

Lecture 22 of 41

Animation 2 of 3: Rotations, Quaternions Dynamics & Kinematics

William H. Hsu Department of Computing and Information Sciences, KSU

KSOL course pages: http://bit.ly/eVizrE
Public mirror web site: http://www.kddresearch.org/Courses/CIS636
Instructor home page: http://www.cis.ksu.edu/~bhsu

Readings:

Today: Chapter 17, esp. §17.1 – 17.2, Eberly 2e – see http://bit.ly/ieUq45
Next class: Chapter 10, 13, §17.3 – 17.5, Eberly 2e
Ross's Maya tutorials: http://bit.ly/dFpTwq

PolyFacecom's Maya character modeling tutorials: http://bit.ly/h6tzrd
Wikipedia, Flight Dynamics: http://bit.ly/gVaQCX

C

CIS 536/636
Introduction to Computer Graphics

Lecture 22 of 41

Computing & Information Sciences

Kansas State University

Lecture Outline

- Reading for Last Class: §11.1 11.6 Eberly 2e (736), Flash handout
- Reading for Today: §17.1 17.2, Eberly 2^e
- Reading for Next Class: Chapter 10, 13, §17.3 17.5, Eberly 2^e
- Previously: Evaluators, Piecewise Polynomial Curves, Bicubic Surfaces
- Last Time: Maya & Animation Preliminaries Ross Tutorials
 - * Maya interface: navigation, menus, tools, primitives
 - * Ross tutorials (http://bit.ly/dFpTwq)
 - * Preview of character models: PolyFacecom (http://bit.ly/h6tzrd)
- Today: Rotations in Animation
 - * Flight dynamics: roll, pitch, yaw
 - * Matrix, angles (fixed, Euler, axis), quaternions, exponential maps
 - * Dynamics: forward (trajectories, simulation), inverse (e.g., ballistics)
 - * Kinematics: forward, inverse
- Next Time: Videos Part 4 Modeling & Simulation

Where We Are

21	Lab 4a: Animation Basics	Flash animation handout	
22	22 Animation 2: Rotations: Dynamics Kinematics Chapter 17: esp. §17.1 – 17.2		
23	Demos 4: Modeling & Simulation; Rotations	Chapter 10 ¹ , 13 ² , §17.3 – 17.5	
24	Collisions 1: axes, OBBs, Lab 4b	§2.4.3, 8.1, GL handout	
25	Spatial Sorting: Binary Space Partitioning	Chapter 6, esp. §6.1	
26	Demos 5: More CGA; Picking; HW/Exam	Chapter 72; § 8.4	
27	Lab 5a: Interaction Handling	§ 8.3 - 8.4; 4.2, 5.0, 5.6, 9.1	
28	Collisions 2: Dynamic, Particle Systems	§ 9.1, particle system handout	
	Exam 2 review; Hour Exam 2 (evening)	Chapters 5 - 6, 72 - 8, 12, 17	
29	Lab 5b: Particle Systems	Particle system handout	
30	Animation 3: Control & IK	§ 5.3, CGA handout	
31	Ray Tracing 1: intersections, ray trees	Chapter 14	
32	Lab 6a: Ray Tracing Basics with POV-Ray	RT handout	
33	Ray Tracing 2: advanced topic survey	Chapter 15, RT handout	
34	Visualization 1: Data (Quantities & Evidence)	Tufte handout (1)	
35	Lab 6b: More Ray Tracing	RT handout	
36	Visualization 2: Objects	Tufte handout (2 & 4)	
37	Color Basics; Term Project Prep	Color handout	
38	Lab 7: Fractals & Terrain Generation	Fractals/Terrain handout	
39	Visualization 3: Processes; Final Review 1	Tufte handout (3)	
40	Project presentations 1; Final Review 2	-	
41	Project presentations 2	-	
	Final Exam	Ch. 1 - 8, 10 - 15, 17, 20	

Lightly-shaded entries denote the due date of a written problem set; heavily-shaded entries, that of a machine problem (programming assignment); blue-shaded entries, that of a paper review; and the green-shaded entry, that of the term project.

