Lecture 24 of 41

Collision Handling Part 1 of 2:
Separating Axes, Oriented Bounding Boxes

William H. Hsu
Department of Computing and Information Sciences, KSU

KSOL course pages: http:/bit.ly/hGvXIH / http://bit.ly/eVizrE
Public mirror web site: http://www.kddresearch.org/Courses/CIS636
Instructor home page: http://www.cis.ksu.edu/~bhsu

Readings:
Today: §2.4.3, 8.1, Eberly 2= —see http://bit.lylieUg45; GL handout

Next class: Chapter 6, esp. §6.1, Eberly 2¢
Wikipedia, Collision Detection: http://bit.ly/14rFzG

Computing

Lecture Outline

Reading for Last Class: Chapter 10, 13, §17.3 - 17.5, Eberly 2¢
Reading for Today: §2.4.3, 8.1, Eberly 2¢, GL handout
Reading for Next Class: Chapter 6, Esp. §6.1, Eberly 2¢
Last Time: Quaternions Concluded
* How quaternions work — properties, matrix equivalence, arithmetic

* Composing rotations by quaternion multiplication
* Incremental rotation and error issues
® Videos 4: Modeling & Simulation, Visualization; VR/VE/VA/AR

* Virtual reality, environments, artifacts (VR/VE/VA); augmented
reality

* Relationship among visualization, simulation, & animation
® Today: Collision Detection Part 1 of 2

* Test-intersection queries vs. find-intersection queries

* Static: stationary objects (both not moving)

* Dynamlc movmg objects (one or both)

Computer Graphics

[

Where We Are

[21 [Lab 4a: Animation Basics | Fiash animation handout |
[22 | Animation 2: Rotations; Dvnaml\:s Kinematics | Chapter 17, esp §17.1=172 |
1

Lab 5a: Interaction H:mdling

28 Collisions 2: Dynamic, Particle Systems
Exam 2 review; Hour Exam 2 (evening| 3 . 12,
29 Lab 5b: Particle Systems le system handout

Animation 3: Control & IK
Ray Tracing 1: intersections, ray frees
Lab 6a: Ray Tracing Basics with POV-Ra
Ray Tracing 2: advanced {0pic survey
34 isualization 1: Data (Quantities & Evidence)

.3, CGA handout

35 Lab 6b: More Ray Tracing
36 Visualization 2. Objects
37 Color Basics, Tem Projed] Prep _
38 Lab 7. Fractals & Terrain
39 Visualization 3: Processes: Final Review 1
40 Project p 1, Final Review 2 -
a1 Project =
Final Exam Ch.1-8, 10— 15,17. 20

Lightly-shaded entries denote the due date of a written problem set. hieavily-shaded enfries that of a
machine problem (programming assignment); bilie-shaded eniies, that of a paper review; and the green-
shaded entry, that of the term project

Green, blue and red letters denote exam review, exam, and exam solution review dates.

Lecture 24 of 41

Review [1]:
Fixed Angles & Euler Angles

[1 0 0 0
Rotation about x axis 0 cos(a) —sin(a) 0
(Roll) 0 sin(@) cosf@) 0
[0 0 0 1
[cos(B) 0 sin(p)
106 Wikipedia,
Rotation about y axis 0 1 0 '/'f,fffy{'?,'i"‘éx
(Pitch) —sin(B) 0 cos(p)
0

Rotation about z axis
(Yaw)

Adapted from slides ¥ 2007 - 2011 R. Parent, Ohio State University

CSE 682 (Computer Animation), http://bit. IyneuESy
CSE 683/684A (C t

Computing & Inform
K

o Computer Graphics ansas Stat

Acknowledgements:
Quaternions, Collision Handling

Rick Parent

Professor

Department of Computer Science and Engineering
Ohio State University
http://lwww.cse.ohio-state.edu/~parent/

David C. Brogan
Visiting Assistant Professor, Computer Science Department, University of Virginia
http://www.cs.virginia.edu/~dbrogan/
Susquehanna International Group (SIG)
http://www.sig.com

