
Computing & Information Sciences
Kansas State University

CIS 536/636

Introduction to Computer Graphics
Lecture 31 of 41

William H. Hsu

Department of Computing and Information Sciences, KSU

KSOL course pages: http://bit.ly/hGvXlH / http://bit.ly/eVizrE

Public mirror web site: http://www.kddresearch.org/Courses/CIS636

Instructor home page: http://www.cis.ksu.edu/~bhsu

Readings:

Last class: §5.3, Eberly 2e – see http://bit.ly/ieUq45; CGA Handout

Today: Chapter 14, Eberly 2e

Next class: Ray Tracing Handout

Reference – Wikipedia, Ray Tracing: http://bit.ly/dV7lNm

Reference – ACM Ray Tracing News: http://bit.ly/fqyZNQ

Ray Tracing, Part 1 of 2:
Intersections, Ray Trees & Recursion

Lecture 31of 41

Computing & Information Sciences
Kansas State University

2

CIS 536/636

Introduction to Computer Graphics
Lecture 31 of 41

 Reading for Last Class: §5.3, Eberly 2e; CGA Handout

 Reading for Today: Chapter 14, Eberly 2e

 Reading for Next Class: Ray Tracing Handout

 Last Time: Animation Part 3 of 3 – Inverse Kinematics

 FK vs. IK

 IK

 Autonomous agents vs. hand-animated movement

 Analytical vs. iterative solutions

 Rag doll physics, rigid-body dynamics, physically-based models

 End of Material on: Particle Systems, Collisions, CGA, PBM

 Today: Ray Tracing, Part 1 of 2

 Vectors: Light/shadow (L), Reflected (R), Transmitted/refracted (T)

 Basic recursive ray tracing: ray trees

 Next Class: Ray Tracing Lab

Lecture Outline

Computing & Information Sciences
Kansas State University

3

CIS 536/636

Introduction to Computer Graphics
Lecture 31 of 41

Where We Are

Computing & Information Sciences
Kansas State University

4

CIS 536/636

Introduction to Computer Graphics
Lecture 31 of 41

Acknowledgements:
Inverse Kinematics, Ray Tracing

David C. Brogan
Visiting Assistant Professor, Computer Science Department, University of Virginia

http://www.cs.virginia.edu/~dbrogan/

Susquehanna International Group (SIG)

http://www.sig.com

Renata Melamud
Ph.D. Candidate

Mechanical Engineering Department

Stanford University

http://micromachine.stanford.edu/~rmelamud/

Dave Shreiner & Brad Grantham
Adjunct Professor & Adjunct Lecturer,
Santa Clara University

ARM Holdings, plc

http://www.plunk.org/~shreiner/

http://www.plunk.org/~grantham/

Computing & Information Sciences
Kansas State University

5

CIS 536/636

Introduction to Computer Graphics
Lecture 31 of 41

Review [1]:
Kinematics & Degrees of Freedom

Adapted from slides 2000 – 2005 D. Brogan, University of Virginia
CS 551, Advanced CG & Animation – http://bit.ly/hUXrqd

Computing & Information Sciences
Kansas State University

6

CIS 536/636

Introduction to Computer Graphics
Lecture 31 of 41

Review [2]:
Joint Types

Adapted from slides 2002 R. Melamud, Stanford University
Mirrored at CMU 16-311 Introduction to Robotics, http://generalrobotics.org

Computing & Information Sciences
Kansas State University

7

CIS 536/636

Introduction to Computer Graphics
Lecture 31 of 41

Forward Kinematics:
Joint Angles to Bone Coordinates

Adapted from slides 2004 – 2005 S. Rotenberg, UCSD
CSE169: Computer Animation, Winter 2005 – http://bit.ly/f0ViAN

Computing & Information Sciences
Kansas State University

8

CIS 536/636

Introduction to Computer Graphics
Lecture 31 of 41

Review [3]:
Forward Kinematics

Adapted from slides 2002 K. J. Choi, Seoul National University
Graphics and Media Lab (http://graphics.snu.ac.kr) – mirrored at: http://bit.ly/hnzSAN

Base

1
2 End Effector

3
?

