
Computing & Information Sciences
Kansas State University

CIS 536/636

Introduction to Computer Graphics
Lecture 26 of 41

William H. Hsu

Department of Computing and Information Sciences, KSU

KSOL course pages: http://bit.ly/hGvXlH / http://bit.ly/eVizrE

Public mirror web site: http://www.kddresearch.org/Courses/CIS636

Instructor home page: http://www.cis.ksu.edu/~bhsu

Readings:

Today: Chapter 7, §8.4, Eberly 2e – see http://bit.ly/ieUq45

Next class: §8.3 – 8.4, 4.2, 5.0, 5.6, 9.1, Eberly 2e

Lighthouse 3-D picking tutorial by A. R. Fernandes: http://bit.ly/dZud4j

Picking
Videos 5: More CGA

Lecture 26 of 41

Computing & Information Sciences
Kansas State University

2

CIS 536/636

Introduction to Computer Graphics
Lecture 26 of 41

 Reading for Last Class: Chapter 6, Esp. §6.1, Eberly 2e

 Reading for Today: Chapter 7, §8.4, Eberly 2e

 Reading for Next Class: §8.3 – 8.4, 4.2, 5.0, 5.6, 9.1, Eberly 2e

 Last Time: Adaptive Spatial Partitioning

 Visible Surface Determination (VSD) revisited

 Constructive Solid Geometry (CSG), Binary Space Partitioning (BSP)

 Quadtrees (2-D) & octrees (3-D)

 Today: Picking

 OpenGL modes: rendering (default), feedback, selection

 Name stack

 Hit records

 Rendering in selection mode

 Using selection buffer

 Color coding to keep track of what has been picked, what to do

 Next Class: Interaction Handling

Lecture Outline

Computing & Information Sciences
Kansas State University

3

CIS 536/636

Introduction to Computer Graphics
Lecture 26 of 41

Where We Are

Computing & Information Sciences
Kansas State University

4

CIS 536/636

Introduction to Computer Graphics
Lecture 26 of 41

Steve Rotenberg
Visiting Lecturer

Graphics Lab

University of California – San Diego

CEO/Chief Scientist, PixelActive

http://graphics.ucsd.edu

Acknowledgements:
Collisions, Data Structures, Picking

Glenn G. Chappell
Associate Professor

Department of Computer Science

University of Alaska Fairbanks

http://www.cs.uaf.edu/~chappell/

Edward Angel
Professor Emeritus of Computer Science

Founding Director, ARTS Lab

University of New Mexico

http://www.cs.unm.edu/~angel/

Computing & Information Sciences
Kansas State University

5

CIS 536/636

Introduction to Computer Graphics
Lecture 26 of 41

 Scene Graphs

 Organized by how scene is constructed

 Nodes hold objects

 Constructive Solid Geometry (CSG) Trees

 Organized by how scene is constructed

 Leaves hold 3-D primitives

 Internal nodes hold set operations

 Binary Space Partitioning (BSP) Trees

 Organized by spatial relationships in scene

 Nodes hold facets (in 3-D, polygons)

 Quadtrees & Octrees

 Organized spatially

 Nodes represent regions in space

 Leaves hold objects

Review [1]:
Tree Representations for Scenes

Adapted from slides  2004 G. G. Chappell, UAF
CS 481/681: Advanced Computer Graphics, Spring 2004, http://bit.ly/eivvVc

Computing & Information Sciences
Kansas State University

6

CIS 536/636

Introduction to Computer Graphics
Lecture 26 of 41

 We think of scene graphs as looking like the tree on the left.

 However, it is often convenient to implement them as shown on the
right.

 Implementation is a B-tree.

 Child pointers are first-logical-child and next-logical-sibling.

 Then traversing the logical tree is a simple pre-order traversal of the
physical tree. This is how we draw.