&= Comy uter Science
il P e,

Steve Rotenberg

Visiting Lecturer

Graphics Lab <= UCSD

| University of California — San Diego

CEO/Chief Scientist, PixelActive
http:/igraphics.ucsd.edu

Lecture 24 of 41 @iz ¢

« to Computer Graphics

Review [2]:
Axis-Angle to Quaternion Conversion

A quaternion is a 4-D unit vector q =[x y z w]
It lies on the unit hypersphere x2 + y2 + z2 + w? = 1

For rotation about (unit) axis v by angle 6
vector part = (sin0/2) v =[xy z]

scalar part = (cos 6/2) =w

(sin(6/2) n,, sin(6/2) n, sin(6/2) n, cos (6/2))

Only a unit quaternion encodes a rotation - normalize

Adapted from slides ¥ 2000 - 2004 D. Brogan, University of Virginia - Sei
S 445/645, Introduction to Computer Graphics, http://bitly/h9AHRg ofiputet science.
Computi
‘omputer Graphics

G Review [3]:
Quaternion to RM Conversion

Rotation matrix corresponding to a quaternion:
1-2y* =22 2xy+2wz 2xz-2wy
2xy—2wz 1-2x*-2z" 2yz+2wx
2xz+2wy 2yz=2wx 1-2x*-2)°
Quaternion Multiplication
G1 % A2 = [V, Wy] * [Va, Wyl = [(WVotWov+ (V4 X V), WeWo-Vy.V5]
quaternion * quaternion = quaternion
this satisfies requirements for mathematical group

Rotating object twice according to two different quaternions is equivalent
to one rotation according to product of two quaternions

Adapted from slides ¥ 2000 — 2004 D. Brogan, University of Virginia

CS 445/645, Introduction to Computer Graphics, http://bit.y/h9AHRg i Com puter Science

st Vv

Interpolating Quaternions [1]:
Lerp

= |[f we want to do a linear interpolation between two points
a and b in normal space

Lerp(ta,b) = (1-t)a + (t)b

where t ranges from 0 to 1

= Note that the Lerp operation can be t
weighted average (convex)

= We could also write it in its additive blend form:

Lerp(t,a,b) = a + t(b-a)

Adapted from slides ¥ 2004 — 2005 S. Rotenberg, UCSD
CSE169: Computer Animation, Winter 2005 , http:/bit.ly/fOViAN

= UCSD

Interpolating Quaternions [3]:
Slerp Optimization

Remember that there are two redundant vectors in quaternion
space for every unique orientation in 3D space
What s the difference between:

Slerp(t,a,b) and Slerp(t,-a,b) ?

One of these will travel less than 90 degrees while the other will
travel more than 90 degrees across the sphere

This corresponds to rotating the ‘short way’ or the ‘long way’
Usually, we want to take the short way, so we negate one of them if
their dot product is < 0

Adapted from slides ¥ 2004 — 2005 S. Rotenberg, UCSD
CSE169: Computer Animation, Winter 2005, http:/bit.ly/fOViAN

= UCSD

Review [4]:
Advantage — Interpolation

Biggest advantage of quaternions

* Interpolation

+ Cannot linearly interpolate between two quaternions
because it would speed up in middle

Instead, Spherical Linear Interpolation, slerp()

Used by modern video games for third-person
perspective

Why?

Hint: see http://youtu.be/-jBKKV2V8eU

Adapted from slides ¥ 2000 — 2004 D. Brogan, University of Virginia

CS 445/645, Introduction to Computer Graphics, http://bitlyh9AHRg Hill§ CQ“‘P‘}E‘{L\%&FT&&

mputer Graphics

Interpolating Quaternions [2]:
Slerp

n If we want to interpolate between two
points on a sphere (or hypersphere), we
don’t just want to Lerp between them

m Instead, we will travel across the surface
of the sphere by following a ‘great arc’

Adapted from slides ¥ 2004 — 2005 S. Rotenberg, UCSD
CSE169: Computer Animation, Winter 2005, http://bit.ly/fOViAN

mputer Graphics

Review [5]:
Dynamics & Kinematics

® Dynamics: Study of Motion & Changes in Motion
* Forward: model forces over time to find state, e.g.,
» Given: initial position p,, velocity v,, gravitational constants
» Calculate: position p;at time t
* Inverse: given state and constraints, calculate forces, e.g.,
> Given: desired position p; at time {, gravitational constants
» Calculate: position py, velocity v, needed
* Wikipedia: http://bit.ly/hH43dX (see also: “Analytical dynamics”)
* For non-particle objects: rigid-body dynamics (http:/bit.ly/dLvejg)
® Kinematics: Study of Motion without Regard to Causative Forces
* Modeling systems - e.g., articulated figure
* Forward: from angles to position (http://bit.ly/eh2d1c)
* Inverse: finding angles given desired position (http:/bit.ly/hsyTb0)