)f(θx

Choi

 Φe f
Rotenberg

Computing & Information Sciences
Kansas State University

9

CIS 536/636

Introduction to Computer Graphics
Lecture 31 of 41

Review [4]:
Inverse Kinematics

Adapted from slides 2002 K. J. Choi, Seoul National University
Graphics and Media Lab (http://graphics.snu.ac.kr) – mirrored at: http://bit.ly/hnzSAN

Base

1
2 3

End Effector?
?

For more on characters & IK, see:
Advanced Topics in CG Lecture 05

)(f 1 xθ

Choi Rotenberg

 eΦ 1 f

Computing & Information Sciences
Kansas State University

10

CIS 536/636

Introduction to Computer Graphics
Lecture 31 of 41

Inverse Kinematics:
Issues

Adapted from slides 2004 – 2005 S. Rotenberg, UCSD
CSE169: Computer Animation, Winter 2005 – http://bit.ly/f0ViAN

Computing & Information Sciences
Kansas State University

11

CIS 536/636

Introduction to Computer Graphics
Lecture 31 of 41

Review [5]:
Inverse Kinematics Demos

© 2008 T. Komura, H. S. Lim, & R. W. H. Lau
http://youtu.be/FJTBMnP6oCM

© 2008 M. Kinzelman
http://youtu.be/l52yZ491kPo

© 2007 A. Brown
http://youtu.be/6JdLOLazJJ0

© 2011 K. Iyer
http://youtu.be/YvRBWIRAPsE

Computing & Information Sciences
Kansas State University

12

CIS 536/636

Introduction to Computer Graphics
Lecture 31 of 41

Review [6]:
Ragdoll Physics

 Type of Procedural Animation

 Automatically generates CGA directives (rotations)

 Based on simulation

 Rigid-body dynamics

 Articulated Figure

 Gravity

 No autonomous movement

 Used for inert body

 Usually: character death (car impact, falling body, etc.)

 Less often: unconscious, paralyzed character

 Collisions with Multiple Bodies

 Inter-character

 Character-object

Falling Bodies © 1997 – 2001 Animats
 http://www.animats.com

Computing & Information Sciences
Kansas State University

13

CIS 536/636

Introduction to Computer Graphics
Lecture 31 of 41

Review [7]:
Ragdoll Physics Demos

© 2006 P. Pelt
http://youtu.be/6JdLOLazJJ0

See also: http://youtu.be/5_QIsI0fyaU

© 2007 N. Picouet
 http://youtu.be/ohNqCb--aSs

© 2010 M. Heinzen (Arkaein)
 http://bit.ly/gUj9Su / http://youtu.be/FJTBMnP6oCM

© 2009 M. E. Cerquoni
http://youtu.be/uW_DK2qvKv8

Computing & Information Sciences
Kansas State University

14

CIS 536/636

Introduction to Computer Graphics
Lecture 31 of 41

Review [8}:
Physically-Based Modeling (PBM)

 Particle Dynamics

 Emitters

 0-D (points), 1-D (lines), 2-D (planes, discs, cross-sections)

 e.g., fireworks (0-D); fountains (0/1/2-D); smokestacks, jets (2-D)

 Simulation: birth-death process, functions of particle age/trajectory

 Rigid-Body Dynamics

 Constrained systems of connected parts

 Examples: falling rocks, colliding vehicles, rag dolls

 Articulated Figures: Primarily IK

 More References

 ACM, Intro to Physically-Based Modeling : http://bit.ly/hhQvXd

 Wikipedia, Physics Engine: http://bit.ly/h4PIRt

 Wikipedia, N-Body Problem: http://bit.ly/1ayWwe

 PBM System: nVidia (Ageia) PhysX: http://bit.ly/cp7bnA

 Rocks fall
 Everyone dies

Computing & Information Sciences
Kansas State University

15

CIS 536/636

Introduction to Computer Graphics
Lecture 31 of 41

 What is it?

 Why use it?

 Basics

 Advanced topics

 References

Ray Tracing [1]:
Overview

Adapted from slides 2001 D. Shreiner & B. Grantham, SCU
COEN 290: Computer Graphics I, Winter 2001 – http://bit.ly/hz1kfU

© 2006 – 2007 H. Kuijpers,
Capgemini Netherlands

http://bit.ly/erkKrC

Computing & Information Sciences
Kansas State University

16

CIS 536/636

Introduction to Computer Graphics
Lecture 31 of 41

 Simulate rays of light

 Produces natural lighting effects

 Hard to simulate effects with rasterization techniques (OpenGL)

 Rasterizers require many passes

 Ray-tracing easier to implement

 Reflection Depth of Field

 Refraction Motion Blur

 Soft Shadows Caustics

Ray Tracing [2]:
Why Use It?