Green, blue and red letters denote exam review, exam, and exam solution review dates.

@

C15 536/636 Introduction to Computer Graphic Lecture 22 of 41

Computing & Information Sciences Kansas State University

References: Maya Character Rigging

Aaron Ross
Founder, Digital Arts Guild
http://dr-yo.com
http://bit.ly/fzxN74
http://www.youtube.com/user/DigitalArtsGuild

Jim Lammers
President
Trinity Animation
http://www.trinity3d.com
http://bit.ly/i6yfyV

Larry Neuberger
Associate Professor, Alfred State SUNY College of Technology
Online Instructor, Art Institute of Pittsburgh
http://poorhousefx.com

CIS 536/636 ntroduction to Computer Graphics Lecture 22 of 41

Computing & Information Sciences

Acknowledgements: CGA Rotations, Dynamics & Kinematics

Rick Parent Professor **Department of Computer Science and Engineering** Ohio State University http://www.cse.ohio-state.edu/~parent/

David C. Brogan

Visiting Assistant Professor, Computer Science Department, University of Virginia http://www.cs.virginia.edu/~dbrogan/ Susquehanna International Group (SIG) http://www.sig.com

Steve Rotenberg

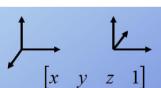
Visiting Lecturer Graphics Lab University of California - San Diego CEO/Chief Scientist, PixelActive http://graphics.ucsd.edu

troduction to Computer Graphics

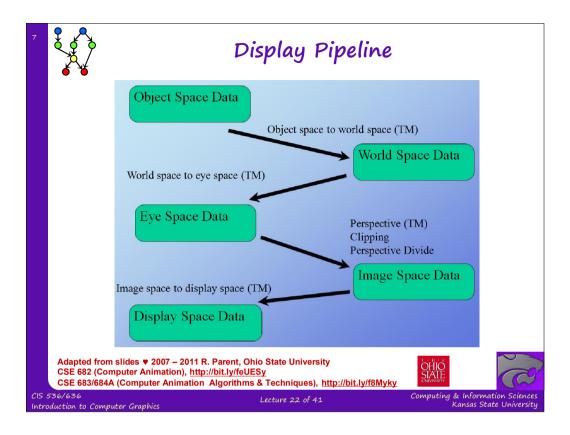
Lecture 22 of 41

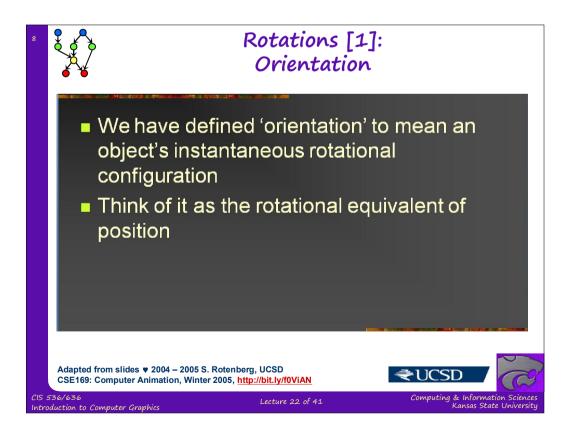
Spaces & Transformations

Left-handed v. right handed Homogeneous coordinates: 4x4 transformation matrix (TM) Concatenating TMs Basic transformations (TMs) Display pipeline



Adapted from slides ♥ 2007 - 2011 R. Parent, Ohio State University CSE 682 (Computer Animation), http://bit.ly/feUESy CSE 683/684A (Computer Animation Algorithms & Techniques), http://bit.ly/f8Myky





Rotations [2]: Representing Position

- Cartesian coordinates (x,y,z) are an easy and natural means of representing a position in 3D space
- There are many other alternatives such as polar notation (r,θ,φ) and you can invent others if you want to