* Wikipedia: http://bit.ly/hr8r2u - R

©2009 Wikipedia

Lecture 24 of 41

mputer Graphics

Review [6]:
Visualization & Simulation

Deepwater Horizon Oil Spill (20 Apr 2010)
hitp:/lbit ly/9QHax4
120-day images © 2010 NOAA, http://1.usa.gov/c02xuf

-9

you e

Visualization Of An F3 Tornado Within A Supercell Thunderstorm Sim
o e
e
b4
&

-‘N’E’

120-day simulation using 120-day simulation using
06 Apr 1996 weather conditions 17 Apr 1997 weather conditions

e

F
4

G G 4] v e (M 1523

http://youtu.be/EqumUONs1Y1
http://avl.ncsa.illinois.edu

120-day simulation using TR
p:/bit.ly/e,

15 Apr 1993 weather conditions

132-day simulation using
2010 conditions
©2010 National Center for
Supercomputing
Applications (NCSA)
http: lyoutu.belpE-1G_476nA

Computing

Lecture 24 of 41

Review [8]:
Virtual Environments (VE)

® Virtual Environment: Part of Virtual Reality Experience

® Other Parts
* Virtual artifacts (VA): simulated objects — http:/bit.ly/hskSyX
* Intelligent agents, artificial & real — http:/bit.ly/y2gQk

hitp:/bit.ly/hzfAQx We Are Arcade © 2011 D. Grossett ef al., htpd/bity/RALU
hitp:/ibit.lylwbvol World of Warcraft: Cataclysm review © 2011
J. Greer, htp:/ibit.lyle ENHXt
World of Warcraft © 2001 - 2011
Blizzard Entertainment, Inc.
hitp://bit.ly/2qvPYE

Acknowledgements:
Intersections, Containment — Eberly 1¢
David H. Eberly

Chief Technology Officer
Geometric Tools, LLC
http://www.geometrictools.com
http:/ibit.lylenKbfs

Today’s material:
® View Frustum clipping
> §2.4.3,p.70 - 77,2¢
> §3.4.3,p.93 - 99, & §3.7.2, p. 133 - 136, 1¢
® Collision detection: separating axes
> §8.1,p. 393 — 443, 2¢
> §6.4.p. 203 — 214, 1¢
Later:

3D

Game Engine
Design

® Distance methods
» Chapter 14, p. 639 - 679, 2¢
> §2.6,p.38-77,1¢

@ Intersection methods

» Chapter 15, p. 681 — 717, 2¢

> §6.2-6.5, p. 188 — 243, 1

David H. Eberly

3D Game Engine Design © 2000 D. H. Eberly
See http://bitly/ieUgds for second edition table of contents (TOC)

Review [7]:
Virtual Reality (VR)

® Virtual Reality: C Simulated Envir

p

® Physical Pr Real &1 inary

® Hardware: User Interface
* Head-mounted display (HMD), gloves — see PopOptics goggles (left)
* VR glasses, wand, etc. — see NCSA CAVE (right)

Virtual Reality, Wikipedia: CAVE (Cave Automatic Virtual Environment)
http/bit.lylfAvNeP Image ©2009 D. Pape
Image ©2007 National Air & Space Museum HowStufWorks article: http:
©2009 J. Strickland
Wikipedia: http:

Review [49]:
Augmented Reality (AR)

® Augmented Reality: Computer-Generated (CG) Sensory Overlay
® Added to Physical, Real-World Environment

Wikipedia, Google Goggles:

B Coogle g
&8 Google goggles hitp: /bitly/gRRMLS

Microsoft Corporation
hitp:/bit.ly/aQUVIT
©2010 TED Talks

“40 Best Augmented Reality iPhone Applications
©2010 iPhoneNess.com, httpy/bity2qT35y
MyNav ©2010 Winfield & Co. hitp://bity/dLTir7.