Adapted from slides 2001 D. Shreiner & B. Grantham, SCU
COEN 290: Computer Graphics I, Winter 2001 – http://bit.ly/hz1kfU

Computing & Information Sciences
Kansas State University

17

CIS 536/636

Introduction to Computer Graphics
Lecture 31 of 41

 Entertainment (Movies, Commercials)

 Games pre-production

 Simulation

Ray Tracing [3]:
Who Uses It?

Adapted from slides 2001 D. Shreiner & B. Grantham, SCU
COEN 290: Computer Graphics I, Winter 2001 – http://bit.ly/hz1kfU

Computing & Information Sciences
Kansas State University

18

CIS 536/636

Introduction to Computer Graphics
Lecture 31 of 41

 Decartes, 1637 A.D. - analysis of rainbow

 Arthur Appel, 1968 - used for lighting 3D models

 Turner Whitted, 1980 - “An Improved Illumination Model for
Shaded Display” really kicked everyone off.

 1980-now - Lots of research

Ray Tracing [4]:
Brief History

Adapted from slides 2001 D. Shreiner & B. Grantham, SCU
COEN 290: Computer Graphics I, Winter 2001 – http://bit.ly/hz1kfU

Computing & Information Sciences
Kansas State University

19

CIS 536/636

Introduction to Computer Graphics
Lecture 31 of 41

 Generating Rays

 Intersecting Rays with Scene

 Lighting

 Shadowing

 Reflections

Ray Tracing [5]:
Basic Operations

Adapted from slides 2001 D. Shreiner & B. Grantham, SCU
COEN 290: Computer Graphics I, Winter 2001 – http://bit.ly/hz1kfU

Computing & Information Sciences
Kansas State University

20

CIS 536/636

Introduction to Computer Graphics
Lecture 31 of 41

 Simulate light rays from light source to eye

Reflected ray Incident ray

Eye Light

Surface

Ray Tracing [6]:
Basic Idea

Adapted from slides 2001 D. Shreiner & B. Grantham, SCU
COEN 290: Computer Graphics I, Winter 2001 – http://bit.ly/hz1kfU

Computing & Information Sciences
Kansas State University

21

CIS 536/636

Introduction to Computer Graphics
Lecture 31 of 41

 Trace rays from light

 Lots of work for little return

Eye

Light

Image
Plane

Object

Light Rays

“Forward” Ray Tracing

Adapted from slides 2001 D. Shreiner & B. Grantham, SCU
COEN 290: Computer Graphics I, Winter 2001 – http://bit.ly/hz1kfU

Computing & Information Sciences
Kansas State University

22

CIS 536/636

Introduction to Computer Graphics
Lecture 31 of 41

 Trace rays from eye instead

 Do work where it matters

Eye

Light

This is what most people mean by “ray tracing”.

Image
Plane

Object

Adapted from slides 2001 D. Shreiner & B. Grantham, SCU
COEN 290: Computer Graphics I, Winter 2001 – http://bit.ly/hz1kfU

“Backward” Ray Tracing

Computing & Information Sciences
Kansas State University

23

CIS 536/636

Introduction to Computer Graphics
Lecture 31 of 41

 Ray expressed as function of a single parameter (“t”)

ro = <xo, yo, zo>

t = 0.0

t = 1.0

t = 2.0

t = 2.5

rd = <xd, yd, zd>

<x, y, z> = <xo, yo, zo> + t * <xd, yd, zd>

<x, y, z> = ro + trd

Adapted from slides 2001 D. Shreiner & B. Grantham, SCU
COEN 290: Computer Graphics I, Winter 2001 – http://bit.ly/hz1kfU

Ray: Parametric Form

Computing & Information Sciences
Kansas State University

24

CIS 536/636

Introduction to Computer Graphics
Lecture 31 of 41

 Trace one ray for each pixel (u, v) in image plane

Eye

tan(fovx) * 2

(Looking down from the top)

