CIS 536: Introduction to Computer Graphics CIS 636: Interactive Computer Graphics Spring 2013

Hours: 3 hours; 3 hour extended course project option (CIS 597/598, 690, 798, 890) available

Prerequisite: CIS 300 and knowledge of C/C++ programming. Background in precalculus (trigonometry and analytic geometry) and basic matrix algebra (Math 551) recommended. A first course in computer graphics is *not* required for CIS 536 or 636, but is recommended for CIS 736.

Textbook: Angel, E. & Shreiner, D. (2013). Interactive Computer Graphics A Top-Down Approach with Shader-Based OpenGL, 6th edition. Reading, MA: Addison-Wesley. ISBN: 0132545233

Venue: MWF 10:30 – 11:20, Room 236 Nichols Hall (Lecture) and Room 126 Nichols Hall (Lab)

Instructor: William H. Hsu, Department of Computing and Information Sciences

Office: 213 Nichols Hall URL: http://www.cis.ksu.edu/~bhsu E-mail: bhsu@ksu.edu

Phone (Google Voice: office/home/cell): +1 785 236 8247 TA: Ming Yang, 218 Nichols Hall

Instructional e-mail alias (use for instructor and TA): <u>CIS536TA-L@listserv.ksu.edu</u>

Office hours: 12:30 – 13:30 Monday, Friday; 09:00 – 10:00 Wednesday; 09:30 – 10:30 Tuesday; by appointment K-State Online (KSOL) page: http://bit.ly/ksu-IntroCG Public mirror: http://bit.ly/CG-class

Camtasia lectures: Linked from course web page (http://bit.ly/ksu-IntroCG-Lectures) and KSOL

Course Description

This course provides introductory background in computer graphics for graduate and advanced undergraduate students. It will introduce mathematical foundations such as linear, affine, and projective transformations, and will then cover fundamental topics in realistic rendering: view normalization, clipping and culling, scan conversion of lines and polygons, shading and illumination, texture mapping, particle systems, basics of animation, user interfaces, picking, and collision handling. The last part of the course will focus on a few intermediate topics of interest, including shaders, procedural textures, fractals, color theory, and ray tracing.

Course Requirements

Homework: 8 of 10 programming and written assignments – 5 written, 5 programming (16%)
Paper reviews: 2 written reviews (1-2 pages) of short (10-15 page) research papers (4%)
Labs and class participation: attendance (2%), in-class discussion (4%), peer review (2%), labs (7%)
Examinations: two hour exams (10% each, 20% total), 1 final exam (25%)
Computer language(s): C/C++, C#, and Java (any of these permitted for term programming project); OpenGL, other

graphics libraries and packages (e.g., *Ogre3D*, *Maya 9 aka Maya 2013*) to be taught and used

Project: term programming project for all students (20%); additional term paper or project extension option for graduate students and advanced undergraduates

References (to be placed on reserve in K-State CIS Library)

- (Recommended text) Eberly, D. H. (2006). 3D Game Engine Design: A Practical Approach to Real-Time Computer Graphics, 2nd edition. San Francisco, CA: Morgan Kaufmann. ISBN: 0122290631
- OpenGL Architecture Review Board, Shreiner, D. & The Khronos OpenGL ARB Working Group (2009). OpenGL® Programming Guide: The Official Guide to Learning OpenGL®, Versions 3.0 and 3.1, 7th edition. Reading, MA: Addison-Wesley. ISBN: 0321552628
- Angel, E. (2007). OpenGL: A Primer, 3rd edition. Reading, MA: Addison-Wesley. ISBN: 0321398114
- Hearn, D. O. & Baker, M. P. (2003). Computer Graphics with OpenGL, 3rd edition. Englewood Cliffs, NJ: Prentice-Hall. ISBN: 0130153907.
- Foley, J. D., VanDam, A., Feiner, S. K., & Hughes, J. F. (1991). Computer Graphics: Principles and Practice, 2nd Edition in C. Reading, MA: Addison-Wesley. ISBN: 0201848406
- Orange Book 3^e (ISBN: 0321637631), SuperBible *aka* Blue Book 5^e (ISBN: 0321712617), formerly Cyan Book

Additional bibliography (excerpted in course notes and handouts)

- Tufte, E. R. (2006). *Beautiful Evidence*. Cheshire, CT: Graphics Press.
- Tufte, E. R. (1997). Visual Explanations: Images and Quantities, Evidence and Narrative. Cheshire, CT: Graphics Press.
- Card, S. K., MacKinlay, J. D., & Schneiderman, B. (1999). *Readings in Information Visualization: Using Vision to Think.* San Francisco, CA: Morgan Kaufmann.
- Barnsley, M. F. (1993). *Fractals Everywhere*, 2nd *Edition*. Burlington, MA: Academic Press.
- Books on Maya and Ogre 3D to be announced