View Frustum Clipping:
Triangle Splitting

>0 P, S0
Y
Vo LA s
0 i
Py> i<, - o
Y i

Figure 3.4 Four i

i tting. Only the triangles in the shaded region are
important, so the quadrilaterals outside are not split.

3D Game Engine Design © 2000 D. H. Eberly
See http://bit lyfieUads for second edition table of contents (TOC)

Computing

Collision Handling:
Detection vs. Response

m Collision Detection

Collision detection is a geometric problem

Given two moving objects defined in an initial and
final configuration, determine if they intersected at
some point between the two states

= Collision Response
The response to collisions is the actual physics
problem of determining the unknown forces (or
impulses) of the collision

Adapted from slides ¥ 2004 — 2005 S. Rotenberg, UCSD
CSE169: Computer Animation, Winter 2005 , http://bit.ly/fOViAN

= UCSD

%@ Collision Detection [2]:

Intersections — Testing vs. Finding

= General goals: given two objects with current
and previous orientations specified, determine if,
where, and when the two objects intersect
Alternative: given two objects with only current
orientations, determine if they intersect
Sometimes, we need to find all intersections.
Other times, we just want the first one.
Sometimes, we just need to know if the two
objects intersect and don’t need the actual
intersection data.

Adapted from slides ¥ 2004 — 2005 S. Rotenberg, UCSD
CSE169: Computer Animation, Winter 2005 , http:/bit.ly/fOViAN

= UCSD

Technical Problem Defined

%{j Collision Detection [1]:

= ‘Collision detection’ is really a geometric
intersection detection problem
= Main subjects
Intersection testing (triangles, spheres, lines...)
Optimization structures (octree, BSP...)
Pair reduction (reducing N2 object pair testing)

Adapted from slides ¥ 2004 — 2005 S. Rotenberg, UCSD
CSE169: Computer Animation, Winter 2005, http://bit.ly/fOViAN

= UCSD

Queries — Test- vs. Find-Intersection

® Test-Intersection: Determine If Objects Intersect
* Static: test whether they do at given instant
* Dynamic: test whether they intersect at any point along trajectories
® Find-Intersection: Determine Intersection (or Contact) Set of Objects
* Static: intersection set (compare: A N B)
* Dynamic: contact time (interval of overlap), sets (depends on time)

%@ Collision Detection [3]:

Adapted from 3D Game Engine Design © 2000 D. H. Eberly
See http://bit lyfieUads for second edition table of contents (TOC)

wputer Graphics

Queries — Distance vs. Intersection

® Distance-Based
* Parametric representation of object boundaries/interiors
* Want: closest points on two objects (to see whether they intersect)
* Use: constrained minimization to solve for closest points

%{j Collision Detection [3]:

® Intersection-Based
* Also uses parametric representation
* Want: overlapping subset of interior of two objects
* General approach: equate objects, solve for parameters
* Use one of two kinds of solution methods
> Analytical (when feasible to solve exactly - e.g., OBBs)
> Numerical (approximate region of overlap)
* Solving for parameters in equation
* Harder to compute than distance-based; use only when needed

Adapted from 3D Game Engine Design © 2000 D. H. Eberly

See http://bitly/ieUqds for second edition table of contents (TOC)

Lecture 24 of 41

% Collision Detection [4]:

Primitives

= We often deal with various different ‘primitives’
that we describe our geometry with. Objects are
constructed from these primitives
= Examples
Triangles
Spheres
Cylinders
AABB = axis aligned bounding box
OBB = oriented bounding box
= At the heart of the intersection testing are
various primitive-primitive tests

Adapted from slides ¥ 2004 — 2005 S. Rotenberg, UCSD
CSE169: Computer Animation, Winter 2005, http://bit.ly/fOViAN

= UCSD

%@ Collision Detection [5]:

Pavrticle Collisions

= For today, we will mainly be concerned with the
problem of testing if particles collide with solid
objects

m A particle can be treated as a line segment from
its previous position to its current position

= If we are colliding against static objects, then we
just need to test if the line segment intersects
the object

= Colliding against moving objects requires some
additional modifications that we will also look at

Adapted from slides ¥ 2004 — 2005 S. Rotenberg, UCSD
CSE169: Computer Animation, Winter 2005 , http://bit.ly/fOViAN = UCSD

Con

%@ Collision Detection [7]:

Code — Primitives

class Primitive {
virtual bool TestSegment(const Segment &s,
Intersection &i);

K
class Sphere:public Primitive...

class Triangle:public Primitive...
class Cylinder:public Primitive...

