
Control of Inductive Bias in Supervised Learning using
Evolutionary Computation: A Wrapper-Based Approach

William H. Hsu
Department of Computing and Information Sciences, Kansas State University, USA

Automated Learning Group, National Center for Supercomputing Applications (NCSA), USA

Abstract

In this chapter, I discuss the problem offeature subset selectionfor supervised inductive learning approaches to
knowledge discovery in databases (KDD), and examine this and related problems in the context of controlling
inductive bias. I survey several combinatorial search and optimization approaches to this problem, focusing on data-
driven validation-based techniques. In particular, I present awrapperapproach that uses genetic algorithms for the
search component, using a validation criterion based upon model accuracy and problem complexity, as the fitness
measure. Next, I focus on design and configuration of high-level optimization systems (wrappers) for relevance
determination and constructive induction, and on integrating these wrappers with elicited knowledge on attribute
relevance and synthesis. I then discuss the relationship between this model selection criterion and those from
minimum description length (MDL) family of learning criteria. I then present results on several synthetic problems
on task-decomposable machine learning and on two large-scale commercial data mining and decision support
projects: crop condition monitoring, and loss prediction for insurance pricing. Finally, I report experiments using
the Machine Learning in Java (MLJ)andData to Knowledge (D2K)Java-based visual programming systems for
data mining and information visualization, and several commercial and research tools. Test set accuracy using a
genetic wrapper is significantly higher than that of decision tree inducers alone and is comparable to that of the best
extant search-space based wrappers.

Keywords: automatic relevance determination; constructive induction; decision support applications; evolutionary
computation; feature subset selection; genetic algorithms; genetic programming; inductive bias; knowledge
discovery (KD) problems, large-scale; machine learning problems, decomposable; model selection; programming
systems for KDD; wrappers

INTRODUCTION
This chapter introduces the problems for change of representation (Benjamin, 1990) in
supervised inductive learning. I address the focal problem of inductive learning in data mining
and present a multistrategy framework for automatically improving the representation of learning
problems. This framework incorporates methodological aspects offeature subset selection and
feature (attribute) partitioning, automated problem decomposition, andmodel selection. The
focus is onwrapper-basedmethods as studied in recent and continuing research.

As an example, I present a new metric-based model selection approach (composite
learning) for decomposable learning tasks. The type of data for which this approach is best
suited is heterogeneous time series data – that arising from multiple sources of data (as in sensor
fusion or multimodal human-computer interaction tasks, for example). The rationale for
applying multistrategy learning to such data is that, by systematic analysis and transformation of
learning tasks, the efficiency and accuracy of classifier learning may both be improved for
certain time series problems. Such problems are referred to in this chapter asdecomposable; the
methods addressed are: task decomposition and subproblem definition, quantitative model
selection, and construction of hierarchical mixture models for data fusion. This chapter presents
an integrated, multistrategy system for decomposition of time series classifier learning tasks.

A typical application for such a system is learning to predict and classify hazardous and
potentially catastrophic conditions. This prediction task is also known ascrisis monitoring, a

form of pattern recognition that is useful in decision support orrecommendersystems (Resnick
& Varian, 1997) for many time-critical applications. Examples of crisis monitoring problems in
the industrial, military, agricultural and environmental sciences are numerous. They include:
crisis control automation (Hsuet al, 1998), online medical diagnosis (Hayes-Rothet al, 1996),
simulation-based training and critiquing for crisis management (Gabaet al, 1992; Groiset al,
1998), and intelligent data visualization forreal-time decision-making(Horvitz & Barry, 1995).

