
Computing & Information Sciences
Kansas State University

CIS 536/636

Introduction to Computer Graphics
Lecture 26 of 41

William H. Hsu

Department of Computing and Information Sciences, KSU

KSOL course pages: http://bit.ly/hGvXlH / http://bit.ly/eVizrE

Public mirror web site: http://www.kddresearch.org/Courses/CIS636

Instructor home page: http://www.cis.ksu.edu/~bhsu

Readings:

Today: Chapter 7, §8.4, Eberly 2e – see http://bit.ly/ieUq45

Next class: §8.3 – 8.4, 4.2, 5.0, 5.6, 9.1, Eberly 2e

Lighthouse 3-D picking tutorial by A. R. Fernandes: http://bit.ly/dZud4j

Picking
Videos 5: More CGA

Lecture 26 of 41

Computing & Information Sciences
Kansas State University

2

CIS 536/636

Introduction to Computer Graphics
Lecture 26 of 41

 Reading for Last Class: Chapter 6, Esp. §6.1, Eberly 2e

 Reading for Today: Chapter 7, §8.4, Eberly 2e

 Reading for Next Class: §8.3 – 8.4, 4.2, 5.0, 5.6, 9.1, Eberly 2e

 Last Time: Adaptive Spatial Partitioning

 Visible Surface Determination (VSD) revisited

 Constructive Solid Geometry (CSG), Binary Space Partitioning (BSP)

 Quadtrees (2-D) & octrees (3-D)

 Today: Picking

 OpenGL modes: rendering (default), feedback, selection

 Name stack

 Hit records

 Rendering in selection mode

 Using selection buffer

 Color coding to keep track of what has been picked, what to do

 Next Class: Interaction Handling

Lecture Outline

Computing & Information Sciences
Kansas State University

3

CIS 536/636

Introduction to Computer Graphics
Lecture 26 of 41

Where We Are

Computing & Information Sciences
Kansas State University

4

CIS 536/636

Introduction to Computer Graphics
Lecture 26 of 41

Steve Rotenberg
Visiting Lecturer

Graphics Lab

University of California – San Diego

CEO/Chief Scientist, PixelActive

http://graphics.ucsd.edu

Acknowledgements:
Collisions, Data Structures, Picking

Glenn G. Chappell
Associate Professor

Department of Computer Science

University of Alaska Fairbanks

http://www.cs.uaf.edu/~chappell/

Edward Angel
Professor Emeritus of Computer Science

Founding Director, ARTS Lab

University of New Mexico

http://www.cs.unm.edu/~angel/

Computing & Information Sciences
Kansas State University

5

CIS 536/636

Introduction to Computer Graphics
Lecture 26 of 41

 Scene Graphs

 Organized by how scene is constructed

 Nodes hold objects

 Constructive Solid Geometry (CSG) Trees

 Organized by how scene is constructed

 Leaves hold 3-D primitives

 Internal nodes hold set operations

 Binary Space Partitioning (BSP) Trees

 Organized by spatial relationships in scene

 Nodes hold facets (in 3-D, polygons)

 Quadtrees & Octrees

 Organized spatially

 Nodes represent regions in space

 Leaves hold objects

Review [1]:
Tree Representations for Scenes

Adapted from slides 2004 G. G. Chappell, UAF
CS 481/681: Advanced Computer Graphics, Spring 2004, http://bit.ly/eivvVc

Computing & Information Sciences
Kansas State University

6

CIS 536/636

Introduction to Computer Graphics
Lecture 26 of 41

 We think of scene graphs as looking like the tree on the left.

 However, it is often convenient to implement them as shown on the
right.

 Implementation is a B-tree.

 Child pointers are first-logical-child and next-logical-sibling.

 Then traversing the logical tree is a simple pre-order traversal of the
physical tree. This is how we draw.