Image
Plane

Eye

fovx

Adapted from slides 2001 D. Shreiner & B. Grantham, SCU
COEN 290: Computer Graphics I, Winter 2001 – http://bit.ly/hz1kfU

Generating Rays [1]

Computing & Information Sciences
Kansas State University

25

CIS 536/636

Introduction to Computer Graphics
Lecture 31 of 41

 Trace one ray for each pixel (u, v) in image plane

m

n

(tan(fovx)* 2) / m

(tan(fovy)* 2) / n
Eye

Image
Plane

(Looking from the side)

Adapted from slides 2001 D. Shreiner & B. Grantham, SCU
COEN 290: Computer Graphics I, Winter 2001 – http://bit.ly/hz1kfU

Generating Rays [2]

Computing & Information Sciences
Kansas State University

26

CIS 536/636

Introduction to Computer Graphics
Lecture 31 of 41

 Trace one ray for each pixel (u, v) in image plane

renderImage(){
 for each pixel i, j in the image
 ray.setStart(0, 0, 0); // ro
 ray.setDir ((.5 + i) * tan(fovx)* 2 / m,

 (.5 + j) * tan(fovy)* 2 / n,
 1.0); // rd

 ray.normalize();
 image[i][j] = rayTrace(ray);
}

Adapted from slides 2001 D. Shreiner & B. Grantham, SCU
COEN 290: Computer Graphics I, Winter 2001 – http://bit.ly/hz1kfU

Generating Rays [3]

Computing & Information Sciences
Kansas State University

27

CIS 536/636

Introduction to Computer Graphics
Lecture 31 of 41

 Want to know: at what point p does ray intersect triangle?

 Compute lighting, reflected rays, shadowing from that point

ro

rd

<?, ?, ?>
(t = ???)

p = tmin

Adapted from slides 2001 D. Shreiner & B. Grantham, SCU
COEN 290: Computer Graphics I, Winter 2001 – http://bit.ly/hz1kfU

Ray/Triangle Intersection [1]:
Intersection Test Revisited

Computing & Information Sciences
Kansas State University

28

CIS 536/636

Introduction to Computer Graphics
Lecture 31 of 41

 Step 1 : Intersect with plane
(Ax + By + Cz + D = 0)

Plane normal
 n = <A, B, C>

p

tmin = p = -(n ro + D) / (n rd)

rd

ro

Adapted from slides 2001 D. Shreiner & B. Grantham, SCU
COEN 290: Computer Graphics I, Winter 2001 – http://bit.ly/hz1kfU

Ray/Triangle Intersection [2]:
Ray/Plane Intersection Point p

Computing & Information Sciences
Kansas State University

29

CIS 536/636

Introduction to Computer Graphics
Lecture 31 of 41

 Step 2 : Check against triangle edges

p

V1

V2

V0

n

Plug p into (p Ei + di) for each edge

if signs are all positive or negative,
 point is inside triangle!

V0V1

E0
Ei = ViVi+1 x n (plane A, B, C)
di = -A.N (plane D)

Adapted from slides 2001 D. Shreiner & B. Grantham, SCU
COEN 290: Computer Graphics I, Winter 2001 – http://bit.ly/hz1kfU

Ray/Triangle Intersection [3]:
Triangle Containment

Computing & Information Sciences
Kansas State University

30

CIS 536/636

Introduction to Computer Graphics
Lecture 31 of 41

 Could use plane normals (flat shading)

 Better to interpolate from vertices

p

n

nV1

nV2

nV0

b

a
c

V1

V2

V0

n = anV0 + bnV1 + cnV2

Find areas

Adapted from slides 2001 D. Shreiner & B. Grantham, SCU
COEN 290: Computer Graphics I, Winter 2001 – http://bit.ly/hz1kfU

Triangle Normals
for Shading

Computing & Information Sciences
Kansas State University

31

CIS 536/636

Introduction to Computer Graphics
Lecture 31 of 41

 Check all triangles, keep closest intersection tmin

hitObject(ray) {
 for each triangle in scene
 does ray intersect triangle?
 if(intersected and was closer)
 save that intersection
 if(intersected)
 return intersection point and normal
}

Adapted from slides 2001 D. Shreiner & B. Grantham, SCU
COEN 290: Computer Graphics I, Winter 2001 – http://bit.ly/hz1kfU

