
Computing & Information Sciences
Kansas State University

CIS 536/636

Introduction to Computer Graphics
Lecture 25 of 41

William H. Hsu

Department of Computing and Information Sciences, KSU

KSOL course pages: http://bit.ly/hGvXlH / http://bit.ly/eVizrE

Public mirror web site: http://www.kddresearch.org/Courses/CIS636

Instructor home page: http://www.cis.ksu.edu/~bhsu

Readings:

Today: Chapter 6, esp. §6.1, Eberly 2e – see http://bit.ly/ieUq45

Next class: Chapter 7, §8.4, Eberly 2e

Wikipedia, Binary Space Partitioning: http://bit.ly/eE10lc

Wikipedia, Quadtree (http://bit.ly/ky0Xy) & Octree (http://bit.ly/dVrthx)

Spatial Sorting: Binary Space Partitioning
Quadtrees & Octrees

Lecture 25 of 41

Computing & Information Sciences
Kansas State University

2

CIS 536/636

Introduction to Computer Graphics
Lecture 25 of 41

 Reading for Last Class: §2.4.3, 8.1, Eberly 2e, GL handout

 Reading for Today: Chapter 6, Esp. §6.1, Eberly 2e

 Reading for Next Class: Chapter 7, §8.4, Eberly 2e

 Last Time: Collision Handling, Part 1 of 2

 Static vs. dynamic objects, testing vs. finding intersections

 Distance vs. intersection methods

 Triangle point containment test

 Method of separating axes

 Today: Adaptive Spatial Partitioning

 Visible Surface Determination (VSD) revisited

 Constructive Solid Geometry (CSG) trees

 Binary Space Partitioning (BSP) trees

 Quadtrees: adaptive 2-D (planar) subdivision

 Octrees: adaptive 3-D (spatial) subdivision

 Coming Soon: Volume Graphics & Voxels

Lecture Outline

Computing & Information Sciences
Kansas State University

3

CIS 536/636

Introduction to Computer Graphics
Lecture 25 of 41

Where We Are

Computing & Information Sciences
Kansas State University

4

CIS 536/636

Introduction to Computer Graphics
Lecture 25 of 41

Acknowledgements:
Intersections, Containment – Eberly 1e

3D Game Engine Design © 2000 D. H. Eberly
See http://bit.ly/ieUq45 for second edition table of contents (TOC)

Last lecture’s material:

 View Frustum clipping

 §2.4.3, p. 70 – 77, 2e

 §3.4.3, p. 93 – 99, & §3.7.2, p. 133 – 136, 1e

 Collision detection: separating axes

 §8.1, p. 393 – 443, 2e

 §6.4. p. 203 – 214, 1e

Later:

 Distance methods

 Chapter 14, p. 639 – 679, 2e

 §2.6, p. 38 – 77, 1e

 Intersection methods

 Chapter 15, p. 681 – 717, 2e

 §6.2 – 6.5, p. 188 – 243, 1e

David H. Eberly
Chief Technology Officer

Geometric Tools, LLC

http://www.geometrictools.com

http://bit.ly/enKbfs

Computing & Information Sciences
Kansas State University

5

CIS 536/636

Introduction to Computer Graphics
Lecture 25 of 41

Review [1]:
View Frustum Clipping

3D Game Engine Design © 2000 D. H. Eberly
See http://bit.ly/ieUq45 for second edition table of contents (TOC)

Computing & Information Sciences
Kansas State University

6

CIS 536/636

Introduction to Computer Graphics
Lecture 25 of 41

Review [2]:
Collision Detection vs. Response

Adapted from slides  2004 – 2005 S. Rotenberg, UCSD
CSE169: Computer Animation, Winter 2005, http://bit.ly/f0ViAN

Computing & Information Sciences
Kansas State University

7

CIS 536/636

Introduction to Computer Graphics
Lecture 25 of 41

Review [3]:
Queries – Test- vs. Find-Intersection

Adapted from 3D Game Engine Design © 2000 D. H. Eberly
See http://bit.ly/ieUq45 for second edition table of contents (TOC)

 Test-Intersection: Determine If Objects Intersect

 Static: test whether they do at given instant

 Dynamic: test whether they intersect at any point along trajectories

 Find-Intersection: Determine Intersection (or Contact) Set of Objects

 Static: intersection set (compare: A  B)

 Dynamic: contact time (interval of overlap), sets (depends on time)