Logical Tree Physical Tree

Review [2]:
Scene Graphs as B-Trees

Adapted from slides 2004 G. G. Chappell, UAF
CS 481/681: Advanced Computer Graphics, Spring 2004, http://bit.ly/eivvVc

Computing & Information Sciences
Kansas State University

7

CIS 536/636

Introduction to Computer Graphics
Lecture 26 of 41

 BSP tree: type of binary tree
 Nodes can have 0, 1, or two children

 Order of child nodes matters, and if a node has just 1 child, it
matters whether this is its left or right child

 Each node holds a facet
 This may be only part of a facet from original scene

 When constructing a BSP tree, we may need to split facets

 Organization
 Each facet lies in a unique plane

 In 2-D, a unique line

 For each facet, we choose one side of its plane to be “outside”
Other direction: “inside”
 This can be the side the normal vector points toward

 Rule: For each node
 Its left descendant subtree holds only facets “inside” it

 Its right descendant subtree holds only facets “outside” it

Review [3]:
Binary Space Partitioning (BSP) Tree

Adapted from slides 2004 G. G. Chappell, UAF
CS 481/681: Advanced Computer Graphics, Spring 2004, http://bit.ly/eivvVc

Computing & Information Sciences
Kansas State University

8

CIS 536/636

Introduction to Computer Graphics
Lecture 26 of 41

 Suppose we are given the following (2-D) facets and
“outside” directions:

 We iterate through the facets in numerical order
 Facet 1 becomes the root

 Facet 2 is inside of 1

 Thus, after facet 2, we have the following BSP tree:

 Facet 3 is partially inside facet 1 and partially outside.
 We split facet 3 along the line containing facet 1

 The resulting facets are 3a and 3b

 They inherit their “outside” directions from facet 3

 We place facets 3a and 3b separately
 Facet 3a is inside facet 1 and outside facet 2

 Facet 3b is outside facet 1

 The final BSP tree looks like this:

1

2

3

1

2

1

2 3b

3a

3b

3a

1

2

Review [4]:
BSP Tree Construction Example

Adapted from slides 2004 G. G. Chappell, UAF
CS 481/681: Advanced Computer Graphics, Spring 2004, http://bit.ly/eivvVc

Computing & Information Sciences
Kansas State University

9

CIS 536/636

Introduction to Computer Graphics
Lecture 26 of 41

1

 Procedure:
 For each facet, determine on which side of it the observer lies.

 Back-to-front ordering: Do an in-order traversal of the tree in which the
subtree opposite from the observer comes before the subtree on the same
side as the observer.

 Our observer is inside 1, outside 2, inside 3a, inside 3b.

 Resulting back-to-front ordering: 3b, 1, 2, 3a.

 Is this really back-to-front?

3b

3a

Review [5]:
BSP Tree Traversal Example

Adapted from slides 2004 G. G. Chappell, UAF
CS 481/681: Advanced Computer Graphics, Spring 2004, http://bit.ly/eivvVc

3b

3a
2 2

1

Computing & Information Sciences
Kansas State University

10

CIS 536/636

Introduction to Computer Graphics
Lecture 26 of 41

 Order in which we iterate through the facets can matter a great deal

 Consider our simple example again

 If we change the ordering, we can obtain a simpler BSP tree

 If a scene is not going to change, and the BSP tree will be used
many times, then it may be worth a large amount of preprocessing
time to find the best possible BSP tree

1

2

3

1

2 3b

3a
1

2

3b

3a

2

1

32

1

3

numbers
reversed

Review [6]:
BSP Tree Optimization Example

Adapted from slides 2004 G. G. Chappell, UAF
CS 481/681: Advanced Computer Graphics, Spring 2004, http://bit.ly/eivvVc

Computing & Information Sciences
Kansas State University

11

CIS 536/636

Introduction to Computer Graphics
Lecture 26 of 41

 In general

 Quadtree: tree in which each node has at most 4 children

 Octree: tree in which each node has at most 8 children

 Binary tree: tree in which each node has at most 2 children

 In practice, however, we use “quadtree” and “octree” to mean
something more specific

 Each node of the tree corresponds to a square (quadtree) or
cubical (octree) region

 If a node has children, think of its region being chopped into 4
(quadtree) or 8 (octree) equal subregions

 Child nodes correspond to these smaller subregions of parent’s
region

 Subdivide as little or as much as is necessary

 Each internal node has exactly 4 (quadtree) or 8 (octree) children

Adapted from slides 2004 G. G. Chappell, UAF
CS 481/681: Advanced Computer Graphics, Spring 2004, http://bit.ly/eivvVc

Review [7]:
Quadtrees & Octrees – Definition

Computing & Information Sciences
Kansas State University

12

CIS 536/636

Introduction to Computer Graphics
Lecture 26 of 41

EDCB

 Root node of quadtree corresponds
to square region in space

 Generally, this encompasses
entire “region of interest”

 If desired, subdivide along lines
parallel to the coordinate axes,
forming four smaller identically
sized square regions
 Child nodes correspond to these

 Some or all of these children may
be subdivided further

 Octrees work in a similar fashion,
but in 3-D, with cubical regions
subdivided into 8 parts

