

Lecture 18 of 41

Scene Graphs: Rendering Lab 3b: Shader

William H. Hsu Department of Computing and Information Sciences, KSU

KSOL course pages: http://bit.ly/eVizrE
Public mirror web site: http://www.kddresearch.org/Courses/CIS636
Instructor home page: http://www.cis.ksu.edu/~bhsu

Readings:

Today: §4.4 – 4.7, Eberly 2e – see http://bit.ly/ieUq45
Next class: §5.3 – 5.5, Eberly 2e, CGA handout

CIS 536/636
Introduction to Computer Graphics

Lecture 18 of 41

Lecture Outline

- Reading for Last Class: §5.1 5.2, Eberly 2e
- Reading for Today: §4.4 4.7, Eberly 2^e
- Reading for Next Class: §5.3 5.5, Eberly 2e, CGA handout
- Last Time: Introduction to Animation
 - * Definition, overview, brief history
 - * Principles of traditional animation
 - **★** Keyframe animation, inbetweening (interpolation)
 - * Articulated figures (preliminaries of character modeling)
 - * Dynamics vs. kinematics, forward vs. inverse
- Today: Scene Graph Rendering
 - * State: transforms, bounding volumes, render state, animation state
 - * Managing renderer and animation state
 - * Rendering: object-oriented message passing overview
- Next Class: Special Effects (SFX), Skinning, Morphing
- Coming Up: More Videos (Lectures 19 & 20)

CIS 536/636 Introduction to Computer Graphics

Lecture 18 of 41

Where We Are

Lecture	Topic	Primary Source(s)
0	Course Overview	Chapter 1, Eberly 2e
1	CG Basics: Transformation Matrices; Lab 0	Sections (§) 2.1, 2.2
2	Viewing 1: Overview, Projections	§ 2.2.3 – 2.2.4, 2.8
3	Viewing 2: Viewing Transformation	§ 2.3 esp. 2.3.4; FVFH slides
4	Lab 1a: Flash & OpenGL Basics	Ch. 2, 16 ¹ , Angel Primer
5	Viewing 3: Graphics Pipeline	§ 2.3 esp. 2.3.7; 2.6, 2.7
6	Scan Conversion 1: Lines, Midpoint Algorithm	§ 2.5.1, 3.1, FVFH slides
7	Viewing 4: Clipping & Culling; Lab 1b	§ 2.3.5, 2.4, 3.1.3
8	Scan Conversion 2: Polygons, Clipping Intro	§ 2.4, 2.5 esp. 2.5.4, 3.1.6
9	Surface Detail 1: Illumination & Shading	§ 2.5, 2.6.1 – 2.6.2, 4.3.2, 20.2
10	Lab 2a: Direct3D / DirectX Intro	§ 2.7, Direct3D handout
11	Surface Detail 2: Textures; OpenGL Shading	§ 2.6.3, 20.3 – 20.4, Primer
12	Surface Detail 3: Mappings; OpenGL Textures	§ 20.5 – 20.13
13	Surface Detail 4: Pixel/Vertex Shad.; Lab 2b	§ 3.1
14	Surface Detail 5: Direct3D Shading; OGLSL	§ 3.2 – 3.4, Direct3D handout
15	Demos 1: CGA, Fun; Scene Graphs: State	§ 4.1 – 4.3, CGA handout
16	Lab 3a: Shading & Transparency	§ 2.6, 20.1, Primer
17	Animation 1: Basics, Keyframes; HW/Exam	§ 5.1 – 5.2
	Exam 1 review: Hour Exam 1 (evening)	Chapters 1 – 4, 20
18	Scene Graphs: Rendering; Lab 3b: Shader	§ 4.4 – 4.7
19	Demos 2: SFX; Skinning, Morphing	§ 5.3 – 5.5, CGA handout
20	Demos 3: Surfaces; B-reps/Volume Graphics	§ 10.4, 12.7, Mesh handout

Lightly-shaded entries denote the due date of a written problem set; heavily-shaded entries, that of a machine problem (programming assignment); blue-shaded entries, that of a paper review; and the green-shaded entry, that of the term project.

Green, blue and red letters denote exam review, exam, and exam solution review dates.