Motivation: Control of Inductive Bias

The broad objectives of the approach I present here are to increase the robustness of
inductive machine learning algorithms and develop learning systems that can be automatically
tuned to meet the requirements of a knowledge discovery (KD) performance element. When
developers of learning systems can map a KD application to a set of automatic higher-order
parameter turning problems, the reuse of design and code embodied by this generalization over
traditional learning can reduce development costs. When addressing KD problems in
computational science and engineering, the time required to develop an effective representation
and to tune these hyperparameters using training and validation data sets can be a significant
fraction of the development time of the KD system, exceeding the time required to apply
traditional learning algorithms with fixed hyperparameters and bias parameters. This setting
introduces new flexibility and complexity into the learning problem and may extend the expected
useful lifetime of the system. For example, if the learning component is made more adaptable
through automated performance tuning, then the overall system, not merely the learning
algorithms it uses, may last longer than one tailored to a specific data set or problem domain.
Thus it becomes subject to traditional maintenance and evolution. On the other hand,
performance tuning may reduce the development time of highly specialized KD systems as well,
by identifying and constructing relevant variables. In this case reducing the cost of developing
the more limited-use software can, in turn, significantly reduce that of solving the intended
scientific or engineering problem. In many real-world KD applications, it is preferable to
automatically tune some but not all of the available bias parameters to prevent overfitting of
training data. This is because the computational time savings for the performance element (e.g.,
prediction, classification, or pattern detection function) and marginal gains in solution quality
(e.g., utility or accuracy) do not make it worth while to fine-tune some bias parameters that are
less significant for the learning problem. A significant component of development costs is
related to reducing wasted development time and computation time by making the entire
programming systems product (Brooks, 1995) responsive and adaptable to end user needs.
Combinatorial search and statistical validation over representations, visualization of the models
and their relation to quantitative inductive bias (Benjamin, 1990; Mitchell, 1997), and high-level
user interfaces for KD can be applied to achieve these goals.

A major motivation for the automation of problem transformation istransparency. The
end user of a KD system is often a specialist in scientific, engineering, or business-related
technical fields other than intelligent systems and machine learning. He or she knows the
requirements of the application in terms of the performance element: an analytical function that
can predict the continuation of a historical time series; detect anomalous conditions in a time
annotated episodic log; classify, diagnose, or explain set of database records; make a
recommendation for a business or medical decision; or generate a plan, schedule, or design.
These predictors, anomaly detectors, classifiers, diagnostic and recommender systems, policies,

and other problem solvers have their own performance measures, perhaps including real-time
requirements, which in turn dictate those of the learning system. This suggests that more robust
KD may be achieved by letting the end user specify requirements pertaining to the performance
element and automatically generating specifications for the desired representation and higher-
order parameters to be tuned. In this way the improvement of problem representation by
automated transformation can be driven by users’ specified time and resource constraints.

The research covered in this chapter focuses on demonstrating, through development of a
learning enhancement framework and through empirical evaluation, that these broad objectives
can be achieved for a wide variety of real-world KD applications. This research thrust has two
main objectives: assessing the breadth of applicability of automatic transformation of learning
problems by training the resultant models and applying them to large-scale KD problems over
real-world data sets, and developing information visualization techniques to help users
understand this process of improving problem representations.

Attribute-Driven Problem Decomposition: Subset Selection and Partition Search

Many techniques have been studied for decomposing learning tasks, to obtain more tractable
subproblems and to apply multiple models for reduced variance. This section examines
attribute-basedapproaches for problem reformulation, especiallypartitioning of input attributes
in order to defineintermediate concepts(Fu & Buchanan, 1985) in problem decomposition. This
mechanism produces multiple subproblems for which appropriate models must be selected; the
trained models can then be combined usingclassifier fusionmodels adapted from bagging
(Breiman, 1996), boosting (Freund & Schapire, 1996), stacking (Wolpert, 1992) and hierarchical
mixture models (Jordan & Jacobs, 1994).

One of the approaches we shall examine in this chapter uses partitioning todecomposea
learning task into parts that are individually useful (usingaggregationas described in the
background section of this chapter), rather than toreduceattributes to a single useful group.
This permits new intermediate concepts to be formed by unsupervised learning methods such as
conceptual clustering (Michalski & Stepp, 1983) or cluster formation using self-organizing
algorithms (Kohonen, 1990; Hsuet al, 2002). The newly defined problem or problems can then
be mapped to one or more appropriate hypothesis languages (model specifications). In our new
system, the subproblem definitions obtained by partitioning of attributes also specify a mixture
estimation problem (i.e., data fusion step occurs after training of the models for all the
subproblems).