Finding Intersections

Computing & Information Sciences
Kansas State University

32

CIS 536/636

Introduction to Computer Graphics
Lecture 31 of 41

 We’ll use triangles for lights

 Can build complex shapes from triangles

 Some lighting terms

Eye

V

R

N

I

Light

Adapted from slides 2001 D. Shreiner & B. Grantham, SCU
COEN 290: Computer Graphics I, Winter 2001 – http://bit.ly/hz1kfU

Lighting [1]:
General Notation Review

Computing & Information Sciences
Kansas State University

33

CIS 536/636

Introduction to Computer Graphics
Lecture 31 of 41

 Use modified Phong lighting

 similar to OpenGL

 simulates rough and shiny surfaces

for each light
 In = IambientKambient +

 IdiffuseKdiffuse (L.N) +
 IspecularKspecular (R.V)n

Adapted from slides 2001 D. Shreiner & B. Grantham, SCU
COEN 290: Computer Graphics I, Winter 2001 – http://bit.ly/hz1kfU

Lighting [2]:
Modified Phong Illumination

Computing & Information Sciences
Kansas State University

34

CIS 536/636

Introduction to Computer Graphics
Lecture 31 of 41

 Iambient – simulates indirect lighting in a scene

 May not need for RT!

Eye

Light

Adapted from slides 2001 D. Shreiner & B. Grantham, SCU
COEN 290: Computer Graphics I, Winter 2001 – http://bit.ly/hz1kfU

Ambient Light

Computing & Information Sciences
Kansas State University

35

CIS 536/636

Introduction to Computer Graphics
Lecture 31 of 41

 Idiffuse – simulates direct lighting on rough surface

 Viewer-independent

 Paper, rough wood, brick, etc...

Eye

Light

Adapted from slides 2001 D. Shreiner & B. Grantham, SCU
COEN 290: Computer Graphics I, Winter 2001 – http://bit.ly/hz1kfU

Diffuse Light

Computing & Information Sciences
Kansas State University

36

CIS 536/636

Introduction to Computer Graphics
Lecture 31 of 41

 Ispecular simulates direct lighting on a smooth surface

 Viewer dependent

 Plastic, metal, polished wood, etc...

Eye

Light

Adapted from slides 2001 D. Shreiner & B. Grantham, SCU
COEN 290: Computer Graphics I, Winter 2001 – http://bit.ly/hz1kfU

Specular Light

Computing & Information Sciences
Kansas State University

37

CIS 536/636

Introduction to Computer Graphics
Lecture 31 of 41

 Check against other objects to see if point is shadowed

Shadowing
object

Adapted from slides 2001 D. Shreiner & B. Grantham, SCU
COEN 290: Computer Graphics I, Winter 2001 – http://bit.ly/hz1kfU

Shadow Test

Eye

Light

Computing & Information Sciences
Kansas State University

38

CIS 536/636

Introduction to Computer Graphics
Lecture 31 of 41

 Angle of incidence = angle of reflection (I = R)

 I, R, N lie in the same plane

R = I - 2 (N I) N R

N

I I R

Adapted from slides 2001 D. Shreiner & B. Grantham, SCU
COEN 290: Computer Graphics I, Winter 2001 – http://bit.ly/hz1kfU

Reflection

Computing & Information Sciences
Kansas State University

39

CIS 536/636

Introduction to Computer Graphics
Lecture 31 of 41

 Recursive ray evaluation

 Generates ray tree shown at right

rayTrace(ray) {
 hitObject(ray, p, n, triangle);
 color = object color;
 if(object is light)
 return(color);
 else
 return(lighting(p, n, color));
}

Adapted from slides 2001 D. Shreiner & B. Grantham, SCU
COEN 290: Computer Graphics I, Winter 2001 – http://bit.ly/hz1kfU

Ray tree
© 2000 N. Patrikalakis, MIT

http://bit.ly/fjcGGk

I = Incident ray
S = light Source vector (aka L)

R = reflected ray
T = transmitted ray

Putting It All Together [1]:
Recursive Calculation & Ray Tree

Computing & Information Sciences
Kansas State University

40

CIS 536/636

Introduction to Computer Graphics
Lecture 31 of 41

 Calculating surface color

lighting(point) {
 color = ambient color;
 for each light
 if(hitObject(shadow ray))
 color += lightcolor *

dot(shadow ray, n);
 color += rayTrace(reflection) *
 pow(dot(reflection, ray), shininess);
 return(color);
}

