[

Lecture 29 of 41

Lab 5b: Particle Systems

William H. Hsu
Department of Computing and Information Sciences, KSU

KSOL course pages: http:/bit.ly/hGvXIH / http://bit.ly/eVizrE
Public mirror web site: http://www.kddresearch.org/Courses/CIS636
Instructor home page: http://www.cis.ksu.edu/~bhsu

Readings:
Today: Particle System Handout

Next class: §5.3, Eberly 2¢—see http://bit.ly/ieUg45; CGA Handout
Wikipedia, Particle System: http://bit.ly/hzZofl

Lecture 24 of 41 Computing

Where We Are

Lab 4a: Animation Basics Flash animation handout
Animation 2: Rotations; Dynamics, Kinematics | Chapter 17, esp §17.1-17.2
Demos 4. Modeling & Simulation; Rotations Chapter 10", 13, §17.3- 175

Collisions 1: axes, OBBs, Lab 4b §2.4.3, 8.1, GL handout

25 Spatial Sorling: Binary Space Partitioning Chapler 6, esp_§6.1

26 Demos 5: More CGA; Picking; HW/Exam | Chapter 75 § 8.4

27 Lab 5a: Interaction Han| §8.3-8.4:4.2,5.0,56,9.1

Collisions

namic, Particle Systems
oul ers . 7 —8,

3 C: § 5.3, CGA handout
Ray Tracing 1: intersections, ray irees Chapter 14
Lab 6a: Ray Tracing Basics with POV-Ray RT handout
Ray Tracing 2: advanced 10pic survey Chaper 15, RT handout

4 isualization 1: Data (Quantities & Evidence) Tufte handout (1)

35 Lab 6b: More Ray Tracing RT handout
36 Visualization 2. Objecls Tufte handout (2 & 4)
37 Color Basics; Temm Project Prep Color handout
38 Lab 7. Fractals & Terrain T Fractals/Terrain handout
39 Visualization 3: Processes: Final Review 1 Tufie handout (3)
40 Project p 1, Final Review 2 -
a1 Project =
Final Exam Ch.1-8, 10-15,17. 20

Lightly-shaded entries denote the due date of a written problem set. hieavily-shaded enfries that of a
machine problem (programming assignment); bilie-shaded eniies.

shaded entry, that of the term project

Green, blue and red letters denote exam review, exam, and exam solution review dates

Computing

Lecture 24 of 41

-
that of a paper review; and the green- 8

Review [1]:
Particle Emitters & Attributes

Each new particle has the following attributes:
Clinitial position
Cinitial velocity (speed and direction)
Tlinitial size
Clinitial color
Clinitial transparency
[1shape
1lifetime

Adapted from slide ¥ 2008 H. P. H. Shum, RIKEN (¥5f)
Computer Animation, http://bit.lyfig6KTK

Lecture 24 of 41

Lecture Outline

Reading for Last Class: §9.1, Eberly 2¢; Particle System Handout
Reading for Today: Particle System Handout
Reading for Next Class: §5.3, Eberly 2°; CGA Handout
Last Time: Collision Response, Particle Systems
* Collision handling, concluded: response
> Impulse vs. force
» Compression & restitution
> Bounce

> Friction
* Simulation of Processes, Simple Physical Bodies
* Events: birth (emission), collision, death
* Properties: mass, initial velocity, lifetime
® Today: Lab on Particle Systems; Dissection of Working Program
® Next Class: Animation Part 3 of 3 - Inverse Kinematics

o Computing &

to Computer Graphics

Acknowledgements:
3-D Particle Systems

Hubert Pak Ho Shum

Postdoctoral Researcher
Advanced Science Institute
RIKEN (35f) R I K E N

http:/lhubertshum.com/info/

Steve Rotenberg

Visiting Lecturer

Graphics Lab = UCSD

University of California — San Diego
CEO/Chief Scientist, PixelActive
http:/igraphics.ucsd.edu

Xiaoyu Zhang
Assistant Professor, Computer Science
California State University — San Marcos
http://public.csusm.edu/xiaoyu/
Rahul Malhotra