CIS 536/636 Introduction to Computer Graphics

Lecture 18 of 41

Acknowledgements: Computer Animation Intro

Jason Lawrence
Assistant Professor
Department of Computer Science
University of Virginia
http://www.cs.virginia.edu/~jdl/

Acknowledgment: slides by Misha Kazhdan, Allison Klein, Tom Funkhouser, Adam Finkelstein and David Dobkin http://bit.ly/eB10i4

Thomas A. Funkhouser
Professor
Department of Computer Science
Computer Graphics Group
Princeton University
http://www.cs.princeton.edu/~funk/

Lecture 18 of 41

Review [1]:19th Century Animation Before Motion Pictures

© 2007 Wikipedia, *Phenakistoscope* http://bit.ly/eAnURG

© 2008 Wikipedia, *Thaumatrope* http://bit.ly/fFl6xH

Zoetrope (Praxinoscope)

Tarzan © 2000 Disney http://youtu.be/zc3MnoSS5Hw

Adapted from slides © 2010 J. Lawrence, University of Virginia CS 4810: Introduction to Computer Graphics – http://bit.ly/hPIXdi

CIS 536/636
Introduction to Computer Graphics

Lecture 18 of 41

Review [2]: Animation, Simulation & Visualization

- · What is animation?
 - Make objects change over time according to scripted actions

Pixar

- · What is simulation?
 - Predict how objects change over time according to physical laws

Wilhelmson et al. (2004) http://youtu.be/EgumU0Ns1YI http://avl.ncsa.illinois.edu http://bit.ly/eA8PXN

University of Illinois

Adapted from slides © 2010 J. Lawrence, University of Virginia CS 4810: Introduction to Computer Graphics – http://bit.ly/hPIXdi

CIS 536/636 Introduction to Computer Graphics

Lecture 18 of 41

Review [3]: Principles of Traditional Animation

- · Squash and Stretch
- Timing
- Anticipation
- Staging
- · Follow Through and Overlapping Action
- · Straight Ahead Action and Pose-to-Pose Action
- · Slow In and Out
- Arcs
- Exaggeration
- · Secondary action
- Appeal

Computer Graphics, Volume 21, Number 4, July 1987

PRINCIPLES OF TRADITIONAL ANIMATION APPLIED TO 3D COMPUTER ANIMATION

John Lasseter Pixar San Rafael California

Lasseter, J. (1987). Principles of traditional animation applied to 3D computer animation. *Computer Graphics*, 21(4), pp. 35-44. SIGGRAPH: http://bit.ly/1DsO44

SIGGRAPH: http://bit.ly/1DsO44 ACM Portal: http://bit.ly/eyx2PN

© 2010 J. Lawrence, University of Virginia CS 4810: Introduction to Computer Graphics – http://bit.ly/hPIXdi

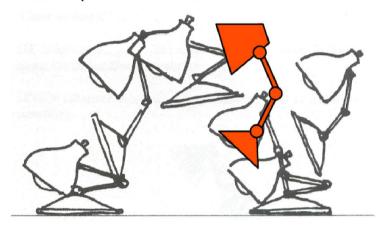
CIS 536/636 Introduction to Computer Graphics Lecture 18 of 41

Review [4]: Traditional Animation – Anticipation

- · The preparation for an action.
 - o Muscle contraction prior to extension
 - o Bending over to lift a heavy object
 - Luxo's dad responds to Luxo Jr. off screen before Luxo Jr. appears.

Luxo Jr. © 1986 Pixar http://www.pixar.com/shorts/ljr/ http://youtu.be/qGxoui3IFS0

© 2010 J. Lawrence, University of Virginia CS 4810: Introduction to Computer Graphics – http://bit.ly/hPIXdi

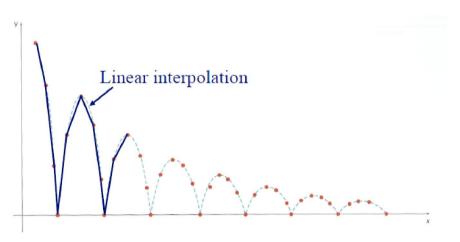

CIS 536/636 Introduction to Computer Graphics

Lecture 18 of 41

Review [5]: Keyframe Animation & Inbetweening

 Interpolate variables describing keyframes to determine poses for character "in-between"

Lasseter '87

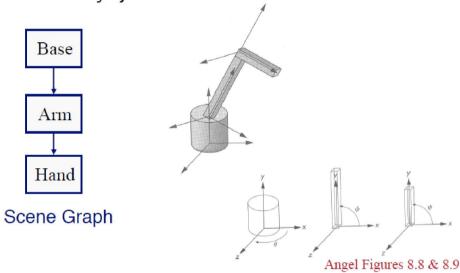

© 2010 J. Lawrence, University of Virginia CS 4810: Introduction to Computer Graphics - http://bit.ly/hPIXdi