Computing & Information Sciences
Kansas State University

8

CIS 536/636

Introduction to Computer Graphics
Lecture 25 of 41

Review [4]:
Queries – Distance vs. Intersection

Adapted from 3D Game Engine Design © 2000 D. H. Eberly
See http://bit.ly/ieUq45 for second edition table of contents (TOC)

 Distance-Based

 Parametric representation of object boundaries/interiors

 Want: closest points on two objects (to see whether they intersect)

 Use: constrained minimization to solve for closest points

 Intersection-Based

 Also uses parametric representation

 Want: overlapping subset of interior of two objects

 General approach: equate objects, solve for parameters

 Use one of two kinds of solution methods

 Analytical (when feasible to solve exactly – e.g., OBBs)

 Numerical (approximate region of overlap)

 Solving for parameters in equation

 Harder to compute than distance-based; use only when needed

Computing & Information Sciences
Kansas State University

9

CIS 536/636

Introduction to Computer Graphics
Lecture 25 of 41

Review [5]:
Segment vs. Triangle – Solution

Adapted from slides  2004 – 2005 S. Rotenberg, UCSD
CSE169: Computer Animation, Winter 2005, http://bit.ly/f0ViAN

Computing & Information Sciences
Kansas State University

10

CIS 536/636

Introduction to Computer Graphics
Lecture 25 of 41

Review [6]:
Segment vs. Triangle – Point Test

Adapted from slides  2004 – 2005 S. Rotenberg, UCSD
CSE169: Computer Animation, Winter 2005, http://bit.ly/f0ViAN

Computing & Information Sciences
Kansas State University

11

CIS 536/636

Introduction to Computer Graphics
Lecture 25 of 41

Review [7]:
Faster Triangle – Point Containment

Adapted from slides  2004 – 2005 S. Rotenberg, UCSD
CSE169: Computer Animation, Winter 2005, http://bit.ly/f0ViAN

Computing & Information Sciences
Kansas State University

12

CIS 536/636

Introduction to Computer Graphics
Lecture 25 of 41

Review [8]:
Sphere-Swept Volumes & Distances

Adapted from 3D Game Engine Design © 2000 D. H. Eberly
See http://bit.ly/ieUq45 for second edition table of contents (TOC)

Capsule
Image © 2007 Remotion Wiki

http://bit.ly/huEzNW

Wikipedia: Sphere
http://bit.ly/9OWjQi

Image © 2008 ClipArtOf.com
http://bit.ly/eKhE2f

Lozenge
Image © 2011 Jasmin Studio Crafts

http://bit.ly/euEopw

Computing & Information Sciences
Kansas State University

13

CIS 536/636

Introduction to Computer Graphics
Lecture 25 of 41

Review [9]:
Method of Separating Axes

3D Game Engine Design © 2000 D. H. Eberly
See http://bit.ly/ieUq45 for second edition table of contents (TOC)

Computing & Information Sciences
Kansas State University

14

CIS 536/636

Introduction to Computer Graphics
Lecture 25 of 41

Steve Rotenberg
Visiting Lecturer

Graphics Lab

University of California – San Diego

CEO/Chief Scientist, PixelActive

http://graphics.ucsd.edu

Acknowledgements:
Collisions, BSP/Quadtrees/Octrees

Glenn G. Chappell
Associate Professor

Department of Computer Science

University of Alaska Fairbanks

http://www.cs.uaf.edu/~chappell/

Computing & Information Sciences
Kansas State University

15

CIS 536/636

Introduction to Computer Graphics
Lecture 25 of 41

 Scene Graphs

 Organized by how scene is constructed

 Nodes hold objects

 Constructive Solid Geometry (CSG) Trees

 Organized by how scene is constructed

 Leaves hold 3-D primitives

 Internal nodes hold set operations

 Binary Space Partitioning (BSP) Trees

 Organized by spatial relationships in scene

 Nodes hold facets (in 3-D, polygons)

 Quadtrees & Octrees

 Organized spatially

 Nodes represent regions in space

 Leaves hold objects

Data Structures for Scenes [1]:
Four Tree Representations

Adapted from slides  2004 G. G. Chappell, UAF
CS 481/681: Advanced Computer Graphics, Spring 2004, http://bit.ly/eivvVc

Computing & Information Sciences
Kansas State University

16

CIS 536/636

Introduction to Computer Graphics
Lecture 25 of 41

 We think of scene graphs as looking like the tree on the left.

 However, it is often convenient to implement them as shown on the
right.

 Implementation is a B-tree.

