
 

Genetic Programming 
 

William H. Hsu, Kansas State University, USA 
 
INTRODUCTION 

Genetic programming (GP) is a sub-area of evolutionary computation first 
explored by John Koza (1992) and independently developed by Nichael Lynn Cramer 
(1985).  It is a method for producing computer programs through adaptation according to 
a user-defined fitness criterion, or objective function. 

Like genetic algorithms, GP uses a representation related to some computational 
model, but in GP, fitness is tied to task performance by specific program semantics.  
Instead of strings or permutations, genetic programs are most commonly represented as 
variable-sized expression trees in imperative or functional programming languages, as 
grammars (O’Neill & Ryan, 2001), or as circuits (Koza et al., 1999).  GP uses patterns 
from biological evolution to evolve programs: 

• Crossover – exchange of genetic material such as program subtrees or 
grammatical rules 

• Selection – the application of the fitness criterion to choose which individuals 
from a population will go on to reproduce 

• Replication – the propagation of individuals from one generation to the next 
• Mutation – the structural modification of individuals  

To work effectively, GP requires an appropriate set of program operators, variables, 
and constants.  Fitness in GP is typically evaluated over fitness cases.  In data mining, 
this usually means training and validation data, but cases can also be generated 
dynamically using a simulator or directly sampled from a real-world problem solving 
environment.  GP uses evaluation over these cases to measure performance over the 
required task, according to the given fitness criterion. 

BACKGROUND 

Although Cramer (1985) first described the use of crossover, selection, and 
mutation and tree representations for using genetic algorithms to generate programs, 
Koza is indisputably the field's most prolific and persuasive author.  (Wikipedia, 2004)  
In four books since 1992, Koza et al. have described GP-based solutions to numerous toy 
problems and several important real-world problems. 

State of the field: To date, GPs have been successfully applied to a few significant 
problems in machine learning and data mining, most notably symbolic regression and 
feature construction.  The method is very computationally intensive, however, and it is 
still an open question in current research whether simpler methods can be used instead.  
These include supervised inductive learning, deterministic optimization, randomized 



 

approximation using non-evolutionary algorithms (such as Markov chain Monte Carlo 
approaches), or genetic algorithms and evolutionary algorithms. It is postulated by GP 
researchers that the adaptability of GPs to structural, functional, and structure-generating 
solutions of unknown form makes them more amenable to solving complex problems.  
Specifically, Koza et al. demonstrate (1999, 2003) that in many domains, GP is capable 
of “human-competitive” automated discovery of concepts deemed to be innovative 
through technical review such as patent evaluation. 

MAIN THRUST OF THE CHAPTER 

The general strengths of genetic programs lie in their ability to produce solutions of 
variable functional form, reuse partial solutions, solve multi-criterion optimization 
problems, and explore a large search space of solutions in parallel.  Modern GP systems 
are also able to produce structured, object-oriented, and functional programming 
solutions involving recursion or iteration, subtyping, and higher-order functions. 

A more specific advantage of GPs are their ability to represent procedural, 
generative solutions to pattern recognition and machine learning problems.  Examples of 
this include image compression and reconstruction (Koza, 1992) and several of the recent 
applications surveyed below. 

Genetic Programming (GP) for Pattern Classification 

GP in pattern classification departs from traditional supervised inductive learning 
in that it evolves solutions whose functional form is not determined in advance, and in 
some cases can be theoretically arbitrary.   Koza (1992, 1994) developed GPs for several 
pattern reproduction problems such as the multiplexer and symbolic regression problems. 

Since then, there has been continuing work on inductive GP for pattern 
classification (Kishore et al., 2000), prediction (Brameier & Banzhaf, 2001), and 
numerical curve-fitting (Nikolaev & Iba, 2001, IEEE Trans. Evol. Comp.).  GP has been 
used to boost performance in learning polynomial functions (Nikolaev & Iba, 2001, GP 
& Evol. Machines).  More recent work on tree-based multi-crossover schemes has 
produced positive results in GP-based design of classification functions (Muni et al., 
2004). 