Adapted from slides ♥ 2004 – 2005 S. Rotenberg, UCSD CSE169: Computer Animation, Winter 2005, http://bit.ly/f0ViAN

Introduction to Computer Gra

Lecture 22 of 41

Computing & Information Sciences Kansas State University

Rotations [3]: Euler's Theorem

- Euler's Theorem: Any two independent orthonormal coordinate frames can be related by a sequence of rotations (not more than three) about coordinate axes, where no two successive rotations may be about the same axis.
- Not to be confused with Euler angles, Euler's formula, Euler integration, Newton-Euler dynamics, inviscid Euler equations, Euler characteristic...
- Leonard Euler (1707-1783)

Adapted from slides ♥ 2004 – 2005 S. Rotenberg, UCSD CSE169: Computer Animation, Winter 2005, http://bit.ly/f0ViAN

CIS 536/636
Introduction to Computer Graphics

Lecture 22 of 41

Computing & Information Sciences

Rotations [4]: Euler Angles

- This means that we can represent an orientation with 3 numbers
- A sequence of rotations around principal axes is called an Euler Angle Sequence
- Assuming we limit ourselves to 3 rotations without successive rotations about the same axis, we could use any of the following 12 sequences:

XYZ XZY XYX XZX YXZ YZX YXY YZY ZXY ZYX ZXZ ZYZ

Adapted from slides ♥ 2004 – 2005 S. Rotenberg, UCSD CSE169: Computer Animation, Winter 2005, http://bit.ly/f0ViAN

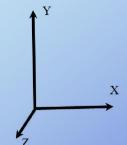
Introduction to Computer Graphics

Lecture 22 of 41

Computing & Information Sciences Kansas State University

Representing Orientations

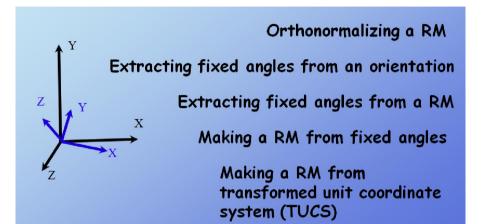
Example: fixed angles - rotate around global axes



Orientation: $(\alpha \quad \beta \quad \gamma)$

 $P' = R_z(\gamma) R_v(\beta) R_x(\alpha) P$

Working with Fixed Angles & Rotation Matrices (RMs)



Adapted from slides ♥ 2007 - 2011 R. Parent, Ohio State University CSE 682 (Computer Animation), http://bit.ly/feUESy CSE 683/684A (Computer Animation Algorithms & Techniques), http://bit.ly/f8Myky

Lecture 22 of 41

Transformations in Pipeline

object → world: often rigid transforms

world \rightarrow eye: rigid transforms

perspective matrix: uses 4th component of homo. coords

perspective divide

image \rightarrow screen: 2D map to screen coordinates Clipping: procedure that considers view frustum

Adapted from slides ♥ 2007 - 2011 R. Parent, Ohio State University CSE 682 (Computer Animation), http://bit.ly/feUESy
CSE 683/684A (Computer Animation Algorithms & Techniques), http://bit.ly/f8Myky

Error Considerations

Accumulated round-off error - transform data:

transform world data by delta RM update RM by delta RM; apply to object data update angle; form RM; apply to object data

orthonormalization

rotation matrix: orthogonal, unit-length columns iterate update by taking cross product of 2 vectors scale to unit length

considerations of scale

miles-to-inches can exeed single precision arithmetic

Adapted from slides ♥ 2007 - 2011 R. Parent, Ohio State University CSE 682 (Computer Animation), http://bit.ly/feUESy CSE 683/684A (Computer Animation Algorithms & Techniques), http://bit.ly/f8Myky

Lecture 22 of 41

Rotation matrix

Fixed angles: rotate about global coordinate system Euler angles: rotate about local coordinate system

Axis-angle: arbitrary axis and angle

Quaternions: mathematically handy axis-angle 4-tuple

Exponential map: 3-tuple version of quaternions

Adapted from slides ♥ 2007 - 2011 R. Parent, Ohio State University CSE 682 (Computer Animation), http://bit.ly/feUESy CSE 683/684A (Computer Animation Algorithms & Techniques), http://bit.ly/f8Myky