Subproblem Definition

This purpose of attribute partitioning is to define intermediate concepts and subtasks of
decomposable time series learning tasks, which can be mapped to the appropriate submodels. In
both attribute subset selection and partitioning, attributes are grouped into subsets that are
relevant to a particular task: the overall learning task or a subtask. Each subtask for a partitioned
attribute set has its own inputs (the attribute subset) and its ownintermediate concept. This
intermediate concept can be discovered using unsupervised learning methods, such as self-
organizing feature maps (Kohonen, 1990; Hsuet al, 2002) andk-means clustering(Dudaet al,
2000). Other methods, such ascompetitive clusteringor vector quantizationusing radial basis
functions (Haykin, 1999),neural trees(Li et al, 1993) and similar models (Ray & Hsu, 1998;

Dudaet al, 2000),principal components analysis(Watanabe, 1985; Haykin, 1999),Karhunen-
Loève transforms(Watanabe, 1985), orfactor analysis(Watanabe, 1985), can also be used.

Attribute partitioning is used to control the formation of intermediate concepts in this
system. Whereas attribute subset selection yields asingle, reformulated learning problem
(whose intermediate concept is neither necessarily nor intentionally different from the original
concept), attribute partitioning yieldsmultiple learning subproblems(whose intermediate
concepts may or may not differ, but are simpler by design when they do). The goal of this
approach is to find a natural and principled way to specifyhow intermediate concepts should be
simpler than the overall concept.

Metric-Based Model Selection and Composite Learning

Model selectionis the problem of choosing a hypothesis class that has the appropriate
complexity for the given training data (Stone, 1977; Schuurmans, 1997). Quantitative methods
for model selection have previously been used to learn using highly flexiblenonparametric
models with many degrees of freedom, but with no particular assumptions on the structure of
decision surfaces.

The ability to decompose a learning task into simpler subproblems prefigures a need to
map these subproblems to the appropriate models. The general mapping problem, broadly
termedmodel selection, can be addressed at very minute to very coarse levels. This chapter
examines quantitative, metric-based approaches for model selection at a coarse level. This
approach is a direct extension of theproblem definition and technique selectionprocess (Engels
et al, 1998). We will henceforth use the termmodel selectionto refer to both traditional model
selection and the metric-based methods for technique selection as presented here. We begin with
background on the general framework of inductive bias control and then survey time series
learning architectures, theirrepresentation biases(Witten and Frank, 2000), and methods for
selecting them from a collection of model components.

BACKGROUND

Key Problem: Automated Control of Inductive Bias

We first focus on development of a new learning system for spatiotemporal KD. The KD
performance element in this problem is not just analytical but includes decision support through
model visualization and anomaly detection.

The problems we face are threefold and are surveyed in the above sections on current and
related work. First, we must addressrelevance determinationto determine what sensor data
channels are useful for a particular KD objective and data set. This problem is related to the so-
calledcurse of dimensionalitywherein an overabundance of input variables makes it difficult to
learn the prediction, classification, or pattern recognition element. Second, the task of
identifying hyperparameters of the KD system is subject to deceptivity and instability because
bias optimization in general introduces a new level of combinatorial complexity to the problem
of inductive learning. Third, the very large spatiotemporal databases we are dealing with are
highly heterogeneous, arising from many disparate sources such as global positioning systems
(GPS), surveying, sensors such as radar, and historical databases; this heterogeneity presents the
advantage of type information that can help constrain dimensionality but also aggravates the

problem of relevance determination because including irrelevant sensors can lead to severe
inefficiencies in data acquisition, interpretation of visual results, and the learning component.

In (Hsuet al, 2000), I address these problems through a framework calledcomposite
learning that is depicted in Figure 1. We define a composite learning system to be a committee
machine (Haykin, 1999) designed to improve the performance of a collection of supervised
inductive learning algorithms with specific parameters for representation and preference bias
(Mitchell, 1997), over multivariate – possibly heterogeneous – data. The open research problem
I discuss is how composite learning systems can be applied to automatically improve
representations of complex learning problems.

Multivariate
Data Set

{x
ÿ

Decomposition
of Input '

1x
ÿ

'
nx

ÿ

Subproblem
Definition

'
1y

ÿ

'
ny

�

?

?
?

?

