

Genetic Algorithms

William H. Hsu
Department of Computing and Information Sciences

Kansas State University
234 Nichols Hall

Manhattan, KS 66506-2302
USA

voice: +1 785-532-6350
fax: +1 785-532-7353

email: bhsu@cis.ksu.edu

Genetic Algorithms

William H. Hsu, Kansas State University, USA

INTRODUCTION

A genetic algorithm (GA) is a procedure used to find approximate solutions to

search problems through application of the principles of evolutionary biology. Genetic

algorithms use biologically inspired techniques such as genetic inheritance, natural

selection, mutation, and sexual reproduction (recombination, or crossover). Along with

genetic programming (GP), they are one of the main classes of genetic and evolutionary

computation (GEC) methodologies.

Genetic algorithms are typically implemented using computer simulations in which

an optimization problem is specified. For this problem, members of a space of candidate

solutions, called individuals, are represented using abstract representations called

chromosomes. The GA consists of an iterative process that evolves a working set of

individuals called a population toward an objective function, or fitness function.

(Goldberg, 1989; Wikipedia, 2004). Traditionally, solutions are represented using fixed-

length strings, especially binary strings, but alternative encodings have been developed.

The evolutionary process of a GA is a highly simplified and stylized simulation of

the biological version. It starts from a population of individuals randomly generated

according to some probability distribution, usually uniform and updates this population in

steps called generations. Each generation, multiple individuals are randomly selected

from the current population based upon some application of fitness, bred using crossover,

and modified through mutation to form a new population.

• Crossover – exchange of genetic material (substrings) denoting rules,

structural components, features of a machine learning, search, or optimization

problem

• Selection – the application of the fitness criterion to choose which individuals

from a population will go on to reproduce

• Replication – the propagation of individuals from one generation to the next

• Mutation – the modification of chromosomes for single individuals

This chapter begins with a survey of GA variants: the simple genetic algorithm,

evolutionary algorithms, and extensions to variable-length individuals. It then discusses

GA applications to data mining problems, such as supervised inductive learning,

clustering, and feature selection and extraction. It concludes with a discussion of current

issues in GA systems, particularly alternative search techniques and the role of building

block (schema) theory.

BACKGROUND

The field of genetic and evolutionary computation (GEC) was first explored by

Turing, who suggested an early template for the genetic algorithm. Holland performed

much of the foundational work in GEC in the 1960s and 1970s. His goal of

understanding the processes of natural adaptation and designing biologically-inspired

artificial systems led to the formulation of the simple genetic algorithm (Holland, 1975).

State of the field: To date, GAs have been successfully applied to many significant

problems in machine learning and data mining, most notably classification, pattern

detectors (Rizki et al., 2002; González & Dasgupta, 2003) and predictors (Au et al.,

2003), and payoff-driven reinforcement learning.i (Goldberg, 1989).

Theory of GAs: Current GA theory consists of two main approaches – Markov chain

analysis and schema theory. Markov chain analysis is primarily concerned with

characterizing the stochastic dynamics of a GA system, i.e., the behavior of the random

sampling mechanism of a GA over time. The most severe limitation of this approach is

that while crossover is easy to implement, its dynamics are difficult to describe

mathematically. Markov chain analysis of simple GAs has therefore been more

successful at capturing the behavior of evolutionary algorithms with selection and

mutation only. These include evolutionary algorithms (EAs) and evolutionsstrategie.

(Schwefel, 1977).

Successful building blocks can become redundant in a GA population. This can

slow down processing and can also resulting in a phenomenon called takeover where the

population collapses to one or a few individuals. Goldberg (2002) characterizes “steady-

state innovation” in GAs as the situation where time to produce a new, more highly-fit

building block (the innovation time, ti) is lower than the expected time for the most fit

individual to dominate the entire population (the takeover time, t*). “Steady state

innovation” is achieved, facilitating convergence towards an optimal solution, when ti <

t*, because the “countdown” to takeover or “race” between takeover and innovation is

reset.

MAIN THRUST OF THE CHAPTER

The general strengths of genetic algorithms lie in their ability to explore the search

space efficiently through parallel evaluation of fitness (Cantú-Paz, 2000) and mixing of

partial solutions through crossover (Goldberg, 2002); maintain a search frontier to seek

global optima (Goldberg, 1989); and solve multi-criterion optimization problems. The

basic units of partial solutions are referred to in the literature as building blocks or

schemata. Modern GEC systems are also able to produce solutions of variable length

(De Jong et al., 1993; Kargupta & Ghosh, 2002).

