduction to Computer Graphics Kansas State University