GP for Control of Inductive Bias, Feature Construction, and Feature Extraction 

GP approaches to inductive learning face the general problem of optimizing 
inductive bias: the preference for groups of hypotheses over others on bases other than 
pure consistency with training data or other fitness cases.   Krawiec (2002) approaches 
this problem by using GP to preserve useful components of representation (features) 
during an evolutionary run, validating them using the classification data, and reusing 
them in subsequent generations.  This technique is related to the wrapper approach to 
KDD, where validation data is held out and used to select examples for supervised 
learning, or to construct or select variables given as input to the learning system.  



 

Because GP is a generative problem solving approach, feature construction in GP tends to 
involve production of new variable definitions rather than merely selecting a subset. 

Evolving dimensionally-correct equations on the basis of data is another area where 
GP has been applied. Keijzer & Babovic (2002) provide a study of how GP formulates its 
declarative bias and preferential (search-based) bias.  In this and related work, it is shown 
that proper units of measurement (strong typing) approach can capture declarative bias 
towards correct equations, whereas type coercion can implement even better preferential 
bias. 

Grammar-Based GP for Data Mining 

Not all GP-based approaches use expression tree-based representations, nor 
functional program interpretation as the computational model.  Wong and Leung (2000) 
survey data mining using grammars and formal languages.  This general approach has 
been shown effective for some natural language learning problems, and extension of the 
approach to procedural information extraction is a topic of current research in the GP 
community. 

GP  Software Packages: Functionality and Research Features 

A number of GP software packages are publicly and commercially available.  
General features common to most GP systems for research and development include: a 
very high-period random number generator such as the Mersenne Twister for random 
constant generation and GP operations; a variety of selection, crossover, and mutation 
operations; and trivial parallelism (e.g., through multithreading). 

One of the most popular packages for experimentation with GP is Evolutionary 
Computation in Java, or ECJ (Luke et al., 2004).  ECJ implements the above features as 
well as parsimony, “strongly-typed” GP, migration strategies for exchanging individual 
subpopulations in island mode or multi-deme GP, vector representations, and 
reconfigurabity using parameter files. 

Other Applications: Optimization, Policy Learning 

Like other genetic and evolutionary computation methodologies, GP is driven by 
fitness and suited to optimization approaches to machine learning and data mining.  Its 
program-based representation makes it good for acquiring policies by reinforcement 
learning.  Many GP problems are “error-driven” or “payoff-driven” (Koza, 1992), 
including the ant trail problems and foraging problems now explored more heavily by the 
swarm intelligence and ant colony optimization communities.  A few problems use 
specific information-theoretic criteria such as maximum entropy or sequence 
randomization. 

 



 

FUTURE TRENDS 

Limitations: Scalability and Solution Comprehensibility 

Genetic programming remains a controversial approach due to its high 
computational cost, scalability issues, and current gaps in fundamental theory for relating 
its performance to traditional search methods, such as hill climbing.  While GP has 
achieved results in design, optimization, and intelligent control that are as good as and 
sometimes better than those produced by human engineers, it is not yet widely used as a 
technique due to these limitations in theory.  An additional controversy in the intelligent 
systems community is the role of knowledge in search-driven approaches such as GP.  
Some proponents of GP view it as a way to generate innovative solutions with little or no 
domain knowledge, while critics have expressed skepticism over original results due to 
the lower human-comprehensibility of some results.  The crux of this debate is a tradeoff 
between innovation and originality versus comprehensibility, robustness, and ease of 
validation.  Successes in replicating previously-patented engineering designs such as 
analog circuits using GP (Koza et al., 2003) have increased its credibility in this regard. 