Adapted from slides 2001 D. Shreiner & B. Grantham, SCU
COEN 290: Computer Graphics I, Winter 2001 – http://bit.ly/hz1kfU

Putting It All Together [2]:
Applying Lighting

Computing & Information Sciences
Kansas State University

41

CIS 536/636

Introduction to Computer Graphics
Lecture 31 of 41

main() {
 triangles = readTriangles();
 image = renderImage(triangles);
 writeImage(image);
}

Adapted from slides 2001 D. Shreiner & B. Grantham, SCU
COEN 290: Computer Graphics I, Winter 2001 – http://bit.ly/hz1kfU

Putting It All Together [3]:
Main Program

Computing & Information Sciences
Kansas State University

42

CIS 536/636

Introduction to Computer Graphics
Lecture 31 of 41

 Lighting, Shadows, Reflection are enough to make some
compelling images

 Want better lighting and objects

 Need more speed

Adapted from slides 2001 D. Shreiner & B. Grantham, SCU
COEN 290: Computer Graphics I, Winter 2001 – http://bit.ly/hz1kfU

Good Start:
What next?

Computing & Information Sciences
Kansas State University

43

CIS 536/636

Introduction to Computer Graphics
Lecture 31 of 41

 Better Lighting + Forward Tracing

 Texture Mapping

 Modeling Techniques

 Distributed Ray Tracing: Techniques

 Motion Blur

 Depth of Field

 Blurry Reflection/Refraction

 Wikipedia, Distributed Ray Tracing: http://bit.ly/ihyVUs

 Improving Image Quality

 Acceleration Techniques

Adapted from slides 2001 D. Shreiner & B. Grantham, SCU
COEN 290: Computer Graphics I, Winter 2001 – http://bit.ly/hz1kfU

More Quality, More Speed

Computing & Information Sciences
Kansas State University

44

CIS 536/636

Introduction to Computer Graphics
Lecture 31 of 41

 Keep track of medium (air, glass, etc)

 Need index of refraction ()

 Need solid objects

T

N

I
I

T

sin(I) 1

sin(T) 2
=

Medium 1
(e.g., air)

Medium 2
(e.g., water)

Adapted from slides 2001 D. Shreiner & B. Grantham, SCU
COEN 290: Computer Graphics I, Winter 2001 – http://bit.ly/hz1kfU

Refraction [1]:
Snell’s Law

Computing & Information Sciences
Kansas State University

45

CIS 536/636

Introduction to Computer Graphics
Lecture 31 of 41

Adapted from slides 2001 D. Shreiner & B. Grantham, SCU
COEN 290: Computer Graphics I, Winter 2001 – http://bit.ly/hz1kfU

Refraction [2]:
Example

Computing & Information Sciences
Kansas State University

46

CIS 536/636

Introduction to Computer Graphics
Lecture 31 of 41

 Cook-Torrance model

 Based on a microfacet model

 Wikipedia: http://bit.ly/hX3U30

 Metals have different color at angle

 Oblique reflections leak around corners

Adapted from slides 2001 D. Shreiner & B. Grantham, SCU
COEN 290: Computer Graphics I, Winter 2001 – http://bit.ly/hz1kfU

Improved Light Model:
Cook-Torrance

Computing & Information Sciences
Kansas State University

47

CIS 536/636

Introduction to Computer Graphics
Lecture 31 of 41

 Backward tracing doesn’t handle indirect lighting too well

 To get caustics, trace forward, store results in texture map

Adapted from slides 2001 D. Shreiner & B. Grantham, SCU
COEN 290: Computer Graphics I, Winter 2001 – http://bit.ly/hz1kfU

Using “Forward” Ray Tracing [1]:
Lensed Caustics for Indirect Lighting

Computing & Information Sciences
Kansas State University

48

CIS 536/636

Introduction to Computer Graphics
Lecture 31 of 41

Adapted from slides 2001 D. Shreiner & B. Grantham, SCU
COEN 290: Computer Graphics I, Winter 2001 – http://bit.ly/hz1kfU