A

GF H I

A

B C

D E
F G

H I

A

A

B C

D E

Review [8]:
Quadtree Construction Example

EDCB

A

Adapted from slides 2004 G. G. Chappell, UAF
CS 481/681: Advanced Computer Graphics, Spring 2004, http://bit.ly/eivvVc

Computing & Information Sciences
Kansas State University

13

CIS 536/636

Introduction to Computer Graphics
Lecture 26 of 41

Interactive CG Programming:
Objectives

Adapted from slides 2005-2008 E. Angel, University of New Mexico

Interactive Computer Graphics, 4th & 5th edition slides, http://bit.ly/gvxfPV

 More Sophisticated Interactive Programs

 Modes of interaction

 Tools for building

 Techniques

 Picking: select objects from display (three methods covered)

 Rubberbanding: interactive drawing of lines, rectangles

 Display lists: retained mode graphics

Computing & Information Sciences
Kansas State University

14

CIS 536/636

Introduction to Computer Graphics
Lecture 26 of 41

Picking [1]:
Definition & Challenges

Adapted from slides 2005-2008 E. Angel, University of New Mexico
Interactive Computer Graphics, 4th & 5th edition slides, http://bit.ly/gvxfPV

 Identify User-Defined Object on Display

 In Principle, Should Be Simple

 Mouse gives position

 We should be able to determine object-position correspondence

 Practical Difficulties

 Pipeline architecture: feed forward

 Hard to map screen back to world

 Complicated by screen being 2-D, world 3-D

 How close do we have to come to object to say we selected it?

Computing & Information Sciences
Kansas State University

15

CIS 536/636

Introduction to Computer Graphics
Lecture 26 of 41

Picking [2]:
Three Approaches

Adapted from slides 2005-2008 E. Angel, University of New Mexico

Interactive Computer Graphics, 4th & 5th edition slides, http://bit.ly/gvxfPV

 1. Hit List

 Most general approach

 Difficult to implement

 2. Buffered Object IDs

 Write to back buffer or some other buffer

 Store object IDs as objects rendered

 3. Rectangular Maps

 Easy to implement for many applications

 e.g., simple paint programs

Computing & Information Sciences
Kansas State University

16

CIS 536/636

Introduction to Computer Graphics
Lecture 26 of 41

Rendering Modes

Adapted from slides 2005-2008 E. Angel, University of New Mexico
Interactive Computer Graphics, 4th & 5th edition slides, http://bit.ly/gvxfPV

 OpenGL: Can Render in One of Three Modes
 GL_RENDER

 Normal rendering to frame buffer

 Default

 GL_FEEDBACK

 Provides list of primitives rendered

 No output to frame buffer

 GL_SELECTION

 Each primitive in view volume generates hit record

 Record placed in name stack

 Stack can be examined later

 Mode Selected by glRenderMode(mode)

Computing & Information Sciences
Kansas State University

17

CIS 536/636

Introduction to Computer Graphics
Lecture 26 of 41

Selection Mode Functions

Adapted from slides 2005-2008 E. Angel, University of New Mexico

Interactive Computer Graphics, 4th & 5th edition slides, http://bit.ly/gvxfPV

 glSelectBuffer(): Specifies Name Buffer aka Name Stack

 glInitNames(): Initializes Name Buffer

 glPushName(id): Push ID on Name Buffer

 glPopName(): Pop Top of Name Buffer

 glLoadName(id): Replace Top Name on Buffer

 id set by application program to identify objects

Computing & Information Sciences
Kansas State University

18

CIS 536/636

Introduction to Computer Graphics
Lecture 26 of 41

OpenGL Functions for Manipulating
Name Stack

 void glInitNames(void);

 Creates empty name stack

 Must call to initialize stack prior to pushing names

 void glPushName(GLuint name);

 Adds name to top of stack

 Maximum dimension: implementation-dependent

 Must contain at least 64 names

 Can query state variable GL_NAME_STACK_DEPTH

 Pushing too many values causes GL_STACK_OVERFLOW

 void glPopName();

 Removes name from top of stack

 Popping value from empty stack causes GL_STACK_UNDERFLOW

 void glLoadName(GLunit name);

 Replaces top of stack with name

 Same as calling glPopName(); glPushName(name);

Adapted from tutorial 2001-2009 A. R. Fernandes
Lighthouse 3D, http://www.lighthouse3d.com