Representing 3 Rotational Degrees of Freedom (DOFs)

3x3 Matrix (9 DOFs)

Rows of matrix define orthogonal axes

Euler Angles (3 DOFs)

Rot x + Rot y + Rot z

Axis-angle (4 DOFs)

Axis of rotation + Rotation amount

Quaternion (4 DOFs)

4 dimensional complex numbers

Adapted from slides ♥ 2000 – 2004 D. Brogan, University of Virginia CS 445/645, Introduction to Computer Graphics, http://bit.ly/h9AHRg

Introduction to Computer Graphics

Lecture 22 of 41

Computing & Information Sciences Kansas State University

Method 1 – <u>T</u>ransformation <u>Matrix</u> [1] 4 ◆ 4 Homogeneous TMs

 $\begin{bmatrix} a & b & c & d \\ e & f & g & h \\ i & j & k & l \\ m & n & o & p \end{bmatrix}$

Method 1 – <u>T</u>ransformation <u>M</u>atrix [2]: Translation

$$\begin{bmatrix} a & b & c & t_x \\ e & f & g & t_y \\ i & j & k & t_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Adapted from slides ♥ 2007 – 2011 R. Parent, Ohio State University
CSE 682 (Computer Animation), http://bit.ly/feUESy
CSE 683/684A (Computer Animation Algorithms & Techniques), http://bit.ly/f8Myky

Introduction to Computer Gra

Lecture 22 of 41

Computing & Information Sciences

Method 1 – <u>T</u>ransformation <u>M</u>atrix [3]: Rotation about *x*, *y*, *z*

Rotation about *x* axis (Roll)

 $\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos(\alpha) & -\sin(\alpha) & 0 \\ 0 & \sin(\alpha) & \cos(\alpha) & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$

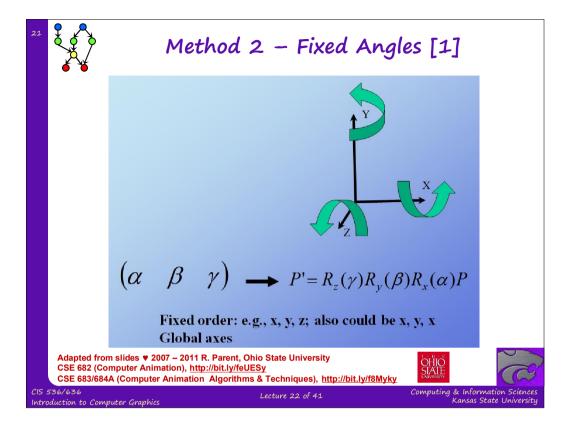
Rotation about y axis (Pitch)

 $egin{bmatrix} \cos(eta) & 0 & \sin(eta) & 0 \ 0 & 1 & 0 & 0 \ -\sin(eta) & 0 & \cos(eta) & 0 \ 0 & 0 & 0 & 1 \ \end{bmatrix}$