Adapted from slides ¥ 2004 — 2005 S. Rotenberg, UCSD
CSE169: Computer Animation, Winter 2005 , http:/bit.ly/fOViAN <= UCSD

%{? Collision Detection [6]:

Code — Basic Components

class Segment {
Vector3 A,B;

h

class Intersection {
Vector3 Position;
Vector3 Normal;
Material *Mtl; (Mtl can contain info about
elasticity, friction, etc)

Adapted from slides ¥ 2004 — 2005 S. Rotenberg, UCSD
CSE169: Computer Animation, Winter 2005, http://bit.ly/fOViAN = UCSD

%@ Collision Detection [8]:

Segment vs. Triangle — Query

a

Adapted from slides ¥ 2004 — 2005 S. Rotenberg, UCSD
CSE169: Computer Animation, Winter 2005, http://bit.ly/fOViAN = UCSD

%{j Collision Detection [4]:

Segment vs. Triangle — Solution

= First, compute signed distances of a and b to plane
a,

d‘

a
Vo
= Reject if both are above or both are below triangle
= Otherwise, find intersection point x
db-d,a
X=—0t—-"
d —d,

a “b

Adapted from slides ¥ 2004 — 2005 S. Rotenberg, UCSD
CSE169: Computer Animation, Winter 2005, http:/bit.ly/fOViAN = UCSD

= % Collision Detection [10]:

Segment vs. Triangle — Point Test

m |s point x inside the triangle?
(x-vg) ((v2-vp)<n) > 0
m Test all 3 edges

Adapted from slides ¥ 2004 — 2005 S. Rotenberg, UCSD
CSE169: Computer Animation, Winter 2005, http://bit.ly/fOViAN = UCSD

%@ Collision Detection [11]:

Faster Triangle — Point Containment

= Reduce to 2D: remove smallest dimension
= Compute barycentric coordinates \Z3
X' =X-Vq
€1=Vi-Vo
€,=Vo-Vo
a=(x"xey)/(e4xep)

B=(x'xeq)/(e1xey)
= Reject if a<0, g<0 or a+B >1

Adapted from slides ¥ 2004 — 2005 S. Rotenberg, UCSD
CSE169: Computer Animation, Winter 2005 , http://bit.ly/fOViAN

= UCSD

Con

Collision Detection [13]:
Segment vs. Moving Mesh

My is the object’'s matrix at time t,
M, is the matrix at time t;
Compute delta matrix:
M;=My-M,
Mp=My"'-M,
Transform a by M,
a'=a-M,
Test segment a'b against object with matrix M,

Adapted from slides ¥ 2004 — 2005 S. Rotenberg, UCSD
CSE169: Computer Animation, Winter 2005 , http:/bit.ly/fOViAN

= UCSD

%{j Collision Detection [15]:

Trianglevs. Triangle — Plane Equations

Step 1: Compute plane equations
N2=(V4-Vo) *(V2-Vo)
d2='n2'VO

Adapted from slides ¥ 2004 — 2005 S. Rotenberg, UCSD
CSE169: Computer Animation, Winter 2005, http:/bit.ly/fOViAN

= UCSD

%{j Collision Detection [12]:

Segmentvs. Mesh

m To test a line segment against a mesh of
triangles, simply test the segment against each
triangle

= Sometimes, we are interested in only the ‘first’
hit along the segment from a to b. Other times,
we want all intersections. Still other times, we
just need any intersection.