 A more specific advantage of GAs is their ability to represent rule-based,

permutation-based, and constructive solutions to many pattern recognition and machine

learning problems. Examples of this include induction of decision trees (Cantú-Paz &

Kamath, 2003) among several other recent applications surveyed below.

Types of GAs

The simplest genetic algorithm represents each chromosome as a bit string

(containing binary digits: 0s and 1s) of fixed-length. Numerical parameters can be

represented by integers, though it is possible to use floating-point representations for

reals. The simple GA performs crossover and mutation at the bit level for all of these.

(Goldberg, 1989; Wikipedia, 2004).

Other variants treat the chromosome as a parameter list, containing indices into an

instruction table or an arbitrary data structure with pre-defined semantics, e.g., nodes in a

linked list, hashes, or objects. Crossover and mutation are required to preserve semantics

by respecting object boundaries, and formal invariants for each generation can specified

according to these semantics. For most data types, operators can be specialized, with

differing levels of effectiveness that are generally domain-dependent. (Wikipedia, 2004).

Applications

Genetic algorithms have been applied to many classification and performance

tuning applications in the domain of knowledge discovery in databases (KDD). De Jong

et al. produced GABIL (Genetic Algorithm-Based Inductive Learning), one of the first

general-purpose GAs for learning disjunctive normal form concepts. (De Jong et al.,

1993). GABIL was shown to produce rules achieving validation set accuracy comparable

to that of decision trees induced using ID3 and C4.5.

Since GABIL, there has been work on inducing rules (Zhou et al., 2003) and

decision trees (Cantú-Paz & Kamath, 2003) using evolutionary algorithms. Other

representations that can be evolved using a genetic algorithm include predictors (Au et

al., 2003) and anomaly detectors (González & Dasgupta, 2003). Unsupervised learning

methodologies such as data clustering (Hall et al., 1999; Lorena & Furtado, 2001) also

admit GA-based representation, with application to such current data mining problems as

gene expression profiling in the domain of computational biology (Iba, 2004). KDD

from text corpora is another area where evolutionary algorithms have been applied

(Atkinson-Abutridy et al., 2003).

GAs can be used to perform meta-learning, or higher-order learning, by extracting

features (Raymer et al., 2000), selecting features (Hsu, 2003), or selecting training

instances (Cano et al., 2003). They have also been applied to combine, or fuse,

classification functions (Kuncheva & Jain, 2000).

FUTURE TRENDS

Some limitations of GAs are that in certain situations, they are overkill compared to

more straightforward optimization methods such as hill-climbing, feedforward artificial

neural networks using backpropagation, and even simulated annealing and deterministic

global search. In global optimization scenarios, GAs often manifest their strengths:

efficient, parallelizable search; the ability to evolve solutions with multiple objective

criteria (Llorà & Goldberg, 2003); and a characterizable and controllable process of

innovation.

Several current controversies arise from open research problems in GEC:

• Selection is acknowledged to be a fundamentally important genetic operator.

Opinion is, however, divided over the importance of crossover verses mutation.

Some argue that crossover is the most important, while mutation is only necessary

to ensure that potential solutions are not lost. Others argue that crossover in a

largely uniform population only serves to propagate innovations originally found

by mutation, and in a non-uniform population crossover is nearly always

equivalent to a very large mutation (which is likely to be catastrophic).

• In the field of GEC, basic building blocks for solutions to engineering problems

have primarily been characterized using schema theory, which has been critiqued

as being insufficiently exact to characterize the expected convergence behavior of

a GA. Proponents of schema theory have shown that it provides useful normative

guidelines for design of GAs and automated control of high-level GA properties

(e.g., population size, crossover parameters, and selection pressure).

Recent and current research in GEC relates certain evolutionary algorithms to ant colony

optimization (Parpinelli, Lopes, & Freitas, 2002).

CONCLUSION

Genetic algorithms provide a comprehensive search methodology for machine

learning and optimization. It has been shown to be efficient and powerful through many

data mining applications that use optimization and classification.

The current literature (Goldberg, 2002; Wikipedia, 2004) contains several general

observations about the generation of solutions using a genetic algorithm:

• GAs are sensitive to deceptivity, the irregularity of the fitness landscape. This

includes locally optimal solutions that are not globally optimal; lack of fitness

gradient for a given step size; and jump discontinuities in fitness.

