


```
Methods of Particle Systems

Initialize
Update
Render
Render
Move
Get/Set force

Adapted from slides ▼ 2008 R. Malhotra, CSU San Marcos
S 536, Intro to 3-D Game Graphics, Spring 2008 – http://bit.lythNhUse

CS 536, Intro to 3-D Game Graphics, Spring 2008 – http://bit.lythNhUse

CS 536, Intro to 3-D Game Graphics

Lecture 2-9 of 42

Computing & Information, Stinces
```

```
Implementation [1]:
                                    Particle Struct
     struct Particle
       Vector3 m pos;
                                          // current position
        Vector3 m_prevPos;
                                          // last position
       Vector3 m_velocity; // direction and Vector3 m_acceleration; // acceleration
                                          // direction and speed
        float m_energy;
                                         // how long particle is alive
                                         // size of particle
        float
                  m size:
                  m_sizeDelta;
                                       // change in size per time unit
                  \label{eq:mweight} \begin{array}{ll} \texttt{m\_weight;} & // \text{ how gravity affects particle} \\ \texttt{m\_weightDelta;} & // \text{ change over time} \end{array}
        float
                  m_color[4];
        float
                                          // current color
                  m_colorDelta[4]; // change over time
       float
Adapted from slides ♥ 2008 R. Malhotra, CSU San Marcos
CS 536, Intro to 3-D Game Graphics, Spring 2008 - http://bit.ly/hNhUuE
```

```
How to Represent Particles?

Points
Lines
Texture-mapped quads
Point Sprites

Adapted from slides * 2008 R. Malhotra, CSU San Marcos
SSS, Intro to 3.0 Game Graphics, Spring 2008 - http://bitty/nNhtule
```

```
Rendering Particles [2]:
Lines

glBegin (GL_LINES);
glColor4f(r,g,b,0.1f);
glVertex3f

(m_position.x,
m_position.y,
m_position.y;
glColor4f(r,g,b,a);
glVertex3f

(m_position.x + m_direction.x,
m_position.x + m_direction.x,
m_position.y + m_direction.y;
m_position.y + m_direction.y;
glEnd();

Adapted from slides * 2008 R. Malhotra, CSU San Marcos
CS 536, Intro to 3-D Game Graphics, Spring 2009 - http://bit.lynkhhule

CS 536, Intro to 3-D Game Graphics

CS 536, Intro to 3-D Game Graphics

Calforna Scans Lawards
SAN 10460005

CALFORDA SCANS LAWARDS

CALFO
```

```
Rendering Particles [3]:
                                   Quads
  glBegin(GL_TRIANGLE_FAN);
      if (textured)
          glTexCoord2f(0.0f, 0.0f);
      glVertex3f(pts[0].x, pts[0].y, pts[0].z);
      if (textured)
          glTexCoord2f(1.0f, 0.0f);
      glVertex3f(pts[1].x, pts[1].y, pts[1].z);
      if (textured)
          glTexCoord2f(1.0f, 1.0f);
      glVertex3f(pts[2].x, pts[2].y, pts[2].z);
      if (textured)
          glTexCoord2f(0.0f, 1.0f);
      glVertex3f(pts[3].x, pts[3].y, pts[3].z);
  glEnd();
Adapted from slides ♥ 2008 R. Malhotra, CSU San Marcos
CS 536, Intro to 3-D Game Graphics, Spring 2008 – <a href="http://bit.ly/hNhUuE">http://bit.ly/hNhUuE</a>
Calfornia State Universit
SAN MARCOS
```

```
Rendering Particles [4]:

Point Sprites

glTexEnvf (GL_POINT_SPRITE,
GL_COORD_REPLACE,
GL_TRUE);
glEnable (GL_POINT_SPRITE);
glBegin (GL_POINT_SPRITE);
glBegin (GL_POINTS);
glVertex3f
(m_position.x,
m_position.y,
m_position.y);
glEnd();
glDisable (GL_POINT_SPRITE);

See also Saar & Rotzler tutorial (2008):
http://blt.ly/fkjBPY

Adapted from slides ♥ 2008 R. Malhotra, CSU San Marcos
CS 836, Intro to 3-D Game Graphics, Spring 2008 - http://blt.ly/fkjBPY

Adapted from slides ♥ 2008 R. Malhotra, CSU San Marcos
CS 836, Intro to 3-D Game Graphics, Spring 2008 - http://blt.ly/fkjBPY

Actions 24 of 41
```


Summary

- Reading for Last Class: §9.1, Eberly 2e; Particle System Handout
- Reading for Today: Particle System Handout
- Reading for Next Class: §5.3, Eberly 2e; CGA Handout
- Last Class: Particle Systems
 - * Collision response
 - * Simulation, events: birth (emission), collision, death
 - * Properties: mass, initial velocity, lifetime
 - * Changing properties: color, position (trajectory)
- Today: Lab on Particle Systems; Dissection of Working Program
- Next Class: Computer-Generated Animation Concluded
 - * Autonomous movement in agents vs. hand-animated characters
 - * Inverse kinematics
 - * Rag doll physics
 - * Minimization models
 - * More CGA resources

Terminology

- Particle Systems Simulation of Processes, Simple Physical Bodies
 - * Events
 - ➤ <u>Birth</u> particle generated based on shape, position of <u>emitter</u>
 - ➤ <u>Collision</u> particle with object (including other particles)
 - Death end of particle life, due to collision or expiration
 - * Initial properties: mass, position, velocity, size, lifetime, color,
 - * Change in properties: delta mass, position, etc.
- Emitter Point, Line, Plane or Region from which Particles Originate
- Particle Fountain Particle System with Directional Emitter
- Sprite (Wikipedia: http://bit.ly/gylnPg)
 - * Definition: 2-D image or animation made part of larger scene
 - * Point sprite
 - > Screen-aligned element of variable size
 - Defined by single point
 - (Saar & Rotzler, 2008); http://bit.lv/fkiBPY