Computing & Information Sciences
Kansas State University

19

CIS 536/636

Introduction to Computer Graphics
Lecture 26 of 41

Same as

glLoadName
(HEAD);

Rendering in Selection Mode:
Example

 #define BODY 1

 #define HEAD 2

…

 void renderInSelectionMode()

 {

glInitNames(); // 1. create empty name stack (NS)

glPushName(BODY); // 2. push first name

 // 3. hit record (HR) for each primitive intersecting view volume

 drawBody();

 // 4. empty stack & save HRs to selection buffer (SB)

 glPopName();

glPushName(HEAD); // 5. new name; no HR, same SB

drawHead(); // 6. new HR for each primitive in VV

drawEyes(); // 7. update HR with new max/min depths

glPopName(); // 8. empty NS; write HRs to SB

drawGround(); // 9. new HRs; empty NS, depth update only

 }

Adapted from tutorial 2001-2009 A. R. Fernandes
Lighthouse 3D, http://www.lighthouse3d.com

Computing & Information Sciences
Kansas State University

20

CIS 536/636

Introduction to Computer Graphics
Lecture 26 of 41

Using Selection Mode

Adapted from slides 2005-2008 E. Angel, University of New Mexico
Interactive Computer Graphics, 4th & 5th edition slides, http://bit.ly/gvxfPV

 Initialize Name Buffer aka Name Stack

 Enter Selection Mode (using Mouse)

 Render Scene with User-Defined Identifiers

 Accumulates hits

 Create new hit record iff needed (otherwise update depth)

 Reenter Normal Render Mode

 Returns number of hits

 Objects rendered on small area of screen around cursor

 Examine contents of name buffer

 Hit records written to selection buffer

 Include information about each hit

 ID

 Depth

Computing & Information Sciences
Kansas State University

21

CIS 536/636

Introduction to Computer Graphics
Lecture 26 of 41

Selection Mode:
Redefining View Volume

Adapted from slides 2005-2008 E. Angel, University of New Mexico

Interactive Computer Graphics, 4th & 5th edition slides, http://bit.ly/gvxfPV

 Caveat

 As just described, selection mode won ’t work for picking – why?

 Because every primitive in view volume will generate a hit

 Need to change viewing parameters

 Only those primitives near cursor are in altered view volume

 Use gluPickMatrix (see Angel 5e or 6e for details)

 New Procedure (cf. Fernandes Tutorial)

 1. Get the window coordinates of the mouse

 2. Enter selection mode

 3. Redefine viewing volume so that only small area of window
around cursor is rendered

 4. Render scene, either using all primitives or only those relevant
to picking operation

 5. Exit selection mode and identify objects which were rendered
on that small part of screen

Computing & Information Sciences
Kansas State University

22

CIS 536/636

Introduction to Computer Graphics
Lecture 26 of 41

Graphical User Interface Design:
Using Regions of Screen

Adapted from slides 2005-2008 E. Angel, University of New Mexico
Interactive Computer Graphics, 4th & 5th edition slides, http://bit.ly/gvxfPV

 Rectangular Arrangement

 Used by many applications

 e.g., paint & computer-aided design (CAD) programs

 Advantages

 Compared to: selection mode picking

 Easier to look at cursor position, determine part of window it is in

 Common Graphical User Interface (GUI) Design

 Xerox Palo Alto Research Center (PARC) – http://bit.ly/dSAr1O

 Human Interface Guidelines – Wikipedia: http://bit.ly/dO6I5F

Tools

Drawing Area Menus

Computing & Information Sciences
Kansas State University

23

CIS 536/636

Introduction to Computer Graphics
Lecture 26 of 41

Picking:
Using Second Buffer & Color-Coding

Adapted from slides 2005-2008 E. Angel, University of New Mexico

Interactive Computer Graphics, 4th & 5th edition slides, http://bit.ly/gvxfPV

 Color Coding

 For small number of objects

 Can assign a unique color to each object

 Often assigned in color index mode

 Using Color Coding for Picking

 Render scene to color buffer other than front buffer

 Results of rendering not visible

 Get mouse position

 Use glReadPixels() to read color in buffer written at position of

cursor

 Returned color gives ID of object

Computing & Information Sciences
Kansas State University

24

CIS 536/636

Introduction to Computer Graphics
Lecture 26 of 41

Writing Modes

Adapted from slides 2005-2008 E. Angel, University of New Mexico
Interactive Computer Graphics, 4th & 5th edition slides, http://bit.ly/gvxfPV

frame buffer

application

‘

bitwise logical operation

Computing & Information Sciences
Kansas State University

25

CIS 536/636

Introduction to Computer Graphics
Lecture 26 of 41

Exclusive OR (XOR) Write

Adapted from slides 2005-2008 E. Angel, University of New Mexico

Interactive Computer Graphics, 4th & 5th edition slides, http://bit.ly/gvxfPV

 Usual (Default) Mode
 Source replaces destination: d’ = s

 Cannot write temporary lines this way – why?