= Testing against lots of triangles in a large mesh
can be time consuming. We will look at ways to
optimize this later

Adapted from slides ¥ 2004 — 2005 S. Rotenberg, UCSD
CSE169: Computer Animation, Winter 2005, http://bit.ly/fOViAN

= UCSD

= Collision Detection [14]:
Trianglevs. Triangle — Query

Adapted from slides ¥ 2004 — 2005 S. Rotenberg, UCSD
CSE169: Computer Animation, Winter 2005, http://bit.ly/fOViAN

=< UCSD

% Collision Detection [16]:

Trianglevs. Triangle — Distances

= Step 2: Compute signed distances of T, vertices to
plane of T,:
di=n,-u;+d, (i=0,1,2)
= Reject if all d;<0 or all d>0

= Repeat for vertices of T, against plane of T,
Yo

Adapted from slides ¥ 2004 — 2005 S. Rotenberg, UCSD
CSE169: Computer Animation, Winter 2005, http://bit.ly/fOViAN

= UCSD

%@ Collision Detection [17]:

Trianglevs. Triangle — Intersection

m Step 3: Find intersection points

m Step 4: Determine if segment pq is inside
triangle or intersects triangle edge

Adapted from slides ¥ 2004 — 2005 S. Rotenberg, UCSD
CSE169: Computer Animation, Winter 2005 , http://bit.ly/fOViAN

= UCSD

. %{j Collision Detection [18]:

Meshyvs. Mesh — Kinds of Collisions

m Geometry: points, edges, faces

m Collisions: p2p, p2e, p2f, e2e, e2f, f2f

= Relevant ones: p2f, e2e (point to face &
edge to edge)

= Multiple simultaneous collisions

Adapted from slides ¥ 2004 — 2005 S. Rotenberg, UCSD
CSE169: Computer Animation, Winter 2005, http://bit.ly/fOViAN

= UCSD

Collision Detection [149]:
Moving Mesh vs. Moving Mesh

= Two options: ‘point sample’ and ‘extrusion’

= Point sample:
If objects intersect at final positions, do a binary
search backwards to find the time when they first hit
and compute the intersection

This approach can tend to miss thin objects
= Extrusion:
Test ‘4-dimensional’ extrusions of objects
In practice, this can be done using only 3D math

Adapted from slides ¥ 2004 — 2005 S. Rotenberg, UCSD
CSE169: Computer Animation, Winter 2005 , http:/bit.ly/fOViAN

= UCSD

Collision Detection [21]:
Intersection Issues

= Performance

= Memory

= Accuracy

m Floating point precision

Adapted from slides ¥ 2004 — 2005 S. Rotenberg, UCSD
CSE169: Computer Animation, Winter 2005, http:/bit.ly/fOViAN

= UCSD

2

wputer Graphics

Collision Detection [20]:
Moving Meshes: Extrusion

m Use ‘delta matrix’ trick to simplify problem so
that one mesh is moving and one is static

= Test moving vertices against static faces (and
the opposite, using the other delta matrix)

= Test moving edges against static edges (moving
edges form a quad (two triangles))

Adapted from slides ¥ 2004 — 2005 S. Rotenberg, UCSD
CSE169: Computer Animation, Winter 2005, http://bit.ly/fOViAN

=< UCSD

Static Intersection [1]:
Sphere-Swept Volumes

® Sphere
* Locus of points in 3-D equidistant from center point

* Rotational sweep of circle (hollow sphere) or disc (solid ball)

* “Null” sweep of sphere (invariant under rotation, translation by 0)
® Capsule: Translational Sweep of Sphere Along Line Segment
® Lozenge: Sweep of Sphere Across Rectangle

Wikipedia: Sphere

hitpibit.ly GOWIQI
Image © 2008 ClipArtOf.com Lozenge
http/bit.lyleKhE2f Image © 2011 Jasmin Studio Crafts

Image ©2007 Remotion Wiki
bittp:bitiyhuEZNW

Adapted from 3D Game Engine Design © 2000 D. H. Eberly
See http://bit lyfieUad5 for second edition table of contents (TOC)

o Computer Graphics

3

45

Static Intersection [2]:
Distance Calculators

‘Table 6.1 Relationship between sphere-swept volumes and distance calculators (pnt, point; seg,
line segment; rer, rectangle).