Logical Tree Physical Tree

Review [2]:
Scene Graphs as B-Trees

Adapted from slides  2004 G. G. Chappell, UAF
CS 481/681: Advanced Computer Graphics, Spring 2004, http://bit.ly/eivvVc

Computing & Information Sciences
Kansas State University

7

CIS 536/636

Introduction to Computer Graphics
Lecture 26 of 41

 BSP tree: type of binary tree
 Nodes can have 0, 1, or two children

 Order of child nodes matters, and if a node has just 1 child, it
matters whether this is its left or right child

 Each node holds a facet
 This may be only part of a facet from original scene

 When constructing a BSP tree, we may need to split facets

 Organization
 Each facet lies in a unique plane

 In 2-D, a unique line

 For each facet, we choose one side of its plane to be “outside”
Other direction: “inside”
 This can be the side the normal vector points toward

 Rule: For each node
 Its left descendant subtree holds only facets “inside” it

 Its right descendant subtree holds only facets “outside” it

Review [3]:
Binary Space Partitioning (BSP) Tree

Adapted from slides  2004 G. G. Chappell, UAF
CS 481/681: Advanced Computer Graphics, Spring 2004, http://bit.ly/eivvVc

Computing & Information Sciences
Kansas State University

8

CIS 536/636

Introduction to Computer Graphics
Lecture 26 of 41

 Suppose we are given the following (2-D) facets and
“outside” directions:

 We iterate through the facets in numerical order
 Facet 1 becomes the root

 Facet 2 is inside of 1

 Thus, after facet 2, we have the following BSP tree:

 Facet 3 is partially inside facet 1 and partially outside.
 We split facet 3 along the line containing facet 1

 The resulting facets are 3a and 3b

 They inherit their “outside” directions from facet 3

 We place facets 3a and 3b separately
 Facet 3a is inside facet 1 and outside facet 2

 Facet 3b is outside facet 1

 The final BSP tree looks like this:

1

2

3

1

2

1

2 3b

3a

3b

3a

1

2

Review [4]:
BSP Tree Construction Example

Adapted from slides  2004 G. G. Chappell, UAF
CS 481/681: Advanced Computer Graphics, Spring 2004, http://bit.ly/eivvVc

Computing & Information Sciences
Kansas State University

9

CIS 536/636

Introduction to Computer Graphics
Lecture 26 of 41

1

 Procedure:
 For each facet, determine on which side of it the observer lies.

 Back-to-front ordering: Do an in-order traversal of the tree in which the
subtree opposite from the observer comes before the subtree on the same
side as the observer.

 Our observer is inside 1, outside 2, inside 3a, inside 3b.

 Resulting back-to-front ordering: 3b, 1, 2, 3a.

 Is this really back-to-front?

3b

3a

Review [5]:
BSP Tree Traversal Example

Adapted from slides  2004 G. G. Chappell, UAF
CS 481/681: Advanced Computer Graphics, Spring 2004, http://bit.ly/eivvVc

3b

3a
2 2

1

Computing & Information Sciences
Kansas State University

10

CIS 536/636

Introduction to Computer Graphics
Lecture 26 of 41

 Order in which we iterate through the facets can matter a great deal

 Consider our simple example again

 If we change the ordering, we can obtain a simpler BSP tree

 If a scene is not going to change, and the BSP tree will be used
many times, then it may be worth a large amount of preprocessing
time to find the best possible BSP tree

1

2

3

1

2 3b

3a
1

2

3b

3a

2

1

32

1

3

numbers
reversed

Review [6]:
BSP Tree Optimization Example

Adapted from slides  2004 G. G. Chappell, UAF
CS 481/681: Advanced Computer Graphics, Spring 2004, http://bit.ly/eivvVc

Computing & Information Sciences
Kansas State University

11

CIS 536/636

Introduction to Computer Graphics
Lecture 26 of 41

 In general

 Quadtree: tree in which each node has at most 4 children

 Octree: tree in which each node has at most 8 children

 Binary tree: tree in which each node has at most 2 children

 In practice, however, we use “quadtree” and “octree” to mean
something more specific

 Each node of the tree corresponds to a square (quadtree) or
cubical (octree) region

 If a node has children, think of its region being chopped into 4
(quadtree) or 8 (octree) equal subregions

 Child nodes correspond to these smaller subregions of parent’s
region

 Subdivide as little or as much as is necessary

 Each internal node has exactly 4 (quadtree) or 8 (octree) children

Adapted from slides  2004 G. G. Chappell, UAF
CS 481/681: Advanced Computer Graphics, Spring 2004, http://bit.ly/eivvVc

Review [7]:
Quadtrees & Octrees – Definition

Computing & Information Sciences
Kansas State University

12

CIS 536/636

Introduction to Computer Graphics
Lecture 26 of 41

EDCB

 Root node of quadtree corresponds
to square region in space

 Generally, this encompasses
entire “region of interest”

 If desired, subdivide along lines
parallel to the coordinate axes,
forming four smaller identically
sized square regions
 Child nodes correspond to these

 Some or all of these children may
be subdivided further

 Octrees work in a similar fashion,
but in 3-D, with cubical regions
subdivided into 8 parts