Using “Forward” Ray Tracing [2]:
Example

Computing & Information Sciences
Kansas State University

49

CIS 536/636

Introduction to Computer Graphics
Lecture 31 of 41

 Using texture maps

 Add surface detail

 Think of it like texturing in OpenGL

 Diffuse, specular colors

 Shininess value

 Bump map

 Transparency value

Adapted from slides 2001 D. Shreiner & B. Grantham, SCU
COEN 290: Computer Graphics I, Winter 2001 – http://bit.ly/hz1kfU

Texture Mapping & Ray Tracing [1]:
Applying Surface Detail

Computing & Information Sciences
Kansas State University

50

CIS 536/636

Introduction to Computer Graphics
Lecture 31 of 41

Adapted from slides 2001 D. Shreiner & B. Grantham, SCU
COEN 290: Computer Graphics I, Winter 2001 – http://bit.ly/hz1kfU

Texture Mapping & Ray Tracing [2]:
Example

Computing & Information Sciences
Kansas State University

51

CIS 536/636

Introduction to Computer Graphics
Lecture 31 of 41

 More expressive than triangle

 Intersection is probably slower

 u and v on surface can be used as texture s, t

Adapted from slides 2001 D. Shreiner & B. Grantham, SCU
COEN 290: Computer Graphics I, Winter 2001 – http://bit.ly/hz1kfU

Parametric Surfaces

Computing & Information Sciences
Kansas State University

52

CIS 536/636

Introduction to Computer Graphics
Lecture 31 of 41

 Union, Subtraction, Intersection of solid objects

 Have to keep track of intersections

Adapted from slides 2001 D. Shreiner & B. Grantham, SCU
COEN 290: Computer Graphics I, Winter 2001 – http://bit.ly/hz1kfU

Constructive Solid Geometry

Computing & Information Sciences
Kansas State University

53

CIS 536/636

Introduction to Computer Graphics
Lecture 31 of 41

 Scene made of parts

 Each part made of smaller parts

 Each smaller part has transformation linking it to larger part

 Transformation can change over time: animation (CGA)

Adapted from slides 2001 D. Shreiner & B. Grantham, SCU
COEN 290: Computer Graphics I, Winter 2001 – http://bit.ly/hz1kfU

Hierarchical Transformation

Computing & Information Sciences
Kansas State University

54

CIS 536/636

Introduction to Computer Graphics
Lecture 31 of 41

 Average multiple rays instead of just one ray

 Use for both shadows, reflections, transmission (refraction)

 Use for motion blur

 Use for depth of field

Adapted from slides 2001 D. Shreiner & B. Grantham, SCU
COEN 290: Computer Graphics I, Winter 2001 – http://bit.ly/hz1kfU

Distributed Ray Tracing [1]:
Basic Idea

Computing & Information Sciences
Kansas State University

55

CIS 536/636

Introduction to Computer Graphics
Lecture 31 of 41

Adapted from slides 2001 D. Shreiner & B. Grantham, SCU
COEN 290: Computer Graphics I, Winter 2001 – http://bit.ly/hz1kfU

Distributed Ray Tracing [2]:
Example

Computing & Information Sciences
Kansas State University

56

CIS 536/636

Introduction to Computer Graphics
Lecture 31 of 41

 One ray is not enough (jaggies)

 Can use multiple rays per pixel - supersampling

 Can use a few samples, continue if they’re very different -
adaptive supersampling

 Texture interpolation & filtering

Adapted from slides 2001 D. Shreiner & B. Grantham, SCU
COEN 290: Computer Graphics I, Winter 2001 – http://bit.ly/hz1kfU

Distributed Ray Tracing [3]:
Supersampling

Ray Tracing © 2008 Wikipedia
http://bit.ly/dV7lNm

Computing & Information Sciences
Kansas State University

57

CIS 536/636

Introduction to Computer Graphics
Lecture 31 of 41

 1280x1024 image with 10 rays/pixel

 1000 objects (triangle, CSG, NURBS)

 3 levels recursion

 39321600000 intersection tests

100000 tests/second -> 109 days!

Must use an acceleration method!

Adapted from slides 2001 D. Shreiner & B. Grantham, SCU
COEN 290: Computer Graphics I, Winter 2001 – http://bit.ly/hz1kfU

Acceleration!