 Cannot recover what was “under” line in fast, simple way

 Consequence: cannot deselect (toggle select) easily

 Solution: Exclusive OR Mode (XOR)
 d’ = d s

 Suppose we use XOR mode to scan convert line

 Can draw it again to erase it!
10PP

Visual Basic Explorer © 2002 S. Christensen & B. Abreu
http://bit.ly/gXstAM

Computing & Information Sciences
Kansas State University

26

CIS 536/636

Introduction to Computer Graphics
Lecture 26 of 41

Rubberbanding

Adapted from slides 2005-2008 E. Angel, University of New Mexico
Interactive Computer Graphics, 4th & 5th edition slides, http://bit.ly/gvxfPV

 Switch to XOR Write Mode

 Draw Object
 Line

 Can use first mouse click to fix one endpoint

 Then use motion callback to continuously update second endpoint

 Each time mouse is moved, redraw line which erases it

 Then draw line from fixed first position to new second position

 At end, switch back to normal drawing mode and draw line

 Works for other objects

 Rectangles

 Circles
“Rubber-Banding with OpenGL ”
© 2009 J. Xu
The Code Project

http://bit.ly/hGvFkB

Computing & Information Sciences
Kansas State University

27

CIS 536/636

Introduction to Computer Graphics
Lecture 26 of 41

New line drawn

with XOR

Draw line with mouse

in XOR mode

Rubberband Lines:
Example

Adapted from slides 2005-2008 E. Angel, University of New Mexico

Interactive Computer Graphics, 4th & 5th edition slides, http://bit.ly/gvxfPV

Initial display

first point

second point

Mouse moved to

new position

Original line redrawn

with XOR

Computing & Information Sciences
Kansas State University

28

CIS 536/636

Introduction to Computer Graphics
Lecture 26 of 41

XOR in OpenGL

Adapted from slides 2005-2008 E. Angel, University of New Mexico
Interactive Computer Graphics, 4th & 5th edition slides, http://bit.ly/gvxfPV

 Logical Operations between Two Bits X, Y

 2 bits 22 = 4 values

 4 values 24 = 16 pairwise functions

 X, Y, X , X Y XY, X Y X + Y, X Y

 etc.

 In general: functions for b bits

 All 16 Operations Supported by OpenGL
 Must enable logical operations: glEnable(GL_COLOR_LOGIC_OP)

 Choose logical operation

 glLogicOp(GL_XOR)

 glLogicOp(GL_COPY) – default

X YXYX

b22

Computing & Information Sciences
Kansas State University

29

CIS 536/636

Introduction to Computer Graphics
Lecture 26 of 41

Immediate versus Retained Modes

Adapted from slides 2005-2008 E. Angel, University of New Mexico

Interactive Computer Graphics, 4th & 5th edition slides, http://bit.ly/gvxfPV

 OpenGL Standard: Immediate Mode Graphics

 OpenGL programs use immediate mode by default

 Once object is rendered, there is no memory of it

 In order to redisplay it, must re-execute its rendering code

 Can be especially slow if objects

 are complex

 must be sent over network

 Alternative: Retained Mode Graphics

 Accomplished in OpenGL via display lists, vertex buffer objects

 Define objects

 Keep them in some form that is easy to redisplay

Computing & Information Sciences
Kansas State University

30

CIS 536/636

Introduction to Computer Graphics
Lecture 26 of 41

Display Lists in OpenGL

Adapted from slides 2005-2008 E. Angel, University of New Mexico
Interactive Computer Graphics, 4th & 5th edition slides, http://bit.ly/gvxfPV

 Conceptually Similar to Graphics Files

 Compare: Flexible Vertex Format (FVF) definitions in Direct3D

 Also compare: mesh formats for OpenGL itself, other CG libraries

 Requirements

 Define each display list (DL)