A

GF H I

A

B C

D E
F G

H I

A

A

B C

D E

Review [8]:
Quadtree Construction Example

EDCB

A

Adapted from slides  2004 G. G. Chappell, UAF
CS 481/681: Advanced Computer Graphics, Spring 2004, http://bit.ly/eivvVc

Computing & Information Sciences
Kansas State University

13

CIS 536/636

Introduction to Computer Graphics
Lecture 26 of 41

Interactive CG Programming:
Objectives

Adapted from slides  2005-2008 E. Angel, University of New Mexico

Interactive Computer Graphics, 4th & 5th edition slides, http://bit.ly/gvxfPV

 More Sophisticated Interactive Programs

 Modes of interaction

 Tools for building

 Techniques

 Picking: select objects from display (three methods covered)

 Rubberbanding: interactive drawing of lines, rectangles

 Display lists: retained mode graphics

Computing & Information Sciences
Kansas State University

14

CIS 536/636

Introduction to Computer Graphics
Lecture 26 of 41

Picking [1]:
Definition & Challenges

Adapted from slides  2005-2008 E. Angel, University of New Mexico
Interactive Computer Graphics, 4th & 5th edition slides, http://bit.ly/gvxfPV

 Identify User-Defined Object on Display

 In Principle, Should Be Simple

 Mouse gives position

 We should be able to determine object-position correspondence

 Practical Difficulties

 Pipeline architecture: feed forward

 Hard to map screen back to world

 Complicated by screen being 2-D, world 3-D

 How close do we have to come to object to say we selected it?

Computing & Information Sciences
Kansas State University

15

CIS 536/636

Introduction to Computer Graphics
Lecture 26 of 41

Picking [2]:
Three Approaches

Adapted from slides  2005-2008 E. Angel, University of New Mexico

Interactive Computer Graphics, 4th & 5th edition slides, http://bit.ly/gvxfPV

 1. Hit List

 Most general approach

 Difficult to implement

 2. Buffered Object IDs

 Write to back buffer or some other buffer

 Store object IDs as objects rendered

 3. Rectangular Maps

 Easy to implement for many applications

 e.g., simple paint programs

Computing & Information Sciences
Kansas State University

16

CIS 536/636

Introduction to Computer Graphics
Lecture 26 of 41

Rendering Modes

Adapted from slides  2005-2008 E. Angel, University of New Mexico
Interactive Computer Graphics, 4th & 5th edition slides, http://bit.ly/gvxfPV

 OpenGL: Can Render in One of Three Modes
 GL_RENDER

 Normal rendering to frame buffer

 Default

 GL_FEEDBACK

 Provides list of primitives rendered

 No output to frame buffer

 GL_SELECTION

 Each primitive in view volume generates hit record

 Record placed in name stack

 Stack can be examined later

 Mode Selected by glRenderMode(mode)

Computing & Information Sciences
Kansas State University

17

CIS 536/636

Introduction to Computer Graphics
Lecture 26 of 41

Selection Mode Functions

Adapted from slides  2005-2008 E. Angel, University of New Mexico

Interactive Computer Graphics, 4th & 5th edition slides, http://bit.ly/gvxfPV

 glSelectBuffer(): Specifies Name Buffer aka Name Stack

 glInitNames(): Initializes Name Buffer

 glPushName(id): Push ID on Name Buffer

 glPopName(): Pop Top of Name Buffer

 glLoadName(id): Replace Top Name on Buffer

 id set by application program to identify objects

Computing & Information Sciences
Kansas State University

18

CIS 536/636

Introduction to Computer Graphics
Lecture 26 of 41

OpenGL Functions for Manipulating
Name Stack

 void glInitNames(void);

 Creates empty name stack

 Must call to initialize stack prior to pushing names

 void glPushName(GLuint name);

 Adds name to top of stack

 Maximum dimension: implementation-dependent

 Must contain at least 64 names

 Can query state variable GL_NAME_STACK_DEPTH

 Pushing too many values causes GL_STACK_OVERFLOW

 void glPopName();

 Removes name from top of stack

 Popping value from empty stack causes GL_STACK_UNDERFLOW

 void glLoadName(GLunit name);

 Replaces top of stack with name

 Same as calling glPopName(); glPushName(name);

Adapted from tutorial  2001-2009 A. R. Fernandes
Lighthouse 3D, http://www.lighthouse3d.com