Computing & Information Sciences
Kansas State University

58

CIS 536/636

Introduction to Computer Graphics
Lecture 31 of 41

 Use simple shape for quick test, keep BV hierarchy

Adapted from slides 2001 D. Shreiner & B. Grantham, SCU
COEN 290: Computer Graphics I, Winter 2001 – http://bit.ly/hz1kfU

Bounding Volumes

Computing & Information Sciences
Kansas State University

59

CIS 536/636

Introduction to Computer Graphics
Lecture 31 of 41

 Break your space into pieces

 Search the structure linearly

Adapted from slides 2001 D. Shreiner & B. Grantham, SCU
COEN 290: Computer Graphics I, Winter 2001 – http://bit.ly/hz1kfU

Spatial Partitioning:
Subdivision

Computing & Information Sciences
Kansas State University

60

CIS 536/636

Introduction to Computer Graphics
Lecture 31 of 41

 Can always throw more processors at it

 Parallel computing model

 Multiple processes or threads

 Data parallel: separate pixel for each

Adapted from slides 2001 D. Shreiner & B. Grantham, SCU
COEN 290: Computer Graphics I, Winter 2001 – http://bit.ly/hz1kfU

Parallelism

Computing & Information Sciences
Kansas State University

61

CIS 536/636

Introduction to Computer Graphics
Lecture 31 of 41

 Error analysis

 Hybrid radiosity/ray-tracing

 Metropolis Light Transport

 Memory-Coherent Ray-tracing

Adapted from slides 2001 D. Shreiner & B. Grantham, SCU
COEN 290: Computer Graphics I, Winter 2001 – http://bit.ly/hz1kfU

Really Advanced Stuff

Computing & Information Sciences
Kansas State University

62

CIS 536/636

Introduction to Computer Graphics
Lecture 31 of 41

 Introduction to Ray-Tracing, Glassner et al., 1989, 0-12-286160-4

 Advanced Animation and Rendering Techniques, Watt & Watt,
1992, 0-201-54412-1

 Computer Graphics: Image Synthesis, Joy et al., 1988, 0-8186-
8854-4

 SIGGRAPH Proceedings (All)

Adapted from slides 2001 D. Shreiner & B. Grantham, SCU
COEN 290: Computer Graphics I, Winter 2001 – http://bit.ly/hz1kfU

References

Computing & Information Sciences
Kansas State University

63

CIS 536/636

Introduction to Computer Graphics
Lecture 31 of 41

Summary

 Reading for Last Class: §5.3, Eberly 2e; CGA Handout

 Reading for Today: Chapter 14, Eberly 2e

 Reading for Next Class: Ray Tracing Handout

 Last Class: Particle Systems, Collisions, IK/CGA Concluded

 Dynamics vs. kinematics, forward vs. inverse revisited

 IK: autonomous vs. hand-animated; solution approaches

 Rag doll physics, rigid-body dynamics, physically-based models

 Today: Ray Tracing, Part 1 of 2

 Vectors

 Light (L): to point light sources (or shadows)

 Reflected (R): from object surface

 Transmitted or Transparency (T): through transparent object

 tmin: distance to intersection between ray and bounding volume

 Ways to find tmin

 Basic recursive ray tracing: ray trees

Computing & Information Sciences
Kansas State University

64

CIS 536/636

Introduction to Computer Graphics
Lecture 31 of 41

Terminology

 Joints: Parts of Robot / Articulated Figure That Turn, Slide

 Effectors: Parts of Robot / Articulated Figure That Act (e.g., Hand, Foot)

 Bones: Effectors, Other Parts That Rotate about, Slide through Joints

 Procedural Animation: Automatic Generation of Motion via Simulation

 Ray Tracing aka Ray Casting

 Given: screen with pixels (u, v)

 Find intersection tmin(u, v) of rays through each (u, v) with scene

 Calculate vectors emanating from world-space coordinate of tmin

 Light (L): to point light sources (or shadows)

 Reflected (R): from object surface

 Transmitted or Transparency (T): through transparent object

 Recursive RT: call raytracer for each intersection found

 Builds ray tree rooted at intersection point

 Base cases: unobstructed vector to light; depth limit

 Parallel RT: use multiple threads/processes for each (u, v) or t