 Child pointers are first-logical-child and next-logical-sibling.

 Then traversing the logical tree is a simple pre-order traversal of the
physical tree. This is how we draw.

Logical Tree Physical Tree

Data Structures for Scenes [2]:
Implementing Scene Graphs

Adapted from slides  2004 G. G. Chappell, UAF
CS 481/681: Advanced Computer Graphics, Spring 2004, http://bit.ly/eivvVc

Computing & Information Sciences
Kansas State University

17

CIS 536/636

Introduction to Computer Graphics
Lecture 25 of 41

 In Constructive Solid Geometry (CSG), we construct a scene out of
primitives representing solid 3-D shapes. Existing objects are combined
using set operations (union, intersection, set difference).

 We represent a scene as a binary tree.
 Leaves hold primitives.

 Internal nodes, which always have two
children, hold set operations.

 Order of children matters!

 CSG trees are useful for things other than rendering.
 Intersection tests (collision detection, etc.) are not too hard. (Thus: ray tracing.)

 CSG does not integrate well with pipeline-based rendering, so we are not
covering it in depth right now.
 How about a project on CSG?

U

U U

∩ – sphere sphere

cube cone sphere cube

Data Structures for Scenes [3]:
Constructive Solid Geometry Trees

Adapted from slides  2004 G. G. Chappell, UAF
CS 481/681: Advanced Computer Graphics, Spring 2004, http://bit.ly/eivvVc

Computing & Information Sciences
Kansas State University

18

CIS 536/636

Introduction to Computer Graphics
Lecture 25 of 41

 BSP tree: very different way to represent a scene

 Nodes hold facets

 Structure of tree encodes spatial information about the scene

 Applications

 Visible Surface Determination (VSD) aka Hidden Surface
Removal

 Wikipedia: Visible Surface Determination, http://bit.ly/et2yNQ

 Related applications: portal rendering (http://bit.ly/fYO5T6), etc.

Binary Space Partitioning Trees [1]:
Idea

Adapted from slides  2004 G. G. Chappell, UAF
CS 481/681: Advanced Computer Graphics, Spring 2004, http://bit.ly/eivvVc

Computing & Information Sciences
Kansas State University

19

CIS 536/636

Introduction to Computer Graphics
Lecture 25 of 41

 BSP tree: type of binary tree
 Nodes can have 0, 1, or two children

 Order of child nodes matters, and if a node has just 1 child, it
matters whether this is its left or right child

 Each node holds a facet
 This may be only part of a facet from original scene

 When constructing a BSP tree, we may need to split facets

 Organization
 Each facet lies in a unique plane

 In 2-D, a unique line

 For each facet, we choose one side of its plane to be “outside”
Other direction: “inside”
 This can be the side the normal vector points toward

 Rule: For each node
 Its left descendant subtree holds only facets “inside” it

 Its right descendant subtree holds only facets “outside” it

Binary Space Partitioning Trees [2]:
Definition

Adapted from slides  2004 G. G. Chappell, UAF
CS 481/681: Advanced Computer Graphics, Spring 2004, http://bit.ly/eivvVc

Computing & Information Sciences
Kansas State University

20

CIS 536/636

Introduction to Computer Graphics
Lecture 25 of 41

 To construct a BSP tree, we need

 List of facets (with vertices)

 “Outside” direction for each

 Procedure

 Begin with empty tree

 Iterate through facets, adding new node to tree for each new facet

 First facet goes in root node.

 For each subsequent facet, descend through tree, going left or right
depending on whether facet lies inside or outside the facet stored in
relevant node

 If facet lies partially inside & partially outside, split it along plane [line]
of facet

 Facet becomes two “partial” facets

 Each inherits its “outside” direction from original facet

 Continue descending through tree with each partial facet separately

 Finally, (partial) facet is added to current tree as leaf

Binary Space Partitioning Trees [3]:
Construction

Adapted from slides  2004 G. G. Chappell, UAF
CS 481/681: Advanced Computer Graphics, Spring 2004, http://bit.ly/eivvVc

Computing & Information Sciences
Kansas State University

21

CIS 536/636

Introduction to Computer Graphics
Lecture 25 of 41

 Suppose we are given the following (2-D) facets and
“outside” directions:

 We iterate through the facets in numerical order
 Facet 1 becomes the root

 Facet 2 is inside of 1

 Thus, after facet 2, we have the following BSP tree:

 Facet 3 is partially inside facet 1 and partially outside.
 We split facet 3 along the line containing facet 1