Review [6]: Linear Interpolation *aka* Lerping

- · Inbetweening:
 - o Linear interpolation usually not enough continuity

H&B Figure 16.16

© 2010 J. Lawrence, University of Virginia CS 4810: Introduction to Computer Graphics – http://bit.ly/hPIXdi



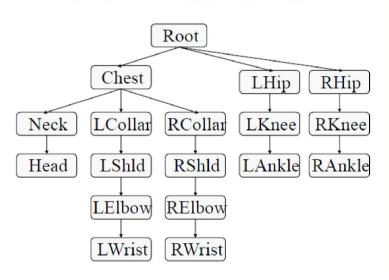
Introduction to Computer Graphics

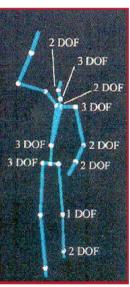
Lecture 18 of 41

Review [7]: Articulated Figures

Character poses described by set of rigid bodies connected by "joints"

© 2010 J. Lawrence, University of Virginia CS 4810: Introduction to Computer Graphics - http://bit.ly/hPIXdi


CIS 536/636 Introduction to Computer Graphics

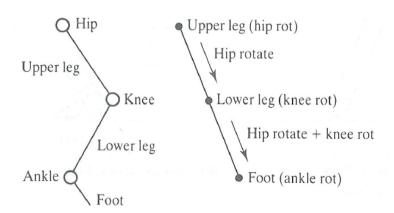

Lecture 18 of 41

Review [8]: Character Modeling

· Well-suited for humanoid characters

Rose et al. '96

© 2010 J. Lawrence, University of Virginia CS 4810: Introduction to Computer Graphics – http://bit.ly/hPIXdi


CIS 536/636 Introduction to Computer Graphics

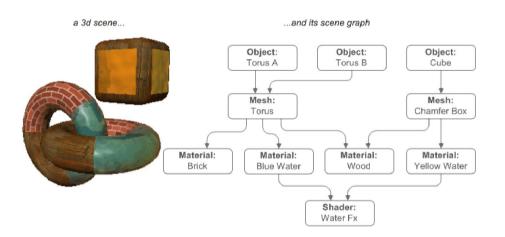
Lecture 18 of 41

Review [9]: Bones & Joints

Articulated figure:

Watt & Watt

© 2010 J. Lawrence, University of Virginia CS 4810: Introduction to Computer Graphics - http://bit.ly/hPIXdi



CIS 536/636 Introduction to Computer Graphics

Lecture 18 of 41

Scene Graph Traversal

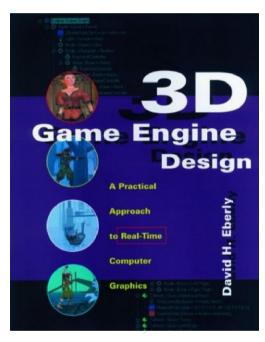
© 2002 - 2005 Virtools http://bit.ly/eM1gz8

CIS 536/636 Introduction to Computer Graphics

Lecture 18 of 41

Scene Graph Rendering

Performer © 1997 D. Pape http://www.evl.uic.edu/pape/talks/VSI97/pf/


Computing & Information Sciences Kansas State University

CIS 536/636 Introduction to Computer Graphics

Lecture 18 of 41

Acknowledgements: Scene Graphs – Eberly 1e

David H. Eberly

Chief Technology Officer Geometric Tools, LLC

http://www.geometrictools.com

http://bit.ly/enKbfs

3D Game Engine Design © 2000 D. H. Eberly See http://bit.ly/ieUq45 for second edition

Lecture 18 of 41

Review: What Information is in Scene Graphs?

- Transforms
- Bounding Volumes
- Render State
- Animation State

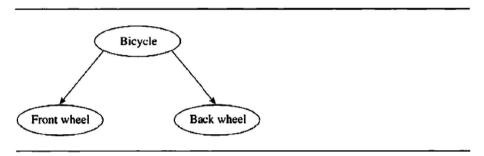


Figure 4.1 A simple tree with one grouping node.