• In general, GAs have difficulty with adaptation to dynamic concepts or objective

criteria. This phenomenon, called concept drift in supervised learning and data

mining, is a problem because GAs are traditionally designed to evolve highly-fit

solutions (populations containing building blocks of high relative and absolute

fitness) with respect to stationary concepts.

• GAs are not always effective at finding globally optimal solutions, but can rapidly

locate good solutions, even for difficult search spaces. This makes steady-state

GAs (Bayesian optimization GAs that collect and integrate solution outputs after

convergence to an accurate representation of building blocks) a useful alternative

to generational GAs (maximization GAs that seek the best individual of the final

generation after convergence).

Looking ahead to future opportunities and challenges in data mining, genetic

algorithms are widely applicable to classification by means of inductive learning. GAs

also provide a practical method for optimization of data preparation and data

transformation steps. The latter includes clustering, feature selection and extraction,

instance selection. In data mining, GAs are likely to be most useful where high-level,

fitness-driven search is needed. Non-local search (global search or search with an

adaptive step size) and multi-objective data mining are also problem areas where GAs

have proven promising.

REFERENCES

Atkinson-Abutridy, J., Mellish, C., & Aitken, S. (2003). A semantically guided and

domain-independent evolutionary model for knowledge discovery from texts.

IEEE Transactions on Evolutionary Computation, 7(6), 546-560.

Au, W.-H., Chan, K.C.C., & Yao, X. (2003). A novel evolutionary data mining

algorithm with applications to churn prediction. IEEE Transactions on

Evolutionary Computation, 7(6), 532-545.

Cano, J.R., Herrera, F., & Lozano, M. (2003). Using evolutionary algorithms as instance

selection for data reduction in KDD: an experimental study. IEEE Transactions

on Evolutionary Computation, 7(6), 561-575.

Cantú-Paz, E. (2000). Efficient and Accurate Parallel Genetic Algorithms. Norwell,

MA: Kluwer.

Cantú-Paz, E. & Kamath, C. (2003). Inducing oblique decision trees with evolutionary

algorithms. IEEE Transactions on Evolutionary Computation, 7(1), 54-68.

De Jong, K.A., Spears, W.M., & Gordon, F.D. (1993). Using genetic algorithms for

concept learning. Machine Learning, 13, 161-188, 1993.

Goldberg, D.E. (1989). Genetic Algorithms in Search, Optimization, and Machine

Learning. Reading, MA: Addison-Wesley.

Goldberg, D.E. (2002). The Design of Innovation: Lessons from and for Competent

Genetic Algorithms. Norwell, MA: Kluwer.

González, F.A. & Dasgupta, D. (2003). Anomaly Detection Using Real-Valued Negative

Selection. Genetic Programming and Evolvable Machines, 4(4), 383-403.

Hall, L.O., Ozyurt, I.B., & Bezdek, J.C. (1999). Clustering with a genetically optimized

approach. IEEE Transactions on Evolutionary Computation, 3(2), 103-112.

Holland, J.H. (1975). Adaptation in natural and artificial systems, Ann Arbor: The

University of Michigan Press.

Hsu, W. H. (2003). Control of Inductive Bias in Supervised Learning using Evolutionary

Computation: A Wrapper-Based Approach. In Data Mining: Opportunities and

Challenges, Wang, J. editor. Hershey, PA: Idea Group Publishing.

Iba, H. (2004). Classification of Gene Expression Profile Using Combinatory Method of

Evolutionary Computation and Machine Learning. Genetic Programming and

Evolvable Machines, Special Issue on Biological Applications of Genetic and

Evolutionary Computation (Banzhaf, W. & Foster, J., guest editors), 5(2), 145-

156.

Kargupta, H. & Ghosh, S. (2002). Toward Machine Learning Through Genetic Code-

like Transformations. Genetic Programming and Evolvable Machines, 3(3), 231-

258.

Kuncheva, L.I., Jain, L.C. (2000). Designing classifier fusion systems by genetic

algorithms. IEEE Transactions on Evolutionary Computation, 4(4), 327-336.

Llorà, X. & Goldberg, D. E. (2003). Bounding the effect of noise in Multiobjective

Learning Classifier Systems. Evolutionary Computation, 11(3), 278 – 297.

Lorena, L.A.N. & Furtado, J. C. (2001). Constructive Genetic Algorithm for Clustering

Problems. Evolutionary Computation, 9(3), 309 – 328.