Computing & Information Sciences
Kansas State University

19

CIS 536/636

Introduction to Computer Graphics
Lecture 26 of 41

Same as

glLoadName
(HEAD);

Rendering in Selection Mode:
Example

 #define BODY 1

 #define HEAD 2

…

 void renderInSelectionMode()

 {

glInitNames(); // 1. create empty name stack (NS)

glPushName(BODY); // 2. push first name

 // 3. hit record (HR) for each primitive intersecting view volume

 drawBody();

 // 4. empty stack & save HRs to selection buffer (SB)

 glPopName();

glPushName(HEAD); // 5. new name; no HR, same SB

drawHead(); // 6. new HR for each primitive in VV

drawEyes(); // 7. update HR with new max/min depths

glPopName(); // 8. empty NS; write HRs to SB

drawGround(); // 9. new HRs; empty NS, depth update only

 }

Adapted from tutorial  2001-2009 A. R. Fernandes
Lighthouse 3D, http://www.lighthouse3d.com

Computing & Information Sciences
Kansas State University

20

CIS 536/636

Introduction to Computer Graphics
Lecture 26 of 41

Using Selection Mode

Adapted from slides  2005-2008 E. Angel, University of New Mexico
Interactive Computer Graphics, 4th & 5th edition slides, http://bit.ly/gvxfPV

 Initialize Name Buffer aka Name Stack

 Enter Selection Mode (using Mouse)

 Render Scene with User-Defined Identifiers

 Accumulates hits

 Create new hit record iff needed (otherwise update depth)

 Reenter Normal Render Mode

 Returns number of hits

 Objects rendered on small area of screen around cursor

 Examine contents of name buffer

 Hit records written to selection buffer

 Include information about each hit

 ID

 Depth

Computing & Information Sciences
Kansas State University

21

CIS 536/636

Introduction to Computer Graphics
Lecture 26 of 41

Selection Mode:
Redefining View Volume

Adapted from slides  2005-2008 E. Angel, University of New Mexico

Interactive Computer Graphics, 4th & 5th edition slides, http://bit.ly/gvxfPV

 Caveat

 As just described, selection mode won ’t work for picking – why?

 Because every primitive in view volume will generate a hit

 Need to change viewing parameters

 Only those primitives near cursor are in altered view volume

 Use gluPickMatrix (see Angel 5e or 6e for details)

 New Procedure (cf. Fernandes Tutorial)

 1. Get the window coordinates of the mouse

 2. Enter selection mode

 3. Redefine viewing volume so that only small area of window
around cursor is rendered

 4. Render scene, either using all primitives or only those relevant
to picking operation

 5. Exit selection mode and identify objects which were rendered
on that small part of screen

Computing & Information Sciences
Kansas State University

22

CIS 536/636

Introduction to Computer Graphics
Lecture 26 of 41

Graphical User Interface Design:
Using Regions of Screen

Adapted from slides  2005-2008 E. Angel, University of New Mexico
Interactive Computer Graphics, 4th & 5th edition slides, http://bit.ly/gvxfPV

 Rectangular Arrangement

 Used by many applications

 e.g., paint & computer-aided design (CAD) programs

 Advantages

 Compared to: selection mode picking

 Easier to look at cursor position, determine part of window it is in

 Common Graphical User Interface (GUI) Design

 Xerox Palo Alto Research Center (PARC) – http://bit.ly/dSAr1O

 Human Interface Guidelines – Wikipedia: http://bit.ly/dO6I5F

Tools

Drawing Area Menus

Computing & Information Sciences
Kansas State University

23

CIS 536/636

Introduction to Computer Graphics
Lecture 26 of 41

Picking:
Using Second Buffer & Color-Coding

Adapted from slides  2005-2008 E. Angel, University of New Mexico

Interactive Computer Graphics, 4th & 5th edition slides, http://bit.ly/gvxfPV

 Color Coding

 For small number of objects

 Can assign a unique color to each object

 Often assigned in color index mode

 Using Color Coding for Picking

 Render scene to color buffer other than front buffer

 Results of rendering not visible

 Get mouse position

 Use glReadPixels() to read color in buffer written at position of

cursor

 Returned color gives ID of object

Computing & Information Sciences
Kansas State University

24

CIS 536/636

Introduction to Computer Graphics
Lecture 26 of 41

Writing Modes

Adapted from slides  2005-2008 E. Angel, University of New Mexico
Interactive Computer Graphics, 4th & 5th edition slides, http://bit.ly/gvxfPV

frame buffer

application

‘

bitwise logical operation

Computing & Information Sciences
Kansas State University

25

CIS 536/636

Introduction to Computer Graphics
Lecture 26 of 41

Exclusive OR (XOR) Write

Adapted from slides  2005-2008 E. Angel, University of New Mexico

Interactive Computer Graphics, 4th & 5th edition slides, http://bit.ly/gvxfPV

 Usual (Default) Mode
 Source replaces destination: d’ = s

 Cannot write temporary lines this way – why?

