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 Reading for Last Class: §5.3, Eberly 2e; CGA Handout

 Reading for Today: Chapter 14, Eberly 2e 

 Reading for Next Class: Ray Tracing Handout

 Last Time: Animation Part 3 of 3 – Inverse Kinematics

 FK vs. IK

 IK

 Autonomous agents vs. hand-animated movement

 Analytical vs. iterative solutions

 Rag doll physics, rigid-body dynamics, physically-based models

 End of Material on: Particle Systems, Collisions, CGA, PBM

 Today: Ray Tracing, Part 1 of 2

 Vectors: Light/shadow (L), Reflected (R), Transmitted/refracted (T)

 Basic recursive ray tracing: ray trees

 Next Class: Ray Tracing Lab

Lecture Outline
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Where We Are
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Review [1]:
Kinematics & Degrees of Freedom

Adapted from slides  2000 – 2005 D. Brogan, University of Virginia
CS 551, Advanced CG & Animation – http://bit.ly/hUXrqd
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Review [2]:
Joint Types

Adapted from slides  2002 R. Melamud, Stanford University
Mirrored at CMU 16-311 Introduction to Robotics, http://generalrobotics.org
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Forward Kinematics:
Joint Angles to Bone Coordinates

Adapted from slides  2004 – 2005 S. Rotenberg, UCSD
CSE169: Computer Animation, Winter 2005 –  http://bit.ly/f0ViAN
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Review [3]:
Forward Kinematics

Adapted from slides  2002 K. J. Choi, Seoul National University
Graphics and Media Lab (http://graphics.snu.ac.kr) – mirrored at: http://bit.ly/hnzSAN

Base

1
2 End Effector

3
?

)f(θx



Choi

 Φe f
Rotenberg
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Review [4]:
Inverse Kinematics

Adapted from slides  2002 K. J. Choi, Seoul National University
Graphics and Media Lab (http://graphics.snu.ac.kr) – mirrored at: http://bit.ly/hnzSAN

Base

1
2 3

End Effector?
?

For more on characters & IK, see:
Advanced Topics in CG Lecture 05

)(f 1 xθ



Choi Rotenberg

 eΦ 1 f
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Inverse Kinematics:
Issues

Adapted from slides  2004 – 2005 S. Rotenberg, UCSD
CSE169: Computer Animation, Winter 2005 –  http://bit.ly/f0ViAN
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Review [5]:
Inverse Kinematics Demos

© 2008 T. Komura, H. S. Lim, & R. W. H. Lau
http://youtu.be/FJTBMnP6oCM

© 2008 M. Kinzelman
http://youtu.be/l52yZ491kPo

© 2007 A. Brown
http://youtu.be/6JdLOLazJJ0

© 2011 K. Iyer
http://youtu.be/YvRBWIRAPsE
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Review [6]:
Ragdoll Physics

 Type of Procedural Animation

 Automatically generates CGA directives (rotations)

 Based on simulation

 Rigid-body dynamics

 Articulated Figure

 Gravity

 No autonomous movement

 Used for inert body

 Usually: character death (car impact, falling body, etc.)

 Less often: unconscious, paralyzed character

 Collisions with Multiple Bodies

 Inter-character

 Character-object

Falling Bodies © 1997 – 2001 Animats 
 http://www.animats.com
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Review [7]:
Ragdoll Physics Demos

© 2006 P. Pelt
http://youtu.be/6JdLOLazJJ0

See also: http://youtu.be/5_QIsI0fyaU

© 2007 N. Picouet 
 http://youtu.be/ohNqCb--aSs

© 2010 M. Heinzen (Arkaein)
 http://bit.ly/gUj9Su / http://youtu.be/FJTBMnP6oCM

© 2009 M. E. Cerquoni
http://youtu.be/uW_DK2qvKv8
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Review [8}:
Physically-Based Modeling (PBM)

 Particle Dynamics

 Emitters

 0-D (points), 1-D (lines), 2-D (planes, discs, cross-sections)

 e.g., fireworks (0-D); fountains (0/1/2-D); smokestacks, jets (2-D)

 Simulation: birth-death process, functions of particle age/trajectory

 Rigid-Body Dynamics

 Constrained systems of connected parts

 Examples: falling rocks, colliding vehicles, rag dolls

 Articulated Figures: Primarily IK

 More References

 ACM, Intro to Physically-Based Modeling : http://bit.ly/hhQvXd

 Wikipedia, Physics Engine: http://bit.ly/h4PIRt 

 Wikipedia, N-Body Problem: http://bit.ly/1ayWwe

 PBM System: nVidia (Ageia) PhysX: http://bit.ly/cp7bnA

 Rocks fall
 Everyone dies
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 What is it?