Senior Software Engineer, Overstock.com

Computing &

TS CaliforniaState University
‘d& SAN MARCOS

¢ Review [2]:
Impacts

= When two solid objects collide (such as a
particle hitting a solid surface), forces are
generated at the impact location that prevent the
objects from interpenetrating

= These forces act over a very small time and as
far as the simulation is concerned, it's easiest to

treat it as an instantaneous event

m Therefore, instead of the impact applying a
force, we must use an impulse

Adapted from slides ¥ 2004 — 2005 S. Rotenberg, UCSD
CSE169: Computer Animation, Winter 2005, http://bit.ly/fOViAN

Computer Graphics

Review [3]:
Impulse

An impulse can be thought of as the integral of a force
over some time range, which results in a finite change in
momentum:

i= j fdt =Ap

An impulse behaves a lot like a force, except instead of
affecting an object’s acceleration, it directly affects the
velocity

Impulses also obey Newton’s Third Law, and so objects
can exchange equal and opposite impulses

Also, like forces, we can compute a total impulse as the
sum of several individual impulses

Adapted from slides ¥ 2004 — 2005 S. Rotenberg, UCSD
CSE169: Computer Animation, Winter 2005 , http://bit.ly/fOViAN

= UCSD

Review [S]:
Impulse given Velocity (Frictionless)

m Let's first consider a collision with no friction

= The collision impulse will be perpendicular to the
collision plane (i.e., along the normal) and will
be large enough to stop the particle (at least)

(1+e)mv,, n

Adapted from slides ¥ 2004 — 2005 S. Rotenberg, UCSD
CSE169: Computer Animation, Winter 2005 , http:/bit.ly/fOViAN

= UCSD

Review [8]:
Position Adjustment Options

= Moving the particle to a legal position isn’t
always easy
= There are different possibilities:
Move it to a position just before the collision
Put it at the collision point

Put it at the collision point plus some offset along the
normal

Compute where it would have gone if it bounced
= Computing the bounced position is really the
best, but may involve more computation and in
order to do it right, it may require further collision
testing...

Adapted from slides ¥ 2004 — 2005 S. Rotenberg, UCSD
CSE169: Computer Animation, Winter 2005, http:/bit.ly/fOViAN

= UCSD

Review [4]:
Final Velocity & Collision Impulse

= We take the difference
between the two velocities
and dot that with the normal
to find the closing velocity

Vawe = (V=¥

Adapted from slides ¥ 2004 — 2005 S. Rotenberg, UCSD
CSE169: Computer Animation, Winter 2005, http://bit.ly/fOViAN = UCSD

wputer Graphics

Review [6]:
Dynamic Friction Equation (Coulomb)

= As we are not considering static contact, we will
just use a single dynamic friction equation

= For an impact, we can just compute the impulse
in the exact same way as we would for dynamic
friction

= We can use the magnitude of the elasticity
impulse as the normal impulse

Yasnamic = Ma|Ynormail€

Adapted from slides ¥ 2004 — 2005 S. Rotenberg, UCSD
CSE169: Computer Animation, Winter 2005, http://bit.ly/fOViAN

=< UCSD

Review [49]:
Data Structures for Collisions

BV, BVH (bounding volume hierarchies)
Octree
KD tree
BSP (binary separating planes)

OBB tree (oriented bounding boxes- a popular form of
BVH)

K-dop tree
Uniform grid
Hashing
Dimension reduction

Adapted from slides ¥ 2004 — 2005 S. Rotenberg, UCSD
CSE169: Computer Animation, Winter 2005, http://bit.ly/fOViAN

= UCSD

wputer Graphics

How Are Particle Systems Used?