3D Game Engine Design © 2000 D. H. Eberly See http://bit.ly/ieUq45 for second edition

CIS 536/636 Introduction to Computer Graphics

Lecture 18 of 41

Review: Kinds of Transforms

- Local
 - * Translation, rotation, scaling, shearing
 - * All within parent's coordinate system

$$\langle M \mid \tilde{T} \rangle := \left[\frac{M \mid \tilde{T}}{\tilde{0}^{\mathsf{T}} \mid 1} \right].$$
 (4.1)

Using this compressed notation, the product of two homogeneous matrices is

$$\langle M_1 \mid \tilde{T}_1 \rangle \langle M_2 \mid \tilde{T}_2 \rangle = \langle M_1 M_2 \mid M_1 \tilde{T}_2 + \tilde{T}_1 \rangle$$
 (4.2)

and the product of a homogeneous matrix with a homogeneous vector $[\vec{V}|1]^{\mathsf{T}}$ is

$$\langle M \mid \vec{T} \rangle \vec{V} = M\vec{V} + \vec{T}.$$
 (4.3)

World: Position Child C With Respect to Parent P (Depends on Local)

$$\begin{split} \left\langle M_{\text{world}}^{(C)} \mid \vec{T}_{\text{world}}^{(C)} \right\rangle &= \left\langle M_{\text{world}}^{(P)} \mid \vec{T}_{\text{world}}^{(P)} \right\rangle \left\langle M_{\text{local}}^{(C)} \mid \vec{T}_{\text{local}}^{(C)} \right\rangle \\ &= \left\langle M_{\text{world}}^{(P)} M_{\text{local}}^{(C)} \mid M_{\text{world}}^{(P)} \vec{T}_{\text{local}}^{(C)} + \vec{T}_{\text{world}}^{(P)} \right\rangle \end{split}$$

Both Together Part of Modelview Transformation

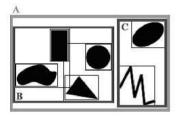
Adapted from 3D Game Engine Design © 2000 D. H. Eberly See http://bit.ly/ieUq45 for second edition

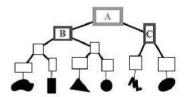
Traversing Scene Graph: World Transform of Node

The world transform of the root node in the scene graph is just its local transform. The world position of a node N_k in a path $N_0 \cdots N_k$, where N_0 is the root node, is generated recursively by the above definition as

$$\left\langle M_{\text{world}}^{(N_k)} \;\middle|\; \vec{T}_{\text{world}}^{(N_k)} \right\rangle = \left\langle M_{\text{local}}^{(N_0)} \;\middle|\; \vec{T}_{\text{local}}^{(N_0)} \right\rangle \cdot \cdot \cdot \left\langle M_{\text{local}}^{(N_k)} \;\middle|\; \vec{T}_{\text{local}}^{(N_k)} \right\rangle.$$

Adapted from 3D Game Engine Design © 2000 D. H. Eberly See http://bit.ly/ieUq45 for second edition


CIS 536/636 Introduction to Computer Graphics


Lecture 18 of 41

Bounding Volumes [1]: Definition

- Bounding Volume Hierarchies (BVHs)
 - * Root: entire scene
 - * Interior node: rectangle (volume in general) enclosing other nodes
 - * Leaves: primitive objects
 - * Often axis-aligned (e.g., axis-aligned bounding box aka AABB)
- Used
 - * Visible surface determination (VSD) especially occlusion culling
 - * Other intersection testing: collisions, ray tracing

Bounding Volume Hierarchy (BVH) © 2009 Wikipedia http://en.wikipedia.org/wiki/Bounding_volume_hierarchy

CIS 536/636 Introduction to Computer Graphics

Lecture 18 of 41

Bounding Volumes [2]: Types Covered in Eberly

- Spheres
- Oriented Boxes aka Oriented Bounding Boxes (OBBs)
- Capsules
- Lozenges
- Cylinders
- Ellipsoids

Adapted from 3D Game Engine Design © 2000 D. H. Eberly See http://bit.ly/ieUq45 for second edition

CIS 536/636 Introduction to Computer Graphics

Lecture 18 of 41

Renderer State

- Can Capture Render Information Hierarchically
- Example
 - * Suppose subtree has all leaf nodes that want textures alpha blended
 - * Can tag root of subtree with "alpha blend all"
 - * Alternatively: tag every leaf
- How Traversal Works: State Accumulation
 - * Root-to-leaf traversal accumulates state to draw geometry
 - * Renderer checks whether state change is needed before leaf drawn
- Efficiency Considerations
 - * Minimize state changes
 - * Reason: memory copy (e.g., system to video memory) takes time

Adapted from 3D Game Engine Design © 2000 D. H. Eberly See http://bit.ly/ieUq45 for second edition