 Name

 Create

 Populate: add contents by

 reading in file

 generating mesh automatically

 Close

 Client-Server Environment

 DL placed on server

 Can redisplay without sending primitives over network each time

Computing & Information Sciences
Kansas State University

31

CIS 536/636

Introduction to Computer Graphics
Lecture 26 of 41

Display List Functions

Adapted from slides 2005-2008 E. Angel, University of New Mexico

Interactive Computer Graphics, 4th & 5th edition slides, http://bit.ly/gvxfPV

 Creating Display List
 GLuint id;

 void init()

 {

 id = glGenLists(1);

 glNewList(id, GL_COMPILE);

 /* other OpenGL routines */

 glEndList();

 }

 Calling Created List
 void display()

 {

 glCallList(id);

 }

 Documentation: http://bit.ly/gJYana

 Tutorial © 2005 S. H. Ahn: http://bit.ly/eN3R8c

Computing & Information Sciences
Kansas State University

32

CIS 536/636

Introduction to Computer Graphics
Lecture 26 of 41

Display Lists & State

Adapted from slides 2005-2008 E. Angel, University of New Mexico
Interactive Computer Graphics, 4th & 5th edition slides, http://bit.ly/gvxfPV

 Using Display Lists as Macros (http://bit.ly/hPPBVo)

 DLs are syntactic sugar (text abbreviations) for

 Rendering commands (especially mesh traversal)

 Parameters

 Now deprecated! Use vertex buffer objects (VBOs) instead

 Side Effects: State Changes within DLs

 Most OpenGL functions can be put in display lists

 State changes made inside DL persist after DL is executed

 Avoiding Unexpected Results
 Use glPushAttrib and glPushMatrix upon entering DL

 Use glPopAttrib and glPopMatrix before exiting

Computing & Information Sciences
Kansas State University

33

CIS 536/636

Introduction to Computer Graphics
Lecture 26 of 41

Hierarchy & Display Lists

Adapted from slides 2005-2008 E. Angel, University of New Mexico

Interactive Computer Graphics, 4th & 5th edition slides, http://bit.ly/gvxfPV

 Consider: Model of Car

 Similar hierarchy to that for general scene graphs

 Describes relative modelview transformation (MVT)

 translation

 rotation (relative Euler angle or quaternion)

 Need to Create Display Lists

 Chassis

 Wheel

glCallList(CHASSIS);
glTranslatef(…);
glCallList(WHEEL);
glTranslatef(…);
glCallList(WHEEL);
…
glEndList();NewList(CAR, GL_COMPILE);

Computing & Information Sciences
Kansas State University

34

CIS 536/636

Introduction to Computer Graphics
Lecture 26 of 41

Picking in Action

FarmVille 2009 – 2011 Zynga, Inc.
http://bit.ly/f1Ct3C

Computing & Information Sciences
Kansas State University

35

CIS 536/636

Introduction to Computer Graphics
Lecture 26 of 41

Summary

 Reading for Last Class: §2.4.3, 8.1, Eberly 2e, GL handout

 Reading for Today: Chapter 6, Esp. §6.1, Eberly 2e

 Reading for Next Class: Chapter 7, §8.4, Eberly 2e

 Last Time: Adaptive Spatial Partitioning

 Trees: VSD, CSG, BSP

 Spatial partitioning (SP)

 Examples: BSP trees, quad/octrees (adaptive); voxels (uniform)

 Scenes: spatial partitioning vs. boundary representation (B-rep)

 Today: Picking

 OpenGL modes: rendering (default), feedback, selection

 Name stack

 Hit records

 Rendering in selection mode using selection buffer

 Color coding of pickable objects

 Next Class: Interaction Handling

Computing & Information Sciences
Kansas State University

36

CIS 536/636

Introduction to Computer Graphics
Lecture 26 of 41

Terminology

 Spatial Partitioning (SP): Calculating Intersection, Visibility

 Binary Space Partitioning tree – 2-way decision tree/surface

 Quadtree – 4-way for 2-D

 Octree – 8-way for 3-D

 Volume Graphics aka Volumetric Representation: Uniform SP (Voxels)

 Boundary Representation: Describing Enclosing Surface

 Meshes

 Implicit surfaces

 Sweeps (e.g., sphere-swept volumes: sphere, capsule, lozenge)

 Picking: Allowing User to Select Objects in Scene

 Selection mode: mode when cursor (“mouse”) is active

 Name stack: last in, first out data structure holding object names

 Hit records: ID, depth info for intersections with view volume

 Selection buffer: holds hits, depth (compare: frame/z-buffer)

 Color coding: using color to represent pickable object ID