® Explosions
* Large
* Fireworks
® Fire
® Vapor
* Clouds
* Dust
* Fog
* Smoke
* Contrails

L]
Water Command & Conquer 4: Tiberian Twilight

©2010 Electronic Arts, Inc.
* Waterfalls Wikipedia: http://bit.y/qFGMiO

* Streams
® Plants

Adapted from slides ¥ 2008 R. Malhotra, CSU San Marcos

T~ Céiforniastate University
CS 536, Intro to 3-D Game Graphics, Spring 2008 — http://bitly/hNhUuE el SAN MARCOS

Computing

to Computer Graphics

History of Particle Systems [2]:
Asteroids

9 L. Rains & E. Logg

® Short Moving Vectors for Explosions

® Probably First “Physical” Particle System (Collision Model) in Games

® Hey, Hey, 16K © 2000 M. J. Hibbett, Video © 2004 R. Manuel
http:/lyoutu.be/Ts96J7HhO28

Adapted from slides ¥ 2008 R. Malhotra, CSU San Marcos

T~ Céiforniastate University
CS 536, Intro to 3-D Game Graphics, Spring 2008 — http://bitly/hNhUuE el SAN MARCOS

Lecture 24 of 41 Computing

to Computer Graphics

Definition &
Basic Particle System Physics

m A particle system is a collection of a
number of individual elements or
particles.

m Particle systems control a set of
particles that act autonomously but
share some common attributes.

= Particle is a point in 3D space.

m Forces (e.g. gravity or wind) accelerate
a particle.

m Acceleration changes velocity.
m Velocity changes position

Adapted from slides ¥ 2008 R. Malhotra, CSU San Marcos

T~ Céiforniastate University
CS 536, Intro to 3-D Game Graphics, Spring 2008 — http://bitly/hNhUUE i SAN MARCOS

Computing

History of Particle Systems [1]:
Spacewar!

|
® Developed in 1962 on Digital Equipment Corporation PDP-1
* Steve “Slug” Russell, Martin “Shag” Graetz, Wayne Witaenem
* Trig functions by DEC
* Other features, Dan Edwards & Peter Samson
® Used Pixel Clouds as Explosions

Adapted from slides ¥ 2008 R. Malhotra, CSU San Marcos

T~ Caiforniastate University
CS 536, Intro to 3-D Game Graphics, Spring 2008 http://bitly/hNhUUE el SAN MARCOS

Computin

Computer Graphics

History of Particle Systems [3]:
Genesis Device inStar Trek I/

“Wall of Fire” effect from Star Trek ll: The Wrath of Khan © 1983 Evans & Sutherland
Wikipedia: http://bit.ly/eXwrhb

® Particle System for Genesis Bomb: http://youtu.be/Qe9gSLYK5q4
® Part of Planetary Fly-By “Visualization”
® One of Earliest Cinematic Uses

Adapted from slides ¥ 2008 R. Malhotra, CSU San Marcos _—Tme~_ Caifornia state Universit
CS 536, Intro to 3-D Game Graphics, Spring 2008 http://bitly/hNhUUE el SAN MARCOS

_ Lecture 24 of 41 @R
Computer Graphics

Move Attributes of Particles

= Position

= Velocity

m Life Span

m Size

= Weight

= Representation
m Color

= Owner

Adapted from slides ¥ 2008 R. Malhotra, CSU San Marcos

T~ Caiforniastate University
CS 536, Intro to 3-D Game Graphics, Spring 2008 — http://bitly/hNhUUE el SAN MARCOS

Computin

Computer Graphics

Methods of Particle Systems

m Initialize

m Update

= Render

= Move

m Get/Set force

Adapted from slides ¥ 2008 R. Malhotra, CSU San Marcos
CS 536, Intro to 3-D Game Graphics, Spring 2008 - http://bit.ly/hNhUuE

Computing & Information
Ka

RS Caiforniastate niversity ISR
e > sanvaRcos (RS

Implementation [1]:
Particle Struct

struct Particle

{
Vector3 m pos; // current position
Vector3 m_prevPos; // last position
Vector3 m velocity; // direction and speed

Vector3 m_acceleration; // acceleration

float m energy; // how long particle is alive
float m size; // size of particle

float m sizeDelta; // change in size per time unit
float m weight; // how gravity affects particle

float m weightDelta; // change over time

float m _color[4]; // current color
float m colorDelta[4]; // change over time
};