 Why use it?

 Basics

 Advanced topics

 References

Ray Tracing [1]:
Overview

Adapted from slides  2001 D. Shreiner & B. Grantham, SCU
COEN 290: Computer Graphics I, Winter 2001 –  http://bit.ly/hz1kfU

© 2006 – 2007 H. Kuijpers,
Capgemini Netherlands

http://bit.ly/erkKrC
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 Simulate rays of light

 Produces natural lighting effects

 Hard to simulate effects with rasterization techniques (OpenGL)

 Rasterizers require many passes

 Ray-tracing easier to implement

 Reflection  Depth of Field 

 Refraction  Motion Blur 

 Soft Shadows  Caustics 

 
 

Ray Tracing [2]:
Why Use It?

Adapted from slides  2001 D. Shreiner & B. Grantham, SCU
COEN 290: Computer Graphics I, Winter 2001 –  http://bit.ly/hz1kfU
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 Entertainment (Movies, Commercials)

 Games pre-production

 Simulation

Ray Tracing [3]:
Who Uses It?

Adapted from slides  2001 D. Shreiner & B. Grantham, SCU
COEN 290: Computer Graphics I, Winter 2001 –  http://bit.ly/hz1kfU
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 Decartes, 1637 A.D. - analysis of rainbow

 Arthur Appel, 1968 - used for lighting 3D models

 Turner Whitted, 1980 - “An Improved Illumination Model for 
Shaded Display” really kicked everyone off.

 1980-now - Lots of research

Ray Tracing [4]:
Brief History

Adapted from slides  2001 D. Shreiner & B. Grantham, SCU
COEN 290: Computer Graphics I, Winter 2001 –  http://bit.ly/hz1kfU
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 Generating Rays

 Intersecting Rays with Scene

 Lighting

 Shadowing

 Reflections

Ray Tracing [5]:
Basic Operations

Adapted from slides  2001 D. Shreiner & B. Grantham, SCU
COEN 290: Computer Graphics I, Winter 2001 –  http://bit.ly/hz1kfU
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 Simulate light rays from light source to eye

Reflected ray Incident ray

Eye Light

Surface

Ray Tracing [6]:
Basic Idea

Adapted from slides  2001 D. Shreiner & B. Grantham, SCU
COEN 290: Computer Graphics I, Winter 2001 –  http://bit.ly/hz1kfU
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 Trace rays from light

 Lots of work for little return

Eye

Light

Image
Plane

Object

Light Rays

“Forward” Ray Tracing

Adapted from slides  2001 D. Shreiner & B. Grantham, SCU
COEN 290: Computer Graphics I, Winter 2001 –  http://bit.ly/hz1kfU
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 Trace rays from eye instead

 Do work where it matters

Eye

Light

This is what most people mean by “ray tracing”.

Image
Plane

Object

Adapted from slides  2001 D. Shreiner & B. Grantham, SCU
COEN 290: Computer Graphics I, Winter 2001 –  http://bit.ly/hz1kfU

“Backward” Ray Tracing
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 Ray expressed as function of a single parameter (“t”)

ro = <xo, yo, zo>

t = 0.0

t = 1.0

t = 2.0

t = 2.5

rd = <xd, yd, zd>

<x, y, z> = <xo, yo, zo> + t * <xd, yd, zd>

<x, y, z> = ro + trd

Adapted from slides  2001 D. Shreiner & B. Grantham, SCU
COEN 290: Computer Graphics I, Winter 2001 –  http://bit.ly/hz1kfU

Ray: Parametric Form



Computing & Information Sciences
Kansas State University

24

CIS 536/636

Introduction to Computer Graphics
Lecture 31 of 41

 Trace one ray for each pixel (u, v) in image plane

Eye

tan(fovx) * 2

(Looking down from the top)