Open Issues: Code Growth, Diversity, Reuse, and Incremental Learning 

Some of the most important open problems in GP deal with the proliferation of 
solution code (called code growth or code bloat), the reuse of previously-evolved partial 
solutions, and incremental learning.  Code growth is an increase in solution size across 
generations, and generally refers to one that is not matched by a proportionate increase in 
fitness.  It has been studied extensively in the field of GP by many researchers.  Luke 
(2000) provides a survey of known and hypothesized causes of code growth, along with 
methods for monitoring and controlling growth.  Recently Burke et al. (2004) explored 
the relationship between diversity (variation among solutions) and code growth and 
fitness.  Some techniques for controlling code growth include reuse of partial solutions 
through such mechanisms as automatically-defined functions, or ADFs (Koza, 1994) and 
incremental learning – that is, learning in stages.  One incremental approach in GP is to 
specify criteria for a simplified problem and then transfer the solutions to a new GP 
population (Hsu & Gustafson, 2002). 

CONCLUSION 

Genetic programming (GP) is a search methodology that provides a flexible and 
complete mechanism for machine learning, automated discovery, and cost-driven 
optimization.  It has been shown to work well in many optimization and policy learning 
problems, but scaling GP up to most real-world data mining domains is a challenge due 
to its high computational complexity.  More often, GP is used to evolve data 
transformations by constructing features, or to control the declarative and preferential 
inductive bias of the machine learning component.   Making GP practical poses several 
key questions dealing with how to scale up; make solutions comprehensible to humans 
and statistically validate them; control the growth of solutions; reuse partial solutions 
efficiently; and learn incrementally. 



 

Looking ahead to future opportunities and challenges in data mining, genetic 
programming provides one of the more general frameworks for machine learning and 
adaptive problem solving.  In data mining, they are likely to be most useful where a 
generative or procedural solution is desired, or where the exact functional form of the 
solution – whether a mathematical formula, grammar, or circuit – is not known in 
advance. 

REFERENCES 
 
Brameier, M. & Banzhaf, W.  (2001).  Evolving Teams of Predictors with Linear Genetic 
Programming.  Genetic Programming and Evolvable Machines 2(4), p. 381-407. 

Burke, E. K., Gustafson, S. & Kendall, G.  (2004). Diversity in genetic programming: an 
analysis of measures and correlation with fitness.  IEEE Transactions on Evolutionary 
Computation 8(1), p. 47-62. 

Cramer, Nichael Lynn (1985), "A representation for the Adaptive Generation of Simple 
Sequential Programs" in Proceedings of the International Conference on Genetic 
Algorithms and their Applications (ICGA), Grefenstette, John J. (ed.),  Carnegie Mellon 
University.  

Hsu, W. H. & Gustafson. S. M. (2002).  Genetic Programming and Multi-Agent Layered 
Learning by Reinforcements. In Proceedings of the Genetic and Evolutionary 
Computation Conference (GECCO-2002), New York, NY. 

Keijzer, M. & Babovic, V.  (2002).  Declarative and Preferential Bias in GP-based 
Scientific Discovery.  Genetic Programming and Evolvable Machines 3(1), p. 41-79. 

Kishore, J. K.,  Patnaik, L. M., Mani, V. & Agrawal, V.K.   (2000).  Application of 
genetic programming for multicategory pattern classification.  IEEE Transactions on 
Evolutionary Computation 4(3), p. 242-258. 

Koza, J.R. (1992). Genetic Programming: On the Programming of Computers by Means 
of Natural Selection, Cambridge, MA: MIT Press. 

Koza, J.R. (1994), Genetic Programming II: Automatic Discovery of Reusable Programs, 
Cambridge, MA: MIT Press. 

Koza, J.R., Bennett, F. H. III, André, D., & Keane, M. A. (1999), Genetic Programming 
III: Darwinian Invention and Problem Solving. San Mateo, CA: Morgan Kaufmann. 

Koza, J.R., Keane, M.A., Streeter, M.J., Mydlowec, W., Yu, J., & Lanza, G. (2003).  
Genetic Programming IV: Routine Human-Competitive Machine Intelligence.  San 
Mateo, CA: Morgan Kaufmann.  

Krawiec, K.  (2002).  Genetic Programming-based Construction of Features for Machine 
Learning and Knowledge Discovery Tasks.  Genetic Programming and Evolvable 
Machines 3(4), p. 329-343. 