Adapted from slides ¥ 2008 R. Malhotra, CSU San Marcos
CS 536, Intro to 3-D Game Graphics, Spring 2008 — http://bit.ly/hNhUUE

e~ Caifornastate unversity
g SAN MARCOS

cture 29 of Computing & Info
Lecture 29 of 41 bs

o Computer Graphics

Implementation [2]:
Particle System Class

class ParticleSystem

{
public:
ParticleSystem (int maxParticles, Vector3 origin);
// abstract functions
virtual void Update(float elapsedTime) =0;
virtual void Render () =0;
virtual int Emit(int numParticles);
virtual void InitializeSystem();
virtual void KillSystem();
protected:
virtual void InitializeParticle(int index) = 0;
Particle *m_particleList; // particles for this emitter
int m_maxParticles; // maximum total number of particles
int m_numParticles; // indices of all free particles
Vector3 m_origin; // center of the particle system
float m_accumulatedTime; // track when last particle emitted
Vector3 m_force; // forces (gravity, wind, etc.) on PS
Yi

Adapted from slides ¥ 2008 R. Malhotra, CSU San Marcos

T U L i)
CS 536, Intro to 3-D Game Graphics, Spring 2008 - http:/bitly/hNhUUE el SAN MARCOS

Computing & Information

State Unive

How to Represent Particles?

= Points

m Lines

m Texture-mapped quads
= Point Sprites

Adapted from slides ¥ 2008 R. Malhotra, CSU San Marcos
CS 536, Intro to 3-D Game Graphics, Spring 2008 — http://bit.ly/hNhUUE

e~ Caifornastate unversity
g SAN MARCOS

36 (i 2 s Computing & Info

uction to Computer Graphics

N

Rendering Particles [1]:
Points
glBegin(GL_POINTS) ;
glVertex3f
(m_position.x,
m_position.y,
m_position.z);
glEnd() ;

Adapted from slides ¥ 2008 R. Malhotra, CSU San Marcos
CS 536, Intro to 3-D Game Graphics, Spring 2008 - http://bit.ly/hNhUuE

T U L i)
e > SAN MARCOS

Computing & Information

Introduction to Computer Graphics Kansas State Unive

Rendering Particles [2]:
Lines
glBegin (GL_LINES) ;
glColor4f(r, g, b, 0.1f);
glvertex3f
(m_position.x,
m_position.y,
m_position.z);
glColor4f(r, g, b, a);
glVertex3f
(m_position.x + m direction.x,
m_position.y + m direction.y,
m_position.z + m direction.z);
glEnd() ;

Adapted from slides ¥ 2008 R. Malhotra, CSU San Marcos

CS 536, Intro to 3-D Game Graphics, Spring 2008 — http://bitly/hNhUUE
=6) Lecture 24 of 41

uction to Computer Graphics

Rendering Particles [3]:
Quads
glBegin (GL_TRIANGLE_FAN) ;
if (textured)
glTexCoord2£ (0.0£, 0.0f);
glVertex3f (pts[0] .x, pts[0].y, pts[0].z);
if (textured)
glTexCoord2£(1.0£, 0.0f);
glVertex3f (pts[1l] .x, pts[l].y, pts[l].z);
if (textured)
glTexCoord2£ (1.0£, 1.0f);
glVertex3f (pts[2] .x, pts[2].y, pts[2].z);
if (textured)
glTexCoord2£ (0.0£, 1.0f);
glVertex3f (pts[3].x, pts[3].y, pts[3].z);

glEnd() ;
Adapted from slides ¥ 2008 R. Malhotra, CSU San Marcos TS Caiforniastate university
CS 536, Intro to 3-D Game Graphics, Spring 2008 — http://bit.ly/hNhUuE Ah SAN MARCOS [

o Computer Graphics

%} Rendering Particles [4]:

Point Sprites
glTexEnvf (GL_POINT SPRITE,
GL_COORD_REPLACE,
GL_TRUE) ;
glEnable (GL_POINT_SPRITE) ;
glBegin(GL_POINTS) ;
glVertex3f
(m_position.x,
m_position.y,
m_position.z);
glEnd() ;
glDisable (GL_POINT SPRITE) ;

See also Saar & Rotzler tutorial (2008):
http://bit.ly/fkjBPY

Adapted from slides ¥ 2008 R. Malhotra, CSU San Marcos T~ Caiforniastate University
CS 536, Intro to 3-D Game Graphics, Spring 2008 http://bitly/hNhUUE el SAN MARCOS

omputer Graphics

Point Sprites vs.
Textured Quads
m Point Sprites dissappear suddenly

m Cannot rotate a point.

m Point sprites are not supported in older
cards.

m Point sprite size is dependent on
available OpenGL point sizes.