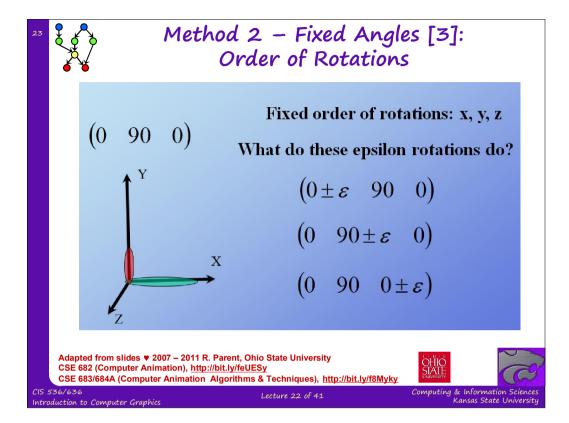
06 Wikipedia, ht Dynamics bit.ly/gVaQCX

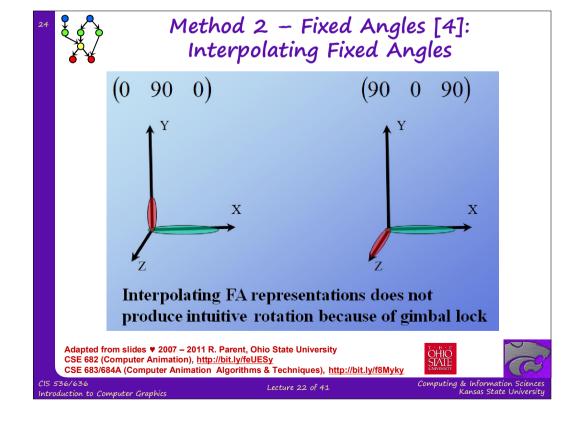
Rotation about z axis (Yaw)

 $\begin{bmatrix} \cos(\gamma) & -\sin(\gamma) & 0 & 0 \\ \sin(\gamma) & \cos(\gamma) & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$



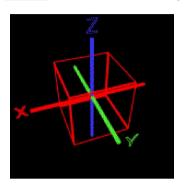




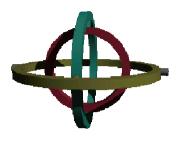


Method 2 – Fixed Angles [5]: Gimbal Lock Illustrated

- Gimbal Lock: Term Derived from Mechanical Problem in Gimbal
- Gimbal: Mechanism That Supports Compass, Gyroscope



Anticz.com © 2001 M. Brown http://bit.ly/6NIXVr



Gimbal Lock © 2006 Wikipedia (Rendered using POV-Ray) http://bit.ly/hR88V2

Adapted from slides ♥ 2000 – 2005 D. Brogan, University of Virginia CS 551, Computer Animation, http://bit.ly/ggbjuv

C

Introduction to Computer Graphics

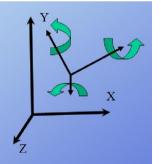
Lecture 22 of 41

Computing & Information Sciences Kansas State U<u>niversitu</u>

Method 3 - Euler Angles [1]

 $(\alpha \quad \beta \quad \gamma)$

Prescribed order: e.g., x, y, z or x, y, x Rotate around (rotated) local axes



Note: fixed angles are same as Euler angles in reverse order and vice versa

 $(\alpha \quad \beta \quad \gamma) \longrightarrow P' = R_x(\alpha)R_y(\beta)R_z(\gamma)P$

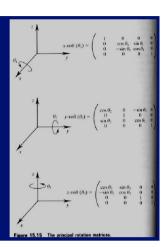
Method 3 - Euler Angles [2]

$(\theta_x, \theta_y, \theta_z) = R_z R_y R_x$

- Rotate θ_x degrees about x-axis
- Rotate θ_v degrees about y-axis
- Rotate θ_z degrees about z-axis

Axis order is not defined

- (y, z, x), (x, z, y), (z, y, x)...
 are all legal
- Pick one



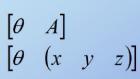
Adapted from slides ♥ 2000 – 2004 D. Brogan, University of Virginia CS 445/645, Introduction to Computer Graphics, http://bit.ly/h9AHRq

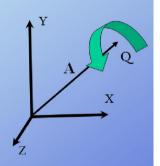
Introduction to Computer Graph

Lecture 22 of 41

Computing & Information Sciences Kansas State University

Method 4 - Axis-Angle [1]





Rotate about given axis Euler's Rotation Theorem OpenGL Fairly easy to interpolate betw

Fairly easy to interpolate between orientations Difficult to concatenate rotations

Method 4 - Axis-Angle [2]