Representation
Evaluator

Metric-Based
Model Selection

Representation
Bias

Learning Specification
(Composite)

Mixture
Model

KD
Performance
Element

Subproblem Inductive
Bias

(Hyperparameters)

Representation Metrics

Preference
Metrics

Preference Bias

Figure 1. A Composite Learning Framework

Selected
Attribute Subset

Multiattribute
Time Series

Data Set

Heterogeneous Time Series
(Multiple Sources)

Attribute
Partition

Model Training and Data Fusion

Attribute-Based
Decomposition:

Partitioning

Model
Specification

Model
Specifications

Problem Definition
(with Intermediate

Concepts)

Attribute-Based
Reduction:

Subset Selection

Clustering Clustering

Model Selection:
Multi-Concept

Model Selection:
Single-Concept

Unsupervised

Supervised

Unsupervised

Supervised

Selected
Attribute Subset

Multiattribute
Time Series

Data Set

Heterogeneous Time Series
(Multiple Sources)

Attribute
Partition

Model Training and Data Fusion

Attribute-Based
Decomposition:

Partitioning

Model
Specification

Model
Specifications

Problem Definition
(with Intermediate

Concepts)

Attribute-Based
Reduction:

Subset Selection

Clustering Clustering

Model Selection:
Multi-Concept

Model Selection:
Single-Concept

Unsupervised

Supervised

Unsupervised

Supervised

Figure 2. Systems for Attribute-Driven
Unsupervised Learning and Model Selection

Composite learning provides a search-based and validation-based procedure for
controlling the inductive bias, specifically the total problem specification, of systems for learning
from decomposable, multi-attribute data sets. The central elements of this system are:
decomposition of input, metric-based model selection, and amixture modelfor integration of
multiple submodels. In recent research, I applied composite learning to audio signal
classification (Ray & Hsu, 1998) and crop condition prediction, the central component of a
monitoring problem (Hsu, 1998; Hsuet al, 2000). Given a specification for decomposed – i.e.,
selected or partitioned – subsets of input variables, new intermediate concepts'

iy
� can be formed

by unsupervised learning. For this step we have used Gaussianradial-basis functionsor RBFs
(Ray & Hsu, 1998) andself-organizing maps(Kohonen, 1990). The newly defined problem or
problems can then be mapped to one or more appropriate hypothesis languages (model
specifications). We have developed a high-level algorithm for tuning explicit parameters that
control representation and preference bias, to generate this specification of a composite. This
algorithm is used by Hsuet al (2000) to select components for a hierarchical mixture network
(specialist-moderator network) and train them for multistrategy learning. A data fusion step
occurs after individual training of each model. The system incorporates attribute partitioning

into constructive induction to obtain multiple problem definitions (decomposition of learning
tasks); applies metric-based model selection over subtasks tosearch for efficient hypothesis
preferences; and integrates these techniques in a data fusion (mixture estimation) framework.
The metrics we have derived for controlling preference bias in hierarchical mixture models are
positively correlated with learning performance by a particular learning method (for a learning
problem defined on a particular partitioning of a time series). This makes them approximate
indicators of the suitability of the corresponding mixture model and the assumption that the
learning problem adheres to its characteristics (with respect to interaction among subproblems).
Thus, preference bias metrics may be used for partial model selection.

Although this approach has yielded positive results from applying composite learning to
KD, the breadth of domains for which this framework has been tested is still limited. A current
research challenge and opportunity is the application of composite learning to learning problems
in precision agriculture, specifically the illustrative example in and the problem ofsoil fertility
mapping, which generates a map of quantitative fertility estimates from remotely sensed,
hydrological, meteorological, wind erosion, and pedological data. One purpose of generating
such maps is to control variable-rate fertilizer application to increase yield with minimal
environmental impact. Test bed for heterogeneous data mining abound in the literature and are
becoming freely available.

In past and current research, we have achieved empirical improvement in constructive
induction in several ways in which we propose to further generalize and systematically validate.
First, we found that decomposition of learning tasks using techniques such as attribute
partitioning or ensemble selection can help reduce variance when computational resources are
limited. We conjecture that this may be useful in domains such as real-time intelligent systems,
where deadlines are imposed on training and inference time.

Current techniques such asautomated relevance determination, feature selection, and
clusteringtend to address the problem of constructive induction in isolated stages rather than as
an integrative mechanism for transforming the data – input and output schemata – into a more
tractable and efficient form. As outlined in the previous section, we address this by combining
search-based combinatorial optimization, statistical validation, and hierarchical abstraction into
the coherent framework of composite learning.