Parpinelli, R.S., Lopes, H.S., & Freitas, A.A. (2002). Data mining with an ant colony

optimization algorithm. IEEE Transactions on Evolutionary Computation,

6(4):321- 332.

Raymer, M.L., Punch, W.F., Goodman, E.D., Kuhn, L.A., Jain, A.K. (2000).

Dimensionality reduction using genetic algorithms. IEEE Transactions on

Evolutionary Computation, 4(2), 164-171.

Rizki, M.M., Zmuda, M.A., & Tamburino, L.A. (2002). Evolving pattern recognition

systems. IEEE Transactions on Evolutionary Computation, 6(6), 594-609.

Schwefel, H.-P. (1997). Numerische Optimierung von Computer--Modellen mittels der

Evolutionsstrategie. Vol. 26 of Interdisciplinary Systems Research, Basel:

Birkhauser Verlag.

Wikipedia (2004). Genetic Algorithm. Available from URL:

http://en.wikipedia.org/wiki/Genetic_algorithm.

Zhou, C., Xiao, W., Tirpak, T. M., & Nelson, P.C. (2003). Evolving accurate and

compact classification rules with gene expression programming. IEEE

Transactions on Evolutionary Computation, 7(6), 519-531.

TERMS AND DEFINITIONS

Crossover: In biology, a process of sexual recombination, by which two chromosomes

are paired up and exchange some portion of their genetic sequence. Crossover in GAs is

highly stylized and typically involves exchange of strings. These can be performed using

a crossover bit mask in bit-string GAs, but require complex exchanges (such as partial-

match, order, and cycle crossover) in permutation GAs.

Evolutionary Computation: A solution approach based on simulation models of natural

selection, which begins with a set of potential solutions, then iteratively applies

algorithms to generate new candidates and select the fittest from this set. The process

leads toward a model that has a high proportion of fit individuals.

Generation: The basic unit of progress in genetic and evolutionary computation, a step

in which selection is applied over a population. Usually, crossover and mutation are

applied once per generation, in strict order.

Genetic programming (GP): see Genetic Programming entry.

Individual: A single candidate solution in genetic and evolutionary computation,

typically represented using strings (often of fixed length) and permutations in genetic

algorithms, or using “problem solver” representations – programs, generative grammars,

or circuits – in genetic programming.

Meta-learning: Higher-order learning by adapting the parameters of a machine learning

algorithm or the algorithm definition itself, in response to data. An example of this

approach is the search-based wrapper of inductive learning, which “wraps” a search

algorithm around an inducer to find locally optimal parameter values such as the relevant

feature subset for a given classification target and data set. Validation set accuracy is

typically used as fitness. Genetic algorithms have been used to implement such wrappers

for decision tree and Bayesian network inducers.

Mutation: In biology, a permanent, heritable change to the genetic material of an

organism. Mutation in GAs involves string-based modifications to the elements of a

candidate solution. These include bit-reversal in bit-string GAs and shuffle and swap

operators in permutation GAs.

Permutation GA: A type of GA where individuals represent a total ordering of elements,

such as cities to be visited in a minimum-cost graph tour (the Traveling Salesman

Problem). Permutation GAs use specialized crossover and mutation operators compared

to the more common bit string GAs..

Schema (pl. Schemata): An abstract building block of a GA-generated solution,

corresponding to a set of individuals. Schemata are typically denoted by bit strings with

don’t-care symbols `#’: for example, 1#01#00# is a schema with 23 = 8 possible

instances, one for each instantiation of the # symbols to 0 or 1. Schemas are important in

GA research because they form the basis of an analytical approach called schema theory,

for characterizing building blocks and predicting their proliferation and survival

probability across generations, thereby describing the expected relative fitness of

individuals in the GA.

Selection: In biology, a mechanism in by which the fittest individuals survive to

reproduce, and the basis of speciation according to the Darwinian theory of evolution.

Selection in GP involves evaluation of a quantitative criterion over a finite set of fitness

cases, with the combined evaluation measures being compared in order to choose

individuals.

i Payoff-driven reinforcement learning describes a class of learning problems for intelligent agents that
receive rewards, or reinforcements, from the environment in response to actions selected by a policy
function. These rewards are transmitted in the form of payoffs, sometimes strictly nonnegative. A GA
acquires policies by evolving individuals, such as condition-action rules, that represent candidate policies.