 The resulting facets are 3a and 3b

 They inherit their “outside” directions from facet 3

 We place facets 3a and 3b separately
 Facet 3a is inside facet 1 and outside facet 2

 Facet 3b is outside facet 1

 The final BSP tree looks like this:

1

2

3

1

2

1

2 3b

3a

3b

3a

1

2

Binary Space Partitioning Trees [4]:
Simple Example

Adapted from slides  2004 G. G. Chappell, UAF
CS 481/681: Advanced Computer Graphics, Spring 2004, http://bit.ly/eivvVc

Computing & Information Sciences
Kansas State University

22

CIS 536/636

Introduction to Computer Graphics
Lecture 25 of 41

 Important use of BSP trees: provide back-to-front (or front-to-back)
ordering of facets in scene, from point of view of observer

 When we say “back-to-front” ordering, we mean that no facet
comes before something that appears directly behind it

 This still allows nearby facets to precede those farther away

 Key idea: All descendants on one side of facet can come before
facet, which can come before all descendants on other side

 Procedure

 For each facet, determine on which side of it observer lies

 Back-to-front ordering: in-order traversal of tree where subtree
opposite from observer comes before subtree on same side

3b

3a

BSP Tree Traversal [1]

Adapted from slides  2004 G. G. Chappell, UAF
CS 481/681: Advanced Computer Graphics, Spring 2004, http://bit.ly/eivvVc

2

1

Computing & Information Sciences
Kansas State University

23

CIS 536/636

Introduction to Computer Graphics
Lecture 25 of 41

1

 Procedure:
 For each facet, determine on which side of it the observer lies.

 Back-to-front ordering: Do an in-order traversal of the tree in which the
subtree opposite from the observer comes before the subtree on the same
side as the observer.

 Our observer is inside 1, outside 2, inside 3a, outside 3b.

 Resulting back-to-front ordering: 3b, 1, 2, 3a.

 Is this really back-to-front?

3b

3a

BSP Tree Traversal [2]

Adapted from slides  2004 G. G. Chappell, UAF
CS 481/681: Advanced Computer Graphics, Spring 2004, http://bit.ly/eivvVc

3b

3a
2 2

1

Computing & Information Sciences
Kansas State University

24

CIS 536/636

Introduction to Computer Graphics
Lecture 25 of 41

 BSP trees are primarily useful when a back-to-front
or front-to-back ordering is desired:
 For HSR

 For translucency via blending

 Since it can take some time to construct a BSP
tree, they are useful primarily for:
 Static scenes

 Some dynamic objects are acceptable

 BSP-tree techniques are generally a waste of effort
for small scenes. We use them on:
 Large, complex scenes

BSP Trees:
What Are They Good For?

Adapted from slides  2004 G. G. Chappell, UAF
CS 481/681: Advanced Computer Graphics, Spring 2004, http://bit.ly/eivvVc

Computing & Information Sciences
Kansas State University

25

CIS 536/636

Introduction to Computer Graphics
Lecture 25 of 41

 Order in which we iterate through the facets can matter a great deal

 Consider our simple example again

 If we change the ordering, we can obtain a simpler BSP tree

 If a scene is not going to change, and the BSP tree will be used
many times, then it may be worth a large amount of preprocessing
time to find the best possible BSP tree

1

2

3

1

2 3b

3a
1

2

3b

3a

2

1

32

1

3

numbers
reversed

BSP Tree Optimization

Adapted from slides  2004 G. G. Chappell, UAF
CS 481/681: Advanced Computer Graphics, Spring 2004, http://bit.ly/eivvVc

Computing & Information Sciences
Kansas State University

26

CIS 536/636

Introduction to Computer Graphics
Lecture 25 of 41

 When dealing with BSP trees, we need to determine inside or
outside many times. What exactly does this mean?
 A facet lies entirely on one side of a plane if all of its vertices lie

on that side.

 Vertices are points. The position of the observer is also a point.

 Thus, given a facet and a point, we need to be able to determine
on which side of the facet’s plane the point lies.