Given

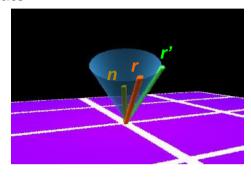
r - vector in space to rotate

n – unit-length axis in space about which to rotate

 \square -amount about *n* to rotate

Solve

r' - rotated vector



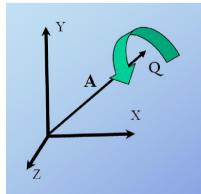
Adapted from slides ♥ 2000 – 2004 D. Brogan, University of Virginia CS 445/645, Introduction to Computer Graphics, http://bit.ly/h9AHRq

CIS 536/636

Lecture 22 of 41

Computing & Information Sciences

Method 4 - Axis-Angle [3]: Axis-Angle to Series of Rotations

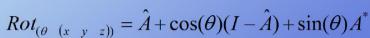


Concatenate the following:
Rotate A around z to x-z plane
Rotate A' around y to x-axis
Rotate theta around x
Undo rotation around y-axis
Undo rotation around z-axis

Method 4 – Axis-Angle [4]: Axis-Angle to Rotation Matrix

$$\hat{A} = \begin{bmatrix} a_x a_x & a_x a_y & a_x a_z \\ a_y a_x & a_y a_y & a_y a_z \\ a_z a_x & a_z a_y & a_z az \end{bmatrix}$$

$$A^* = \begin{bmatrix} 0 & -a_z & a_y \\ a_z & 0 & -a_x \\ -a_y & a_x & 0 \end{bmatrix}$$



Adapted from slides ♥ 2007 – 2011 R. Parent, Ohio State University
CSE 682 (Computer Animation), http://bit.ly/feMyky
CSE 683/684A (Computer Animation Algorithms & Techniques), http://bit.ly/f8Myky

Introduction to Computer Graphic

Lecture 22 of 41

Computing & Information Science

Method 5 - Quaternions [1]

$$Rot_{(\theta A)} = \left[\cos\left(\frac{\theta}{2}\right) \sin\left(\frac{\theta}{2}\right) * A \right]$$

Same as axis-angle, but different form Still rotate about given axis Mathematically convenient form

Note: in this form v is a scaled version of the given axis of rotation, A

Method 5 – Quaternions [2]: Arithmetic

Addition

$$[s_1 + s_2 \quad v_1 + v_2] = [s_1 \quad v_1] + [s_2 \quad v_2]$$

Multiplication

$$q_1q_2 = [s_1s_2 - v_1 \cdot v_2 \quad s_2v_1 + s_1v_2 + v_1 \times v_2]$$

Inner Product

$$q_1 \cdot q_2 = s_1 s_2 + v_1 \cdot v_2$$

Length

$$||q|| = \sqrt{q \cdot q}$$

Adapted from slides ♥ 2007 – 2011 R. Parent, Ohio State University CSE 682 (Computer Animation), http://bit.ly/feUESy CSE 683/684A (Computer Animation Algorithms & Techniques), http://bit.ly/f8Myky

CIS 536/636

ecture 22 of 41

Computing & Information Sciences Kansas State Universitu

Method 5 - Quaternions [3]: Inverse & Normalization

Inverse

$$q^{-1} = \frac{1}{\|q\|^2} [s - v]$$

$$qq^{-1} = q^{-1}q = \begin{bmatrix} 1 & (0 & 0 & 0) \end{bmatrix}$$

$$(pq)^{-1} = q^{-1}p^{-1}$$

Unit quaternion

$$\hat{q} = \frac{q}{\|q\|}$$

Method 5 - Quaternions [4]: Representation

Vector

$$\begin{bmatrix} 0 & v \end{bmatrix}$$

Transform

$$v' = Rot_q(v) = qvq^{-1}$$

Adapted from slides ♥ 2007 – 2011 R. Parent, Ohio State University
CSE 682 (Computer Animation), http://bit.ly/feUESy
CSE 683/684A (Computer Animation Algorithms & Techniques), http://bit.ly/f8Myky