 Cannot recover what was “under” line in fast, simple way

 Consequence: cannot deselect (toggle select) easily

 Solution: Exclusive OR Mode (XOR)
 d’ = d  s

 Suppose we use XOR mode to scan convert line

 Can draw it again to erase it!
10PP

Visual Basic Explorer © 2002 S. Christensen & B. Abreu
http://bit.ly/gXstAM

Computing & Information Sciences
Kansas State University

26

CIS 536/636

Introduction to Computer Graphics
Lecture 26 of 41

Rubberbanding

Adapted from slides  2005-2008 E. Angel, University of New Mexico
Interactive Computer Graphics, 4th & 5th edition slides, http://bit.ly/gvxfPV

 Switch to XOR Write Mode

 Draw Object
 Line

 Can use first mouse click to fix one endpoint

 Then use motion callback to continuously update second endpoint

 Each time mouse is moved, redraw line which erases it

 Then draw line from fixed first position to new second position

 At end, switch back to normal drawing mode and draw line

 Works for other objects

 Rectangles

 Circles
“Rubber-Banding with OpenGL ”
© 2009 J. Xu
The Code Project

http://bit.ly/hGvFkB

Computing & Information Sciences
Kansas State University

27

CIS 536/636

Introduction to Computer Graphics
Lecture 26 of 41

New line drawn

with XOR

Draw line with mouse

in XOR mode

Rubberband Lines:
Example

Adapted from slides  2005-2008 E. Angel, University of New Mexico

Interactive Computer Graphics, 4th & 5th edition slides, http://bit.ly/gvxfPV

Initial display

first point

second point

Mouse moved to

new position

Original line redrawn

with XOR

Computing & Information Sciences
Kansas State University

28

CIS 536/636

Introduction to Computer Graphics
Lecture 26 of 41

XOR in OpenGL

Adapted from slides  2005-2008 E. Angel, University of New Mexico
Interactive Computer Graphics, 4th & 5th edition slides, http://bit.ly/gvxfPV

 Logical Operations between Two Bits X, Y

 2 bits  22 = 4 values

 4 values  24 = 16 pairwise functions

 X, Y, X  , X  Y  XY, X  Y  X + Y, X  Y 

 etc.

 In general: functions for b bits

 All 16 Operations Supported by OpenGL
 Must enable logical operations: glEnable(GL_COLOR_LOGIC_OP)

 Choose logical operation

 glLogicOp(GL_XOR)

 glLogicOp(GL_COPY) – default

X YXYX 

b22

Computing & Information Sciences
Kansas State University

29

CIS 536/636

Introduction to Computer Graphics
Lecture 26 of 41

Immediate versus Retained Modes

Adapted from slides  2005-2008 E. Angel, University of New Mexico

Interactive Computer Graphics, 4th & 5th edition slides, http://bit.ly/gvxfPV

 OpenGL Standard: Immediate Mode Graphics

 OpenGL programs use immediate mode by default

 Once object is rendered, there is no memory of it

 In order to redisplay it, must re-execute its rendering code

 Can be especially slow if objects

 are complex

 must be sent over network

 Alternative: Retained Mode Graphics

 Accomplished in OpenGL via display lists, vertex buffer objects

 Define objects

 Keep them in some form that is easy to redisplay

Computing & Information Sciences
Kansas State University

30

CIS 536/636

Introduction to Computer Graphics
Lecture 26 of 41

Display Lists in OpenGL

Adapted from slides  2005-2008 E. Angel, University of New Mexico
Interactive Computer Graphics, 4th & 5th edition slides, http://bit.ly/gvxfPV

 Conceptually Similar to Graphics Files

 Compare: Flexible Vertex Format (FVF) definitions in Direct3D

 Also compare: mesh formats for OpenGL itself, other CG libraries

 Requirements

 Define each display list (DL)