Furthermore, many complex KDD problems can be decomposed on the basis of spatial,
temporal, logical, and functional organization in their performance element. Techniques such as
model selectionandensemble learninghave been used to systematically identify and break down
these problems, and, given a specification of a modular learning system,hierarchical mixture
estimationtechniques have been used to build pattern recognition models by parts and integrate
them. The challenge is how to isolate prediction or classification models. The author has
identified several low-order Box-Jenkins (autoregressive integrated moving average,akaARMA
or ARIMA) process models (Boxet al, 1994) that can be isolated from heterogeneous historical
data, based on quantitative metrics (Hsu, 1998). Composite learning can be applied to derive a
complete committee machine specification from data to learn intermediate predictors (e.g.,
temporal artificial neural networks such as simple recurrent networks and time-delay neural
networks). We believe that this approach can discover other hierarchical organization such as
embedded clusters (Hsuet al, 2002), factorial structure (Ray & Hsu, 1998), and useful
behavioral structure, which we shall outline in the next section on evolutionary computation for
KD. The proposed research is therefore not specific to time series.

The line of research that we have described in this section shall lead to the development of
techniques for making inductive learning more robust by controlling inductive bias to increase
generalization accuracy. We propose to use my framework, composite learning, for specifying
high-level characteristics of the problem representation to be tuned in a systematic way. The
next section presents a specific combinatorial optimization technique for tuning these
hyperparameters using validation and other criteria.

Evolutionary Computation Wrappers for Enhanced KD

Over the past three years we have been engaged in the development of a novel system for
combinatorial optimization in KD from complex domains, which uses evolutionary computation
– genetic algorithms (GA) and genetic programming (GP) – to enhance the machine learning
process. Mechanisms for KD enhancement that use the empirical performance of a learning
function as feedback are referred to in the intelligent systems literature aswrappers(Kohavi &
John, 1997). Our objective at this stage of the research is to relax assumptions we have
previously made regarding two aspects of automatically improving the representation of learning
problems. First, we seek to generalize thestructureof the mapping between the original and
improved representations, not restricting it merely to feature selection or construction. Second,
we seek to design a framework for automatic discovery of hierarchical structure in learning
problems, both from data and from reinforcements in problem solving environments. The key
contribution of this component of the research is to make the automatic search for
representations more systematic and reproducible by putting it into an engineering framework.

Problems: Attribute Subset Selection and Partitioning

This section introduces theattribute partitioningproblem and a method for subproblem
definition in multiattribute inductive learning.

Attribute-Driven Problem Decomposition for Composite Learning

Many techniques have been studied for decomposing learning tasks, to obtain more tractable
subproblems and to apply multiple models for reduced variance. This section examines
attribute-basedapproaches for problem reformulation, which start with restriction of the set of
input attributes on which the supervised learning algorithms will focus. First, this chapter
presents a new approach to problem decomposition that is based on finding a goodpartitioning
of input attributes. Previous research on attribute subset selection (Kohavi & John, 1997),
though directed toward a different goal for problem reformulation, is highly relevant; this section
outlines differences between subset selection and partitioning and how partitioning may be
applied to task decomposition. Second, this chapter compares top-down, bottom-up, and hybrid
approaches for attribute partitioning, and considers the role of partitioning in feature extraction
from heterogeneous time series. Third, it discusses how grouping of input attributes leads
naturally to the problem of formingintermediate conceptsin problem decomposition. This
mechanism defines different subproblems for which appropriate models must be selected; the
trained models can then be combined usingclassifier fusionmodels adapted from bagging
(Breiman, 1996), boosting (Freund & Schapire, 1996), stacking (Wolpert, 1992), and
hierarchical mixture models (Jordan & Jacobs, 1994).

Overview of Attribute-Driven Decomposition
Figure 2 depicts two alternative systems for attribute-driven reformulation of learning tasks

(Benjamin, 1990; Donoho, 1996). The left-hand side, shown with dotted lines, is based on the
traditional method of attributesubset selection(Kohavi & John, 1997). The right-hand side,
shown with solid lines, is based on attributepartitioning, which is adapted in this chapter to
decomposition of time series learning tasks. Given a specification for reformulated (reduced or
partitioned) input, new intermediate concepts can be formed by unsupervised learning (e.g.,
conceptual clustering); the newly defined problem or problems can then be mapped to one or
more appropriate hypothesis languages (model specifications). The new models are selected for
a reduced problem or for multiple subproblems obtained by partitioning of attributes; in the latter
case, a data fusion step occurs after individual training of each model.