CIS 536/636 Introduction to Computer Graphics

Lecture 18 of 41

Animation State

- Can Capture Animation Information Hierarchically
- Example
 - * Consider articulated figure from last lecture
 - * Let each node represent joint of character model
 - Neck
 - > Shoulder
 - **➢ Elbow**
 - **➤ Wrist**
 - > Knee
- Procedural Transformation
- How It Works: Controllers
 - * Each node has controller function/method
 - * Manages quantity that changes over time (e.g., angle)

Adapted from 3D Game Engine Design © 2000 D. H. Eberly See http://bit.ly/ieUq45 for second edition

© 2002 D. M. Murillo http://bit.ly/eZ9MA8

Lecture 18 of 41

Updating Scene Graphs

- Need to Merge Bounding Volumes (Boxes, Lozenges, Capsules)
- Update Geometric State: UpdateGS

- UpdateWorldData: Virtual Function, Controls Downward Pass
- UpdateWorldBound: Also Virtual, Controls Upward Pass
- PropagateBoundToRoot: Not Virtual, Simple Recursive Call
 - parent.UpdateWorldBound()
 - * parent.PropagateBoundToRoot()

Adapted from 3D Game Engine Design © 2000 D. H. Eberly See http://bit.ly/ieUq45 for second edition

CIS 536/636 Introduction to Computer Graphics

Lecture 18 of 41

Rendering Scene Graphs [1]: View Frustum Culling

By Spheres vs. By Oriented Boxes

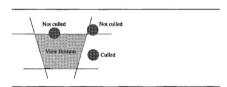


Figure 4.2 Examples of culled and unculled objects.

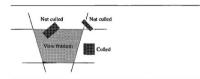


Figure 4.3 Examples of culled and unculled objects.

Pseudocode

```
bool CullSpherePlane (Sphere sphere, Plane plane)
{
    return Dot(plane.N,sphere.C) - plane.d < -sphere.r;
}</pre>
```

```
bool CullBoxPlane (Box box, Plane plane)
{
    r = box.a0*|Dot(plane.N.box.A0)| +
        box.a1*|Dot(plane.N.box.A1)| +
        box.a2*|Dot(plane.N.box.A2)|;

    return Dot(plane.N.box.C) - plane.d < -r;
}</pre>
```

Can Also Cull by: Lozenges, Cylinders, Ellipsoids

Adapted from 3D Game Engine Design © 2000 D. H. Eberly See http://bit.ly/ieUq45 for second edition

CIS 536/636 Introduction to Computer Graphics

Lecture 18 of 41

Rendering Scene Graphs [2]: Message Passing

Main Draw Method

```
void Renderer::Draw (Spatial scene)
    scene.OnDraw(thisRenderer):
}
```

Spatial::OnDraw(Renderer renderer)

Calls virtual function Draw (renderer)

Passed down

Geometry::Draw(Renderer renderer)

Node::Draw(Renderer renderer) Calls child.onDraw(renderer)

Derived Classes of Geometry

TriMesh::Draw(Renderer renderer)

Similarly for other derived classes

Adapted from 3D Game Engine Design © 2000 D. H. Eberly See http://bit.ly/ieUq45 for second edition

CIS 536/636 Introduction to Computer Graphics

Lecture 18 of 41

Summary

- Reading for Last Class: §5.1 5.2, Eberly 2^e
- Reading for Today: §4.4 4.7, Eberly 2^e
- Reading for Next Class:
- Last Time: Introduction to Animation
 - * Definition, overview, brief history, principles
 - * Keyframes, interpolation, articulated figures for character modeling
 - * Dynamics vs. kinematics, forward vs. inverse
- Today: Scene Graph Rendering
 - * State: transforms, bounding volumes, render state, animation state
 - * Updating: merging bounding volumes
 - * View frustum culling
 - * Rendering: object-oriented message passing overview
- Next Class: Special Effects (SFX), Skinning, Morphing; More Videos

CIS 536/636 Introduction to Computer Graphics

Lecture 18 of 41

Terminology

- Shading and Transparency in OpenGL: Alpha, Painter's, z-buffering
- Animation Modeling Change Over Time According to Known Actions
- Keyframe Animation
 - * Keyframe
 - * Interpolation
 - * Character model
- State in Scene Graphs
 - * Transforms local & global TRS to orient parts of model
 - * Bounding volumes spheres, boxes, capsules, lozenges, ellipsoids
 - * Renderer state lighting, shading/textures/alpha
 - * Animation state TRS transformations (especially R), controllers
- Traversal: Moving through Data Structure, Calling Methods

CIS 536/636 Introduction to Computer Graphics

Lecture 18 of 41