Image
Plane

Eye

fovx

Adapted from slides  2001 D. Shreiner & B. Grantham, SCU
COEN 290: Computer Graphics I, Winter 2001 –  http://bit.ly/hz1kfU

Generating Rays [1]
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 Trace one ray for each pixel (u, v) in image plane

m

n

(tan(fovx)* 2) / m

(tan(fovy)* 2) / n
Eye

Image
Plane

(Looking from the side)

Adapted from slides  2001 D. Shreiner & B. Grantham, SCU
COEN 290: Computer Graphics I, Winter 2001 –  http://bit.ly/hz1kfU

Generating Rays [2]
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 Trace one ray for each pixel (u, v) in image plane

renderImage(){
   for each pixel i, j in the image
      ray.setStart(0, 0, 0);   // ro
      ray.setDir  ((.5 + i) * tan(fovx)* 2 / m,

       (.5 + j) * tan(fovy)* 2 / n,
    1.0);  // rd

      ray.normalize();
      image[i][j] = rayTrace(ray); 
}

Adapted from slides  2001 D. Shreiner & B. Grantham, SCU
COEN 290: Computer Graphics I, Winter 2001 –  http://bit.ly/hz1kfU

Generating Rays [3]
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 Want to know: at what point p does ray intersect triangle?

 Compute lighting, reflected rays, shadowing from that point

ro

rd

<?, ?, ?>
(t = ???)

p = tmin

Adapted from slides  2001 D. Shreiner & B. Grantham, SCU
COEN 290: Computer Graphics I, Winter 2001 –  http://bit.ly/hz1kfU

Ray/Triangle Intersection [1]:
Intersection Test Revisited
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 Step 1 : Intersect with plane
( Ax + By + Cz + D = 0 )

Plane normal
  n = <A, B, C>

p

tmin = p = -(n  ro + D) / (n  rd )

rd

ro

Adapted from slides  2001 D. Shreiner & B. Grantham, SCU
COEN 290: Computer Graphics I, Winter 2001 –  http://bit.ly/hz1kfU

Ray/Triangle Intersection [2]:
Ray/Plane Intersection Point p
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 Step 2 : Check against triangle edges

p

V1

V2

V0

n

Plug p into (p  Ei + di ) for each edge

if signs are all positive or negative,
    point is inside triangle!

V0V1

E0
Ei = ViVi+1 x n  (plane A, B, C)
di = -A.N   (plane D)

Adapted from slides  2001 D. Shreiner & B. Grantham, SCU
COEN 290: Computer Graphics I, Winter 2001 –  http://bit.ly/hz1kfU

Ray/Triangle Intersection [3]:
Triangle Containment
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 Could use plane normals (flat shading)

 Better to interpolate from vertices

p

n

nV1

nV2

nV0

b

a
c

V1

V2

V0

n = anV0 + bnV1 + cnV2

Find areas

Adapted from slides  2001 D. Shreiner & B. Grantham, SCU
COEN 290: Computer Graphics I, Winter 2001 –  http://bit.ly/hz1kfU

Triangle Normals
for Shading
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 Check all triangles, keep closest intersection tmin

hitObject(ray) {
   for each triangle in scene
      does ray intersect triangle?
      if(intersected and was closer)
         save that intersection
   if(intersected)
      return intersection point and normal
}

Adapted from slides  2001 D. Shreiner & B. Grantham, SCU
COEN 290: Computer Graphics I, Winter 2001 –  http://bit.ly/hz1kfU

Finding Intersections
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 We’ll use triangles for lights

 Can build complex shapes from triangles

 Some lighting terms

Eye

V

R

N

I

Light

Adapted from slides  2001 D. Shreiner & B. Grantham, SCU
COEN 290: Computer Graphics I, Winter 2001 –  http://bit.ly/hz1kfU

Lighting [1]:
General Notation Review
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 Use modified Phong lighting

 similar to OpenGL

 simulates rough and shiny surfaces

for each light
    In = IambientKambient +

    IdiffuseKdiffuse (L.N) +
    IspecularKspecular (R.V)n 

      

Adapted from slides  2001 D. Shreiner & B. Grantham, SCU
COEN 290: Computer Graphics I, Winter 2001 –  http://bit.ly/hz1kfU

Lighting [2]:
Modified Phong Illumination
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 Iambient – simulates indirect lighting in a scene

 May not need for RT!