Adapted from slides ¥ 2008 R. Malhotra, CSU San Marcos TS Caiforniastate university
g SAN MARCOS

CS 536, Intro to 3-D Game Graphics, Spring 2008 - http://bit.ly/hNhUuE

%{:}" Particle Systems APl v2

m Free Particle System
m Much lighter than a full physics engine

m Simulations of groups of moving
objects: explosion, bounce, etc.

= Download from

= Demo

Wayback Machine archive (2007):
http://bit.ly/g5GgQc

Adapted from slides ¥ 2008 R. Malhotra, CSU San Marcos T~ Caiforniastate University
CS 536, Intro to 3-D Game Graphics, Spring 2008 http://bitly/hNhUUE el SAN MARCOS

Lecture 24 of 41

‘omputer Graphics

%{2 Advanced Topics

m Adding Scripting capability
m Particle Systems Manager

m Improving Particle Systems with the
GPU

Adapted from slides ¥ 2008 R. Malhotra, CSU San Marcos TS Caiforniastate university
g SAN MARCOS

CS 536, Intro to 3-D Game Graphics, Spring 2008 - http://bit.ly/hNhUuE

Lecture 24 of 41

owmputer Graphics

‘ % References

® More OpenGL Game Programming — © 2006 D. Astle, http://bit.ly/eWM5kY
® Particle Systems APl © 2006 — 2007 D. K. McAllister: http:/bit.ly/g5GgQc
® “Everything about Particle System Effects ”, L. Latta (Electronic Arts)
http://bit.ly/dOQrwN
® Tutorial on particle systems, A. Johnson (University of lllinois Chicago):
http:/bit.ly/ekuC20
® Spacewar!
* In Java: http://spacewar.oversigma.com
#* More history: http://www.wheels.org/spacewar/
® “Simulate fuzzy phenomena with particle systems ”, J. Friesen, JavaWorld,
http://bit.ly/ghgTqF

Adapted from slides ¥ 2008 R. Malhotra, CSU San Marcos T~ Caiforniastate University
CS 536, Intro to 3-D Game Graphics, Spring 2008 — http://bitly/hNhUUE il SAN MARCOS

X Lecture 29 of 41
omputer Graphics

o
s

Summary

Reading for Last Class: §9.1, Eberly 2¢; Particle System Handout
Reading for Today: Particle System Handout
Reading for Next Class: §5.3, Eberly 2¢; CGA Handout
Last Class: Particle Systems
* Collision response
* Simulation, events: birth (emission), collision, death
* Properties: mass, initial velocity, lifetime
* Changing properties: color, position (trajectory)
Today: Lab on Particle Systems; Dissection of Working Program
Next Class: Computer-Generated Animation Concluded
* Autonomous movement in agents vs. hand-animated characters
* Inverse kinematics
* Rag doll physics
* Minimization models

* More CGA resources

Lecture 24 of 41 Computing

Terminology

® Particle Systems — Simulation of Processes, Simple Physical Bodies
* Events
> Birth — particle generated based on shape, position of emitter
» Collision - particle with object (including other particles)
> Death — end of particle life, due to collision or expiration

* Initial properties: mass, position, velocity, size, lifetime, color,
owner

* Change in properties: delta mass, position, etc.
® Emitter — Point, Line, Plane or Region from which Particles Originate
® Particle Fountain — Particle System with Directional Emitter
® Sprite (Wikipedia: http://bit.ly/gyinPg)
* Definition: 2-D image or animation made part of larger scene
* Point sprite
» Screen-aligned element of variable size
» Defined by single point
008

- aar & R e

o Computing &

to Computer Graphics