Luke, S.  (2000).  Issues in Scaling Genetic Programming: Breeding Strategies, Tree 
Generation, and Code Bloat.  Ph.D. Dissertation, Department of Computer Science, 
University of Maryland, College Park, MD. 



 

Luke, S, Panait, L., Skolicki, Z., Bassett, J., Hubley, R., & Chircop, A.  (2004).  
Evolutionary Computation in Java v11.  Available from URL: 
http://www.cs.umd.edu/projects/plus/ec/ecj/. 

Muni, D. P., Pal, N. R. & Das, J.   (2004).  A novel approach to design classifiers using 
genetic programming.  IEEE Transactions on Evolutionary Computation 8(2), p. 183-
196. 

Nikolaev, N. Y. & Iba, H.  (2001).  Regularization approach to inductive genetic 
programming. IEEE Transactions on Evolutionary Computation 5(4), p. 359-375. 

Nikolaev, N. Y. & Iba, H.  (2001). Accelerated Genetic Programming of Polynomials.  
Genetic Programming and Evolvable Machines 2(3), p. 231-257. 

O'Neill, M. & Ryan, C.  (2001).  Grammatical evolution. IEEE Transactions on 
Evolutionary Computation.  

Wikipedia (2004).  Genetic Programming.  Available from URL: 
http://en.wikipedia.org/wiki/Genetic_programming. 

Wong, M. L. & Leung, K. S. (2000).  Data Mining Using Grammar Based Genetic 
Programming and Applications (Genetic Programming Series, Volume 3).  Norwell, MA: 
Kluwer. 

 

TERMS AND THEIR DEFINITION 
 
Automatically-defined function (ADF): Parametric functions that are learned and 

assigned names for reuse as subroutines.  ADFs are related to the concept of macro-
operators or macros in speedup learning. 

Code growth (code bloat): The proliferation of solution elements (e.g., nodes in a tree-
based GP representation) that do not contribute towards the objective function. 

Crossover: In biology, a process of sexual recombination, by which two chromosomes 
are paired up and exchange some portion of their genetic sequence.  Crossover in 
GP is highly stylized and involves structural exchange, typically using 
subexpressions (subtrees) or production rules in a grammar. 

Evolutionary Computation: A solution approach based on simulation models of natural 
selection, which begins with a set of potential solutions, then iteratively applies 
algorithms to generate new candidates and select the fittest from this set.  The 
process leads toward a model that has a high proportion of fit individuals. 

Generation: The basic unit of progress in genetic and evolutionary computation, a step 
in which selection is applied over a population.  Usually, crossover and mutation 
are applied once per generation, in strict order. 

Individual: A single candidate solution in genetic and evolutionary computation, 
typically represented using strings (often of fixed length) and permutations in 
genetic algorithms, or using “problem solver” representations – programs, 
generative grammars, or circuits – in genetic programming. 

Island mode GP: A type of parallel GP where multiple subpopulations (demes) are 
maintained and evolve independently except during scheduled exchanges of 
individuals. 



 

Mutation: In biology, a permanent, heritable change to the genetic material of an 
organism.  Mutation in GP involves structural modifications to the elements of a 
candidate solution.  These include changes, insertion, duplication, or deletion of 
elements (subexpressions, parameters passed to a function, components of a 
resistor-capacitor-inducer circuit, nonterminals on the right-hand side of a 
production rule). 

Parsimony: An approach in genetic and evolutionary computation, related to “minimum 
description length”, which rewards compact representations by imposing a penalty 
for individuals in direct proportion to their size (e.g., number of nodes in a GP 
tree).  The rationale for parsimony is that it promotes generalization in supervised 
inductive learning and produces solutions with less code, which can be more 
efficient to apply. 

Selection: In biology, a mechanism in by which the fittest individuals survive to 
reproduce, and the basis of speciation according to the Darwinian theory of 
evolution.  Selection in GP involves evaluation of a quantitative criterion over a 
finite set of fitness cases, with the combined evaluation measures being compared 
in order to choose individuals. 