Eye

Light

Adapted from slides  2001 D. Shreiner & B. Grantham, SCU
COEN 290: Computer Graphics I, Winter 2001 –  http://bit.ly/hz1kfU

Ambient Light
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 Idiffuse – simulates direct lighting on rough surface

 Viewer-independent

 Paper, rough wood, brick, etc...

Eye

Light

Adapted from slides  2001 D. Shreiner & B. Grantham, SCU
COEN 290: Computer Graphics I, Winter 2001 –  http://bit.ly/hz1kfU

Diffuse Light



Computing & Information Sciences
Kansas State University

36

CIS 536/636

Introduction to Computer Graphics
Lecture 31 of 41

 Ispecular simulates direct lighting on a smooth surface

 Viewer dependent

 Plastic, metal, polished wood, etc...

Eye

Light

Adapted from slides  2001 D. Shreiner & B. Grantham, SCU
COEN 290: Computer Graphics I, Winter 2001 –  http://bit.ly/hz1kfU

Specular Light
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 Check against other objects to see if point is shadowed

Shadowing
object

Adapted from slides  2001 D. Shreiner & B. Grantham, SCU
COEN 290: Computer Graphics I, Winter 2001 –  http://bit.ly/hz1kfU

Shadow Test

Eye

Light
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 Angle of incidence = angle of reflection (I = R )

 I, R, N lie in the same plane

R = I - 2 (N  I) N R

N

I I R

Adapted from slides  2001 D. Shreiner & B. Grantham, SCU
COEN 290: Computer Graphics I, Winter 2001 –  http://bit.ly/hz1kfU

Reflection
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 Recursive ray evaluation

 Generates ray tree shown at right

rayTrace(ray) {
    hitObject(ray, p, n, triangle);
    color = object color;
    if(object is light)
        return(color);
    else
        return(lighting(p, n, color));
}

Adapted from slides  2001 D. Shreiner & B. Grantham, SCU
COEN 290: Computer Graphics I, Winter 2001 –  http://bit.ly/hz1kfU

Ray tree
© 2000 N. Patrikalakis, MIT

http://bit.ly/fjcGGk 

I = Incident ray
S = light Source vector (aka L) 

R = reflected ray
T = transmitted ray

Putting It All Together [1]:
Recursive Calculation & Ray Tree
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 Calculating surface color

lighting(point) {
    color = ambient color;
    for each light
        if(hitObject(shadow ray))
            color += lightcolor *

dot(shadow ray, n);
    color += rayTrace(reflection) *
        pow(dot(reflection, ray), shininess);
    return(color);
}

Adapted from slides  2001 D. Shreiner & B. Grantham, SCU
COEN 290: Computer Graphics I, Winter 2001 –  http://bit.ly/hz1kfU

Putting It All Together [2]:
Applying Lighting
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main() {
    triangles = readTriangles();
    image = renderImage(triangles);
    writeImage(image);
}

Adapted from slides  2001 D. Shreiner & B. Grantham, SCU
COEN 290: Computer Graphics I, Winter 2001 –  http://bit.ly/hz1kfU

Putting It All Together [3]:
Main Program
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 Lighting, Shadows, Reflection are enough to make some 
compelling images

 Want better lighting and objects

 Need more speed

Adapted from slides  2001 D. Shreiner & B. Grantham, SCU
COEN 290: Computer Graphics I, Winter 2001 –  http://bit.ly/hz1kfU

Good Start:
What next?
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 Better Lighting + Forward Tracing

 Texture Mapping

 Modeling Techniques

 Distributed Ray Tracing: Techniques

 Motion Blur

 Depth of Field

 Blurry Reflection/Refraction

 Wikipedia, Distributed Ray Tracing: http://bit.ly/ihyVUs

 Improving Image Quality

 Acceleration Techniques

Adapted from slides  2001 D. Shreiner & B. Grantham, SCU
COEN 290: Computer Graphics I, Winter 2001 –  http://bit.ly/hz1kfU