Sphere Capsule Lozenge

Sphere dist(pnt,pnt) dist(pnt,seg) dist(pntrct)
Capsule dist(seg,pnt) dist(seg,seg) dist(seg,rct)
Lozenge dist(rct,pnt) disi(ret,seg) dist(ret,ret)

3D Game Engine Design © 2000 D. H. Eberly
See http://bitly/ieUgds for second edition table of contents (TOC)

Computing

Lecture 24 of 41

Dynamic Intersection [2]:
Two Moving Objects — Separating Axes

Table 6.7 Values for R, Ry, and R, for the separating axis test R > Ry + Ry for two boxes in the
direction of motion.

L Ro R R

W x Ag aylez| + azlen| Tiobilener —cuem| Ao W x DI
Wox A apleta| + azlerg T2 o bilcoiots — cyo| 1Ay - W x D)
W x A; aglety| +alerol Yo bilcoiens — cuiaol |Az- W x D
Wx By Ligalcnf—cifil bilfal + balBil 1By- W x D
Wx B TigalcioB— cibol bolBal + bal ol 1By - W x D
Wx B, TloaileioB — cinfol bolBil + bil ol 1B, W x D

3D Game Engine Design © 2000 D. H. Eberly
See http://bitly/ieUgds for second edition table of contents (TOC)

Lecture 24 of 41 Computing

Dynamic Intersection [1]:
One Moving Object

Table 6.6 ionship between sphi p distance calculators when th J

object is moving (prit, point; seg, line segment; ret, rectangle; pgm, parallelogram; ppd,
parallelepiped; hex, hexagon).

Dynamic

Sphere Capsule Lozenge

Static
Sphere dist(pnt,fpnt,seg)) dist(pnt,{seg,pgm}) dist(pnt,frcthex,ppd))
Capsule dist(seg,ipnt,seg)) dist(seg,iseg.pgm]) dist(seg,{rcthex,ppd})
Lozenge dist(rct,[pntsegl) dist(rct,iseg,pgm}|) dist(rct,[rct.hex,ppd])

3D Game Engine Design © 2000 D. H. Eberly
See http://bit lyfieUads for second edition table of contents (TOC)

Lecture 24 of 42 @iy

to Computer Graphics

Summary

Reading for Last Class: Chapter 10,13, §17.3 — 17.5, Eberly 2¢
Reading for Today: §2.4.3, 8.1, Eberly 2¢, GL handout
Reading for Next Class: Chapter 6, Esp. §6.1, Eberly 2¢
Last Time: Quaternions Concluded
* How quaternions work — properties, matrix equivalence, arithmetic
* Composing rotations by quaternion multiplication
* Incremental rotation and error issues
® Review: Virtual Reality & Virtual Environments; Augmented Reality
® Today: Collision Detection Part 1 of 2
* Static: stationary objects (both not moving)
* Dynamic: moving objects (one or both)
* Test-intersection queries vs. find-intersection queries
* Distance vs. intersection methods

Lecture 24 of 41 Computing

Preview:
Collision Response & Optimization

® What Happens After Collision Is Detected?
* Contact & application of force vs. impact & impulse
* Compression: deformation of solid
* Restitution: springing back of solid
* Friction?
* Secondary collisions due to changes in trajectories
* Bouncing?
® Optimization
* Spatial partitioning: bounding volume hierarchies (BVHs) revisited
» Binary space partitioning (BSP) trees
> k-d trees
> Quadtrees & octrees
* Volume graphics: uniform grids and data parallelism

=
Adapted from slides ¥ 2004 — 2005 S. Rotenberg, UCSD _ —
CSE169: Computer Animation, Winter 2005, http://bit.ly/fOViAN =< UCSD €a

© Lecture 24 of 41

Computing &

to Computer Graphics

Terminology

® Visualization — Communicating with Images, Diagrams, Animations
® VR, VE, VA, AR

* Virtual Reality: computer-simulated environments, objects

* Virtual Environment: part of VR dealing with surroundings

* Virtual Artifacts: part of VR dealing with si 1 object

)

* Augmented Reality: CG sensory overlay on real-world images
® Collision Detection

* Static: stationary objects (both not moving)

* Dynamic: moving objects (one or both)

* Queries
» Test-intersection : determine whether objects do/will intersect
» Fin ersection: calculate intersection set or contact set, time

* Parametric methods: use parameters to describe objects
* Distance-based: constrained minimization (closest points)
* Intersection-based: solving for parameters in equation r—

© Lecture 24 of 41

Computing &

to Computer Graphics