Course Calendar and Syllabus

Lecture	Date	Торіс	Primary Source(s)
0	Wed 23 Jan 2013	Course Overview	Chapter 1, Eberly 2 ^e
1	Fri 25 Jan 2013	CG Basics: Transformation Matrices; Lab 0	Sections (§) 2.1, 2.2
2	Mon 28 Jan 2013	Viewing 1: Overview, Projections	§ 2.2.3 – 2.2.4, 2.8
3	Wed 30 Jan 2013	Viewing 2: Viewing Transformation	§ 2.3 esp. 2.3.4; FVFH slides
4	Fri 01 Feb 2013	Lab 1a: Flash & OpenGL Basics	Ch. 2, 16 ¹ , Angel <i>Primer</i>
5	Mon 04 Feb 2013	Viewing 3: Graphics Pipeline	§ 2.3 esp. 2.3.7; 2.6, 2.7
6	Wed 06 Feb 2013	Scan Conversion 1: Lines, Midpoint Algorithm	§ 2.5.1, 3.1; FVFH slides
7	Fri 08 Feb 2013	Viewing 4: Clipping & Culling; Lab 1b	§ 2.3.5, 2.4, 3.1.3
8	Mon 11 Feb 2013	Scan Conversion 2: Polygons, Clipping Intro	§ 2.4, 2.5 esp. 2.5.4, 3.1.6
9	Wed 13 Feb 2013	Surface Detail 1: Illumination & Shading	§ 2.5, 2.6.1 – 2.6.2, 4.3.2, 20.2
10	Fri 15 Feb 2013	Lab 2a: Direct3D / DirectX Intro	§ 2.7, Direct3D handout
11	Mon 18 Feb 2013	Surface Detail 2: Textures; OpenGL Shading	§ 2.6.3, 20.3 – 20.4, <i>Primer</i>
12	Wed 20 Feb 2013	Surface Detail 3: Mappings; OpenGL Textures	§ 20.5 – 20.13
13	Fri 22 Feb 2013	Surface Detail 4: Pixel/Vertex Shad.; Lab 2b	§ 3.1
14	Mon 25 Feb 2013	Surface Detail 5: Direct3D Shading; OGLSL	§ 3.2 – 3.4, Direct3D handout
15	Wed 27 Feb 2013	Demos 1: CGA, Fun; Scene Graphs: State	§ 4.1 – 4.3, CGA handout
16	Fri 01 Mar 2013	Lab 3a: Shading & Transparency	§ 2.6, 20.1, Primer
17	Mon 04 Mar 2013	Animation 1: Basics, Keyframes; HW/Exam	§ 5.1 – 5.2
	Wed 06 Mar 2013	Exam 1 review; Hour Exam 1 (evening)	Chapters 1 – 4, 20
18	Fri 08 Mar 2013	Scene Graphs: Rendering; Lab 3b: Shader	§ 4.4 – 4.7
19	Mon 11 Mar 2013	Demos 2: SFX; Skinning, Morphing	§ 5.3 – 5.5, CGA handout
20	Wed 13 Mar 2013	Demos 3: Surfaces; B-reps/Volume Graphics	§ 10.4, 12.7, Mesh handout
21	Fri 15 Mar 2013	Lab 4a: Animation Basics	Flash animation handout
22	Mon 25 Mar 2013	Animation 2: Rotations; Dynamics, Kinematics	Chapter 17, esp. §17.1 – 17.2
23	Wed 27 Mar 2013	Demos 4: Modeling & Simulation; Rotations	Chapter 10 ¹ , 13 ² , §17.3 – 17.5
24	Fri 29 Mar 2013	Collisions 1: axes, OBBs, Lab 4b	§2.4.3, 8.1, GL handout
25	Mon 01 Apr 2013	Spatial Sorting: Binary Space Partitioning	Chapter 6, esp. §6.1
26	Wed 03 Apr 2013	Demos 5: More CGA; Picking; HW/Exam	Chapter 7 ² ; § 8.4
27	Fri 05 Apr 2013	Lab 5a: Interaction Handling	§ 8.3 – 8.4; 4.2, 5.0, 5.6, 9.1
28	Mon 08 Apr 2013	Collisions 2: Dynamic, Particle Systems	§ 9.1, particle system handout
	Wed 10 Apr 2013	Exam 2 review; Hour Exam 2 (evening)	Chapters 5 – 6, 7 ² – 8, 12, 17
29	Fri 12 Apr 2013	Lab 5b: Particle Systems	Particle system handout
30	Mon 15 Apr 2013	Animation 3: Control & IK	§ 5.3, CGA handout
31	Wed 17 Apr 2013	Ray Tracing 1: intersections, ray trees	Chapter 14
32	Fri 19 Apr 2013	Lab 6a: Ray Tracing Basics with POV-Ray	RT handout
33	Mon 22 Apr 2013	Ray Tracing 2: advanced topic survey	Chapter 15, RT handout
34	Wed 24 Apr 2013	Visualization 1: Data (Quantities & Evidence)	Tufte handout (1)
35	Fri 26 Apr 2013	Lab 6b: More Ray Tracing	RT handout
36	Mon 29 Apr 2013	Visualization 2: Objects	Tufte handout (2 & 4)
37	Wed 01 May 2013	Color Basics; Term Project Prep	Color handout
38	Fri 03 May 2013	Lab 7: Fractals & Terrain Generation	Fractals/Terrain handout
39	Mon 06 May 2013	Visualization 3: Processes	Tufte handout (3)
40	Wed 08 May 2013	Final Review; Project presentations 1	_
41	Fri 10 May 2013	Project presentations 2	—
		Final Exam 11:50 Thu 16 May 2013	Ch. 1 – 8, 10 – 15, 17, 20

Lightly-shaded entries denote the due date of a written problem set; heavily-shaded entries, that of a machine problem (programming assignment); blue-shaded entries, that of a paper review; and the green-shaded entry, that of the term project.

Lab exercises are always due on the day before the next lab.

Green, blue and red letters denote exam review, exam, and exam solution review dates.

¹ Required for CIS 536 / 636 students; optional (refresher as needed) for CIS 736 students.

² Required only for CIS 736 students.