More Quality, More Speed
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 Keep track of medium (air, glass, etc)

 Need index of refraction ()

 Need solid objects

T

N

I
I

T

sin(I) 1 

sin(T) 2
=

Medium 1
(e.g., air)

Medium 2
(e.g., water)

Adapted from slides  2001 D. Shreiner & B. Grantham, SCU
COEN 290: Computer Graphics I, Winter 2001 –  http://bit.ly/hz1kfU

Refraction [1]:
Snell’s Law
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Adapted from slides  2001 D. Shreiner & B. Grantham, SCU
COEN 290: Computer Graphics I, Winter 2001 –  http://bit.ly/hz1kfU

Refraction [2]:
Example
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 Cook-Torrance model

 Based on a microfacet model

 Wikipedia: http://bit.ly/hX3U30

 Metals have different color at angle

 Oblique reflections leak around corners

Adapted from slides  2001 D. Shreiner & B. Grantham, SCU
COEN 290: Computer Graphics I, Winter 2001 –  http://bit.ly/hz1kfU

Improved Light Model:
Cook-Torrance
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 Backward tracing doesn’t handle indirect lighting too well

 To get caustics, trace forward, store results in texture map

Adapted from slides  2001 D. Shreiner & B. Grantham, SCU
COEN 290: Computer Graphics I, Winter 2001 –  http://bit.ly/hz1kfU

Using “Forward” Ray Tracing [1]:
Lensed Caustics for Indirect Lighting
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Adapted from slides  2001 D. Shreiner & B. Grantham, SCU
COEN 290: Computer Graphics I, Winter 2001 –  http://bit.ly/hz1kfU

Using “Forward” Ray Tracing [2]:
Example
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 Using texture maps

 Add surface detail

 Think of it like texturing in OpenGL

 Diffuse, specular colors

 Shininess value

 Bump map

 Transparency value

Adapted from slides  2001 D. Shreiner & B. Grantham, SCU
COEN 290: Computer Graphics I, Winter 2001 –  http://bit.ly/hz1kfU

Texture Mapping & Ray Tracing [1]:
Applying Surface Detail
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Adapted from slides  2001 D. Shreiner & B. Grantham, SCU
COEN 290: Computer Graphics I, Winter 2001 –  http://bit.ly/hz1kfU

Texture Mapping & Ray Tracing [2]:
Example
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 More expressive than triangle

 Intersection is probably slower

 u and v on surface can be used as texture s, t

Adapted from slides  2001 D. Shreiner & B. Grantham, SCU
COEN 290: Computer Graphics I, Winter 2001 –  http://bit.ly/hz1kfU

Parametric Surfaces
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 Union, Subtraction, Intersection of solid objects

 Have to keep track of intersections

Adapted from slides  2001 D. Shreiner & B. Grantham, SCU
COEN 290: Computer Graphics I, Winter 2001 –  http://bit.ly/hz1kfU

Constructive Solid Geometry
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 Scene made of parts

 Each part made of smaller parts

 Each smaller part has transformation linking it to larger part

 Transformation can change over time: animation (CGA)

Adapted from slides  2001 D. Shreiner & B. Grantham, SCU
COEN 290: Computer Graphics I, Winter 2001 –  http://bit.ly/hz1kfU

Hierarchical Transformation
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 Average multiple rays instead of just one ray

 Use for both shadows, reflections, transmission (refraction)

 Use for motion blur

 Use for depth of field

Adapted from slides  2001 D. Shreiner & B. Grantham, SCU
COEN 290: Computer Graphics I, Winter 2001 –  http://bit.ly/hz1kfU

Distributed Ray Tracing [1]:
Basic Idea
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Adapted from slides  2001 D. Shreiner & B. Grantham, SCU
COEN 290: Computer Graphics I, Winter 2001 –  http://bit.ly/hz1kfU

Distributed Ray Tracing [2]:
Example
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 One ray is not enough (jaggies)

 Can use multiple rays per pixel - supersampling

 Can use a few samples, continue if they’re very different - 
adaptive supersampling

 Texture interpolation & filtering

Adapted from slides  2001 D. Shreiner & B. Grantham, SCU
COEN 290: Computer Graphics I, Winter 2001 –  http://bit.ly/hz1kfU

Distributed Ray Tracing [3]:
Supersampling

Ray Tracing © 2008 Wikipedia
http://bit.ly/dV7lNm 
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 1280x1024 image with 10 rays/pixel

 1000 objects (triangle, CSG, NURBS)

 3 levels recursion

 39321600000 intersection tests

100000 tests/second -> 109 days!