Subset Selection and Partitioning
Attribute subset selection, also calledfeature subset selection, is the task of focusing a learning
algorithm's attention on some subset of the given input attributes, while ignoring the rest (Kohavi
& John, 1997). In this research, subset selection is adapted to the systematic decomposition of
learning problems over heterogeneous time series. Instead of focusing a single algorithm on a
single subset, the set of all input attributes is partitioned, and a specialized algorithm is focused
oneachsubset. While subset selection is designed for refinement of attribute sets for single-
model learning, attribute partitioning is designed specifically for multiple-model learning. This
new approach adopts the role of feature construction in constructive induction (Michalski, 1983;
Donoho, 1996), as depicted in Figure 2. It uses subset partitioning todecomposea learning task
into parts that are individually useful, rather than toreduceattributes to a single useful group.
This permits multiple-model methods such asbagging(Breiman, 1996),boosting(Freund &
Schapire, 1996), andhierarchical mixture models(Jordan & Jacobs, 1994) to be adapted to
multistrategy learning.

Partition Search
For clarity, I review the basic combinatorial problem ofattribute partitioning. First, consider
that the state space for attribute subset selection grows exponentially in the number of attributes
n: its size is simply2n. The size of the state space forn attributes isBn, thenth Bell number,
defined as follows1:

ÿ
�

ÿ
�

�

−+−−
=

≠=<
=

=�
=

otherwiseknkSknS

knif

nkorknif

knS

knSB
n

k
n

),1()1,1(

1

0,00

),(

),(
0

Thus, it is impractical to search the space exhaustively, even for moderate values ofn.
The functionBn is ω(2n) ando(n!), i.e., its asymptotic growth is strictlyfasterthan that of2n and
strictly slowerthan that ofn!. It thus results in a highly intractable evaluation problem if all
partitions are considered. Instead, a heuristic evaluation function is used so that informed search
methods (Russell & Norvig, 1995) may be applied. This evaluation function is identical to the
one used to prescribe themultistrategy hierarchical mixture of experts(MS-HME) model;
therefore, its definition is deferred until the next section.

The state space for of a set of 5 attributes consists of 52 possible partitions. We shall
examine a simple synthetic problem learning problem,modular parity, can be used to test search
algorithms for the optimum partition. As the parity problem, a generalization ofXORto many
variables, demonstrates the expressiveness of a representation for models or hypotheses in
inductive learning (and was thus used toillustrate the limitations of the perceptron), the modular
parity problem tests the expressiveness and flexibility of a learning system when dealing with
heterogeneous data.

Subproblem Definition

This section summarizes the role of attribute partitioning in defining intermediate concepts and
subtasks of decomposable time series learning tasks, which can be mapped to the appropriate
submodels.

Intermediate Concepts and Attribute-Driven Decomposition
In both attribute subset selection and partitioning, attributes are grouped into subsets that are
relevant to a particular task: the overall learning task or a subtask. Each subtask for a partitioned
attribute set has its own inputs (the attribute subset) and its ownintermediate concept. This
intermediate concept can be discovered using unsupervised learning algorithms, such ask-means
clustering. Other methods, such as competitive clustering or vector quantization (using radial
basis functions (Lowe, 1995; Hassoun, 1995; Haykin, 1999), neural trees (Liet al, 1993), and
similar models (Dudaet al, 2000; Ray & Hsu; 1998), principal components analysis (Watanabe,
1985; Hassoun, 1995; Haykin, 1999), Karhunen-Loève transforms (Watanabe, 1985, Hassoun,
1995), or factor analysis (Watanabe, 1985; Dudaet al, 2000), can also be used.

Attribute partitioning is used to control the formation of intermediate concepts in this
system. Attribute subset selection yields a single, reformulated learning problem (whose
intermediate concept is neither necessarily different from the original concept, nor intended to
differ). By contrast, attribute partitioning yields multiple learningsubproblems(whose
intermediate concepts may or may not differ, but are simpler by design when they do differ).