 We assume we know the normal vector of the facet (and that
it points toward the “outside”).
 If not, compute the normal using a cross product.
 If you are using vecpos.h, and three non-colinear vertices of

the facet are stored in pos variables p1, p2, p3, then you can
find the normal as follows.

vec n = cross(p2-p1, p3-p1).normalized();

Adapted from slides  2004 G. G. Chappell, UAF
CS 481/681: Advanced Computer Graphics, Spring 2004, http://bit.ly/eivvVc

BSP Trees:
Finding Inside/Outside [1]

Computing & Information Sciences
Kansas State University

27

CIS 536/636

Introduction to Computer Graphics
Lecture 25 of 41

 To determine on which side of a facet’s plane a point lies:
 Let N be the normal vector of the facet

 Let p be a point in the facet’s plane

 Maybe p is a vertex of the facet?

 Let z be the point we want to check

 Compute (z – p) · N

 If this is positive, then z is on the outside

 Negative: inside

 Zero: on the plane

 Using vecpos.h, and continuing from previous slide:

pos z = …; // point to check

if (dot(z-p1, n) >= 0.)

 // Outside or on plane

else

 // Inside

Adapted from slides  2004 G. G. Chappell, UAF
CS 481/681: Advanced Computer Graphics, Spring 2004, http://bit.ly/eivvVc

BSP Trees:
Finding Inside/Outside [2]

Computing & Information Sciences
Kansas State University

28

CIS 536/636

Introduction to Computer Graphics
Lecture 25 of 41

 May need to split facet when constructing BSP tree

 Example
 Suppose we have the facet shown below.

 If all vertices are (say) outside, then no split required

 But if A, E, and F are outside (+), and B, C, and D are inside
(–), then we must split into two facets

A B

C

DE

F

–+

+ –

+ –

BSP Trees:
Splitting Polygons [1]

Adapted from slides  2004 G. G. Chappell, UAF
CS 481/681: Advanced Computer Graphics, Spring 2004, http://bit.ly/eivvVc

Computing & Information Sciences
Kansas State University

29

CIS 536/636

Introduction to Computer Graphics
Lecture 25 of 41

S

T

 Where do we split?

 Since the expression (z – p) · N is positive at E and negative at D, it must
be zero somewhere on the line segment joining D and E. Call this point
S. This is one place where the facet splits.

 Let k1 be the value of (z – p) · N at D, and let k2 be the value at E.

 Then S = (1/(k2 – k1)) (k2D – k1E).

 Point T (shown in the diagram) is computed similarly.

 Using vecpos.h (continuing from earlier slides):

double k1 = dot(D-p1, n);

double k2 = dot(E-p1, n);

pos S = affinecomb(k2, D, -k1, E);

// Explanation of above line?
A B

C

DE

F

–+

+ –

+
–

BSP Trees:
Splitting Polygons [2]

Adapted from slides  2004 G. G. Chappell, UAF
CS 481/681: Advanced Computer Graphics, Spring 2004, http://bit.ly/eivvVc

Computing & Information Sciences
Kansas State University

30

CIS 536/636

Introduction to Computer Graphics
Lecture 25 of 41

 We were given vertices A, B, C, D, E, F in order

 We computed S and T

 S lies between D and E

 T lies between A and B

 We have A, (split at T), B, C, D, (split at S), E, F

 We form two polygons as follows:

 Start through vertex list

 When we get to split, use that vertex, and skip to other split

 Result: A, T, S, E, F

 Do the same with the part we skipped

 Result: B, C, D, S, T

A B

C

DE

F

BSP Trees:
Splitting Polygons [3]

T

S

Adapted from slides  2004 G. G. Chappell, UAF
CS 481/681: Advanced Computer Graphics, Spring 2004, http://bit.ly/eivvVc

Computing & Information Sciences
Kansas State University

31

CIS 536/636

Introduction to Computer Graphics
Lecture 25 of 41

 Idea of binary space partition: good general applicability

 Variations used in several different structures

 BSP trees (of course)

Split along planes containing facets

 Quadtrees & octrees (next)

Split along pre-defined planes.

 K-d trees (Lecture 28)

Split along planes parallel to coordinate axes, so as to split
up the objects nicely.

How about a project on K-d trees?