 Name

 Create

 Populate: add contents by

 reading in file

 generating mesh automatically

 Close

 Client-Server Environment

 DL placed on server

 Can redisplay without sending primitives over network each time

Computing & Information Sciences
Kansas State University

31

CIS 536/636

Introduction to Computer Graphics
Lecture 26 of 41

Display List Functions

Adapted from slides  2005-2008 E. Angel, University of New Mexico

Interactive Computer Graphics, 4th & 5th edition slides, http://bit.ly/gvxfPV

 Creating Display List
 GLuint id;

 void init()

 {

 id = glGenLists(1);

 glNewList(id, GL_COMPILE);

 /* other OpenGL routines */

 glEndList();

 }

 Calling Created List
 void display()

 {

 glCallList(id);

 }

 Documentation: http://bit.ly/gJYana

 Tutorial © 2005 S. H. Ahn: http://bit.ly/eN3R8c

Computing & Information Sciences
Kansas State University

32

CIS 536/636

Introduction to Computer Graphics
Lecture 26 of 41

Display Lists & State

Adapted from slides  2005-2008 E. Angel, University of New Mexico
Interactive Computer Graphics, 4th & 5th edition slides, http://bit.ly/gvxfPV

 Using Display Lists as Macros (http://bit.ly/hPPBVo)

 DLs are syntactic sugar (text abbreviations) for

 Rendering commands (especially mesh traversal)

 Parameters

 Now deprecated! Use vertex buffer objects (VBOs) instead

 Side Effects: State Changes within DLs

 Most OpenGL functions can be put in display lists

 State changes made inside DL persist after DL is executed

 Avoiding Unexpected Results
 Use glPushAttrib and glPushMatrix upon entering DL

 Use glPopAttrib and glPopMatrix before exiting

Computing & Information Sciences
Kansas State University

33

CIS 536/636

Introduction to Computer Graphics
Lecture 26 of 41

Hierarchy & Display Lists

Adapted from slides  2005-2008 E. Angel, University of New Mexico

Interactive Computer Graphics, 4th & 5th edition slides, http://bit.ly/gvxfPV

 Consider: Model of Car

 Similar hierarchy to that for general scene graphs

 Describes relative modelview transformation (MVT)

 translation

 rotation (relative Euler angle or quaternion)

 Need to Create Display Lists

 Chassis

 Wheel

glCallList(CHASSIS);
glTranslatef(…);
glCallList(WHEEL);
glTranslatef(…);
glCallList(WHEEL);
…
glEndList();NewList(CAR, GL_COMPILE);

Computing & Information Sciences
Kansas State University

34

CIS 536/636

Introduction to Computer Graphics
Lecture 26 of 41

Picking in Action

FarmVille  2009 – 2011 Zynga, Inc.
http://bit.ly/f1Ct3C

Computing & Information Sciences
Kansas State University

35

CIS 536/636

Introduction to Computer Graphics
Lecture 26 of 41

Summary

 Reading for Last Class: §2.4.3, 8.1, Eberly 2e, GL handout

 Reading for Today: Chapter 6, Esp. §6.1, Eberly 2e

 Reading for Next Class: Chapter 7, §8.4, Eberly 2e

 Last Time: Adaptive Spatial Partitioning

 Trees: VSD, CSG, BSP

 Spatial partitioning (SP)

 Examples: BSP trees, quad/octrees (adaptive); voxels (uniform)

 Scenes: spatial partitioning vs. boundary representation (B-rep)

 Today: Picking

 OpenGL modes: rendering (default), feedback, selection

 Name stack

 Hit records

 Rendering in selection mode using selection buffer

 Color coding of pickable objects

 Next Class: Interaction Handling

Computing & Information Sciences
Kansas State University

36

CIS 536/636

Introduction to Computer Graphics
Lecture 26 of 41

Terminology

 Spatial Partitioning (SP): Calculating Intersection, Visibility

 Binary Space Partitioning tree – 2-way decision tree/surface

 Quadtree – 4-way for 2-D

 Octree – 8-way for 3-D

 Volume Graphics aka Volumetric Representation: Uniform SP (Voxels)

 Boundary Representation: Describing Enclosing Surface

 Meshes

 Implicit surfaces

 Sweeps (e.g., sphere-swept volumes: sphere, capsule, lozenge)

 Picking: Allowing User to Select Objects in Scene

 Selection mode: mode when cursor (“mouse”) is active

 Name stack: last in, first out data structure holding object names

 Hit records: ID, depth info for intersections with view volume

 Selection buffer: holds hits, depth (compare: frame/z-buffer)

 Color coding: using color to represent pickable object ID