Introduction to Computer Gr

ecture 22 of 41

Computing & Information Science Kansas State Universit

Method 5 – Quaternions [5]: Geometric Operations

$$Rot_q(v) = Rot_{-q}(v)$$

$$Rot_q(v) = Rot_{kq}(v)$$

$$v'' = Rot_q(Rot_p(v)) = Rot_{qp}(v)$$

$$v'' = Rot_{q^{-1}}(Rot_q(v)) = q^{-1}(qvq^{-1})q = v$$

Method 5 - Quaternions [6]: Unit Quaternion Conversions

$$Rot_{\begin{bmatrix} s & x & y & z \end{bmatrix}} = \begin{bmatrix} 1 - 2y^2 - 2z^2 & 2xy - 2sz & 2xz - 2sy \\ 2xy - 2sz & 1 - 2x^2 - 2z^2 & 2yz - 2sx \\ 2xz - 2sy & 2yz - 2sx & 1 - 2x^2 - 2y^2 \end{bmatrix}$$

Axis-Angle
$$\begin{cases} \theta = 2\cos^{-1}(s) \\ (x, y, z) = v / ||v|| \end{cases}$$

Adapted from slides ♥ 2007 – 2011 R. Parent, Ohio State University CSE 682 (Computer Animation), http://bit.ly/feMyky CSE 683/684A (Computer Animation Algorithms & Techniques), http://bit.ly/f8Myky

Introduction to Computer Graphics

ecture 22 of 41

Computing & Information Science: Kansas State University

Method 5 – Quaternions [7]: Properties

Avoid gimbal lock

Easy to rotate a point

Easy to convert to a rotation matrix

Easy to concatenate - quaternion multiply

Easy to interpolate - interpolate 4-tuples

How about smoothly (in both space and time) interpolate?

Method 6 - Exponential Maps

We can formulate an exponential map from R³ to S³ as follows:

$$\begin{split} e^{[0,0,0]^T} &= \begin{bmatrix} 0,0,0,1 \end{bmatrix}^T & \text{and for } \mathbf{v} \neq \mathbf{0} & e^T &= \sum_{n=0}^{\infty} \left(\frac{1}{2} \widetilde{\mathbf{v}} \right)^m = \left[\sin(\frac{1}{2}\theta) \hat{\mathbf{v}}, \cos(\frac{1}{2}\theta) \right]^T \\ \mathbf{q} &= e^T &= \left[\sin(\frac{1}{2}\theta) \frac{\mathbf{v}}{\theta}, \cos(\frac{1}{2}\theta) \right]^T = \left[\frac{\sin(\frac{1}{2}\theta)}{\theta} \mathbf{v}, \cos(\frac{1}{2}\theta) \right]^T \end{split}$$

Original paper, Journal of Graphics Tools: Grassia (1998), http://bit.ly/gwHQnt



Wikipedia: Exponential Map,

$$\begin{split} \exp(\tilde{\boldsymbol{\omega}}) &= \exp\left(\begin{bmatrix} 0 & -z\theta & y\theta \\ z\theta & 0 & -x\theta \\ -y\theta & x\theta & 0 \end{bmatrix}\right) \\ &= \begin{bmatrix} 2(x^2-1)s^2+1 & 2xys^2-2zcs & 2xzs^2+2ycs \\ 2xys^2+2zcs & 2(y^2-1)s^2+1 & 2yzs^2-2xcs \\ 2xzs^2-2ycs & 2yzs^2+2xcs & 2(z^2-1)s^2+1 \end{bmatrix}, \end{split}$$

Wikipedia: Rotation Matrix, http://bit.ly/edluTR

CIS 536/636
Introduction to Computer Graphics

Lecture 22 of 41

Computing & Information Sciences

Kansas State University

40

Quaternions [1]: Matrix to Quaternion

- Matrix to quaternion is not too bad, I just don't have room for it here
- It involves a few 'if' statements, a square root, three divisions, and some other stuff
- See Sam Buss's book (p. 305) for the algorithm

Adapted from slides ♥ 2004 – 2005 S. Rotenberg, UCSD CSE169: Computer Animation, Winter 2005, http://bit.ly/f0ViAN