 Quadtrees used to partition 2-D space; octrees are for 3-D

 Two concepts are nearly identical

 Unfortunate that they are given different names

Quadtrees & Octrees [1]:
Background

Adapted from slides  2004 G. G. Chappell, UAF
CS 481/681: Advanced Computer Graphics, Spring 2004, http://bit.ly/eivvVc

Wikipedia, Octree
http://bit.ly/dVrthx

Computing & Information Sciences
Kansas State University

32

CIS 536/636

Introduction to Computer Graphics
Lecture 25 of 41

 In general

 Quadtree: tree in which each node has at most 4 children

 Octree: tree in which each node has at most 8 children

 Binary tree: tree in which each node has at most 2 children

 In practice, however, we use “quadtree” and “octree” to mean
something more specific

 Each node of the tree corresponds to a square (quadtree) or
cubical (octree) region

 If a node has children, think of its region being chopped into 4
(quadtree) or 8 (octree) equal subregions

 Child nodes correspond to these smaller subregions of parent’s
region

 Subdivide as little or as much as is necessary

 Each internal node has exactly 4 (quadtree) or 8 (octree) children

Adapted from slides  2004 G. G. Chappell, UAF
CS 481/681: Advanced Computer Graphics, Spring 2004, http://bit.ly/eivvVc

Quadtrees & Octrees [2]:
Definition

Computing & Information Sciences
Kansas State University

33

CIS 536/636

Introduction to Computer Graphics
Lecture 25 of 41

EDCB

 Root node of quadtree corresponds
to square region in space

 Generally, this encompasses
entire “region of interest”

 If desired, subdivide along lines
parallel to the coordinate axes,
forming four smaller identically
sized square regions
 Child nodes correspond to these

 Some or all of these children may
be subdivided further

 Octrees work in a similar fashion,
but in 3-D, with cubical regions
subdivided into 8 parts

A

GF H I

A

B C

D E
F G

H I

A

A

B C

D E

Quadtrees & Octrees [3]:
Example

EDCB

A

Adapted from slides  2004 G. G. Chappell, UAF
CS 481/681: Advanced Computer Graphics, Spring 2004, http://bit.ly/eivvVc

Computing & Information Sciences
Kansas State University

34

CIS 536/636

Introduction to Computer Graphics
Lecture 25 of 41

 Handling Observer-Object Interactions
 Subdivide the quadtree/octree until each leaf’s region intersects only a

small number of objects

 Each leaf holds a list of pointers to objects that intersect its region

 Find out which leaf the observer is in. We only need to test for
interactions with the objects pointed to by that leaf

 Inside/Outside Tests for Odd Shapes
 The root node represent a square containing the shape

 If node’s region lies entirely inside or entirely outside shape, do not
subdivide it

 Otherwise, do subdivide (unless a predefined depth limit has been
exceeded)

 Then the quadtree or octree contains information allowing us to check
quickly whether a given point is inside the shape

 Sparse Arrays of Spatially-Organized Data
 Store array data in the quadtree or octree

 Only subdivide if that region of space contains interesting data

 This is how an octree is used in the BLUIsculpt program

Adapted from slides  2004 G. G. Chappell, UAF
CS 481/681: Advanced Computer Graphics, Spring 2004, http://bit.ly/eivvVc

Quadtrees & Octrees [4]:
What Are They Good For?

Computing & Information Sciences
Kansas State University

35

CIS 536/636

Introduction to Computer Graphics
Lecture 25 of 41

Summary

 Reading for Last Class: §2.4.3, 8.1, Eberly 2e, GL handout

 Reading for Today: Chapter 6, Esp. §6.1, Eberly 2e

 Reading for Next Class: Chapter 7, §8.4, Eberly 2e

 Last Time: Collision Detection Part 1 of 2

 Static vs. dynamic, testing vs. finding, distance vs. intersection

 Triangle point containment test

 Lots of intersections: spheres, capsules, lozenges

 Method of separating axes

 Today: Adaptive Spatial Partitioning

 Visible Surface Determination (VSD) revisited

 Constructive Solid Geometry (CSG) trees

 Binary Space Partitioning (BSP) trees

 Quadtrees: adaptive 2-D (planar) subdivision

 Octrees: adaptive 3-D (spatial) subdivision

 Coming Soon: Volume Graphics & Voxels

Computing & Information Sciences
Kansas State University

36

CIS 536/636

Introduction to Computer Graphics
Lecture 25 of 41

Terminology

 Collision Detection

 Static vs. dynamic objects

 Queries: test-intersection vs. find-intersection

 Parametric methods: distance-based, intersection-based

 Bounding Objects

 Axis-aligned bounding box

 Oriented bounding box: can point in arbitrary direction

 Sphere

 Capsule

 Lozenge

 Constructive Solid Geometry Tree: Regularized Boolean Set Operators

 Adaptive Spatial Partitioning: Calculating Intersection, Visibility

 Binary Space Partitioning tree – 2-way decision tree/surface

 Quadtree – 4-way for 2-D

 Octree – 8-way for 3-D