Must use an acceleration method!

Adapted from slides  2001 D. Shreiner & B. Grantham, SCU
COEN 290: Computer Graphics I, Winter 2001 –  http://bit.ly/hz1kfU

Acceleration!
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 Use simple shape for quick test, keep BV hierarchy

Adapted from slides  2001 D. Shreiner & B. Grantham, SCU
COEN 290: Computer Graphics I, Winter 2001 –  http://bit.ly/hz1kfU

Bounding Volumes
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 Break your space into pieces

 Search the structure linearly

Adapted from slides  2001 D. Shreiner & B. Grantham, SCU
COEN 290: Computer Graphics I, Winter 2001 –  http://bit.ly/hz1kfU

Spatial Partitioning:
Subdivision
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 Can always throw more processors at it

 Parallel computing model

 Multiple processes or threads

 Data parallel: separate pixel for each

Adapted from slides  2001 D. Shreiner & B. Grantham, SCU
COEN 290: Computer Graphics I, Winter 2001 –  http://bit.ly/hz1kfU

Parallelism



Computing & Information Sciences
Kansas State University

61

CIS 536/636

Introduction to Computer Graphics
Lecture 31 of 41

 Error analysis

 Hybrid radiosity/ray-tracing

 Metropolis Light Transport

 Memory-Coherent Ray-tracing

Adapted from slides  2001 D. Shreiner & B. Grantham, SCU
COEN 290: Computer Graphics I, Winter 2001 –  http://bit.ly/hz1kfU

Really Advanced Stuff
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 Introduction to Ray-Tracing, Glassner et al., 1989, 0-12-286160-4

 Advanced Animation and Rendering Techniques, Watt & Watt, 
1992, 0-201-54412-1

 Computer Graphics: Image Synthesis, Joy et al., 1988, 0-8186-
8854-4

 SIGGRAPH Proceedings (All)

Adapted from slides  2001 D. Shreiner & B. Grantham, SCU
COEN 290: Computer Graphics I, Winter 2001 –  http://bit.ly/hz1kfU

References
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Summary

 Reading for Last Class: §5.3, Eberly 2e; CGA Handout

 Reading for Today: Chapter 14, Eberly 2e 

 Reading for Next Class: Ray Tracing Handout

 Last Class: Particle Systems, Collisions, IK/CGA Concluded

 Dynamics vs. kinematics, forward vs. inverse revisited

 IK: autonomous vs. hand-animated; solution approaches

 Rag doll physics, rigid-body dynamics, physically-based models

 Today: Ray Tracing, Part 1 of 2

 Vectors

 Light (L): to point light sources (or shadows)

 Reflected (R): from object surface

 Transmitted or Transparency (T): through transparent object

 tmin: distance to intersection between ray and bounding volume

 Ways to find tmin

 Basic recursive ray tracing: ray trees
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Terminology

 Joints: Parts of Robot / Articulated Figure That Turn, Slide

 Effectors: Parts of Robot / Articulated Figure That Act (e.g., Hand, Foot)

 Bones: Effectors, Other Parts That Rotate about, Slide through Joints

 Procedural Animation: Automatic Generation of Motion via Simulation

 Ray Tracing aka Ray Casting

 Given: screen with pixels (u, v) 

 Find intersection tmin(u, v) of rays through each (u, v) with scene

 Calculate vectors emanating from world-space coordinate of tmin

 Light (L): to point light sources (or shadows)

 Reflected (R): from object surface

 Transmitted or Transparency (T): through transparent object

 Recursive RT: call raytracer for each intersection found

 Builds ray tree rooted at intersection point

 Base cases: unobstructed vector to light; depth limit

 Parallel RT: use multiple threads/processes for each (u, v) or t