Quaternions [2]: Axis-Angle to Quaternion

 A quaternion can represent a rotation by an angle θ around a unit axis a:

$$\mathbf{q} = \begin{bmatrix} \cos\frac{\theta}{2} & a_x \sin\frac{\theta}{2} & a_y \sin\frac{\theta}{2} & a_z \sin\frac{\theta}{2} \end{bmatrix}$$

or

$$\mathbf{q} = \left\langle \cos \frac{\theta}{2}, \mathbf{a} \sin \frac{\theta}{2} \right\rangle$$

■ If a is unit length, then q will be also

Adapted from slides ♥ 2004 – 2005 S. Rotenberg, UCSD CSE169: Computer Animation, Winter 2005, http://bit.ly/f0ViAN

Introduction to Computer Graphic

Lecture 22 of 41

Computing & Information Science: Kansas State Universiti

Dynamics & Kinematics

- Dynamics: Study of Motion & Changes in Motion
 - * Forward: model forces over time to find state, e.g.,
 - \triangleright Given: initial position p_0 , velocity v_0 , gravitational constants
 - \triangleright Calculate: position p_t at time t
 - * Inverse: given state and constraints, calculate forces, e.g.,
 - \triangleright Given: desired position p_t at time t, gravitational constants
 - \triangleright Calculate: position p_0 , velocity v_0 needed
 - * Wikipedia: http://bit.ly/hH43dX (see also: "Analytical dynamics")
 - * For non-particle objects: rigid-body dynamics (http://bit.ly/dLvejg)
- Kinematics: Study of Motion without Regard to Causative Forces
 - * Modeling systems e.g., articulated figure
 - * Forward: from angles to position (http://bit.ly/eh2d1c)
 - * Inverse: finding angles given desired position (http://bit.ly/hsyTb0)
 - * Wikipedia: http://bit.ly/hr8r2u

Forward Kinematics

CIS 536/636 Introduction to Computer Graphics Lecture 22 of 41

Computing & Information Sciences
Kansas State University

Summary

- Reading for Next Class: §Chapter 10, 13, §17.3 17.5, Eberly 2e
- Last Time: Maya & CGA, Ross Tutorials (http://bit.ly/dFpTwq)
 - * Maya interface: navigation, menus, tools, primitives
 - * GUI, viewports, transforms, nodes, attributes, deformers, scenes
 - * Object modeling and rigging; driven keys, blend shape
- Today: Rotations in Animation
 - * Flight dynamics: roll, pitch, yaw
 - * Matrix, angles (fixed, Euler, axis), quaternions, exponential maps
 - * Dynamics: forward (trajectories, simulation), inverse (e.g., ballistics)
 - * Kinematics: forward, inverse
- Previous Videos (#3): Morphing & Other Special Effects (SFX)
- Next Set of Videos (#4): Modeling & Simulation
- Next Class: Animation for Simulation, Visualization
- Lab 4: Unreal Wiki Tutorial, Modeling/Rigging (http://bit.ly/dLRkXN

Introduction to Computer Graph

Lecture 22 of 41

Computing & Information Sciences Kansas State Universitu

Terminology

- Maya Software for 3-D Modeling & Animation
 - * Shelves and hotkeys, viewports
 - * Channel box, deformers controlling complex vertex meshes
- Rigging Character Models: Defining Components of Articulated Figure
 - * Joints axis of rotation, angular degree(s) of freedom (DOFs)
 - * Bones attached to joints, rotate about joint axis
- Dynamics (Motion under Forces) vs. Kinematics (Articulated Motion)
- Roll (Rotation about x), Pitch (Rotation about y), Yaw (Rotation about z)
- Today: Six Degrees of Rotation

 - * Fixed angles global basis
 - * <u>Euler angles</u> rotate around local axes (themselves rotated)
 - * Axis-angle rotate around arbitrary axis
 - * Quaternions different representation of arbitrary rotation
 - * Exponential maps 3-D representation related to quaternions

CIS 536/636 Introduction to Computer Graphics Lecture 22 of 41

Computing & Information Sciences