The goal of this approach is to find a natural and principled way to specifyhow
intermediate concepts should be simpler than the overall concept. In the next section, two
mixture models are presented: theHierarchical Mixture ofExperts(HME) of Jordan and Jacobs
(1994), and theSpecialist-Moderator(SM) network of Ray and Hsu (Ray & Hsu, 1998; Hsuet
al, 2000). The following sections explain and illustrate why this design choice is a critically
important consideration in how a hierarchical learning model is built, and how it affects the
performance of multistrategy approaches to learning from heterogeneous time series. The
mechanisms by which HME and SM networks perform data fusion, and how this process is
affected by attribute partitioning, are examined in both theoretical and experimental terms in this
chapter. Finally, a survey of experiments by the author investigates the empirical effects of
attribute partitioning on learning performance, including its indirect effects through intermediate
concept formation.

Role of Attribute Partitioning in Model Selection
Model selection, the process of choosing a hypothesis class that has the appropriate complexity
for the given training data (Gemanet al, 1992; Schuurmans, 1997), is a consequent of attribute-
driven problem decomposition. It is also one of the original directives for performing
decomposition (i.e., to apply the appropriate learning algorithm to each homogeneous subtask).
Attribute partitioning is a determinant of subtasks, because it specifies new (restricted) views of

the input and new target outputs for each model. Thus, it also determines, indirectly, what
models are called for. This system organization may be described as awrappersystemcf.
(Kohavi & John, 1997) whose primary adjustable parameter is the attribute partition. A second
parameter is a high-level model descriptor (the architecture and type of hierarchicalclassifier
fusionmodel).

Machine Learning Methodologies: Models and Algorithms

Recurrent Neural Networks and Statistical Time Series Models

SRNs, TDNNs, and gamma networks (Mehrotraet al, 1997) are all temporal varieties of
artificial neural networks (ANNs). Atemporal naïve Bayesian networkis a restricted type of
Bayesian network called aglobal knowledge mapas defined by Heckerman (1991), which has
two stipulations. The first is that some random variables may be temporal (e.g., they may denote
the durations or rates of change of original variables). The second is that the topological
structure of the Bayesian network is learned by naïve Bayes. A hidden Markov model (HMM) is
a stochastic state transition diagram whose transitions are also annotated with probability
distributions over output symbols (Lee, 1989).

The primary criterion used to characterize a stochastic process in my multistrategy time
series learning system is itsmemory form. To determine the memory form for temporal ANNs,
two properties of statistical time series models are exploited. The first property is that the
temporal pattern represented by a memory form can be described as aconvolutional code. That
is, past values of a time series are stored by a particular type of recurrent ANN, which transforms
the original data into its internal representation. This transformation can be formally defined in
terms of akernel functionthat is convolved over the time series. This convolutional or
functional definition is important because it yields a general mathematical characterization for
individually weighted “windows” of past values (time delay orresolution) and nonlinear
memories that “fade” smoothly (attenuated decay, ordepth) (Principé & deVries, 1992; Mozer,
1994; Principé & Lefebvre, 2001). It is also important to metric-based model selection, because
it concretely describes the transformed time series that we should evaluate, in order to compare
memory forms and choose the most effective one. The second property is that a transformed
time series can be evaluated by measuring the change inconditional entropy(Cover & Thomas,
1991) for the stochastic process of which the training data is a sample. The entropy of the next
value conditioned on past values of theoriginal data should, in general, be higher than that of the
next value conditioned on past values of thetransformeddata. This indicates that the memory
form yields an improvement in predictive capability, which is ideally proportional to the
expected performance of the model being evaluated.

Given an input sequencex(t) with components (){ }niti ≤≤1,x̂ , its convolution ()tix̂ with
a kernel functionci(t) (specific to thei th component of the model) is defined as follows:

() () ()kktct
t

k
ii xx −=�

=0

ˆ

(Eachx or xi value contains all the attributes inone subsetof a partition.)

Kernel functions for simple recurrent networks, Gamma memories, and are presented in
the context of convolutional codes and time series learning by Mozer (1994), Mehrotraet al
(1997), and Hsu (1998). The interested reader may also refer to data sets such as the Santa Fe
corpus (Gershenfeld & Weigend, 1994) and ANN simulation software for additional
information, readers new to this family of learning models are encouraged to experiment with
such test corpora and codes in order to gain basic experience.

Evolutionary Computation: Genetic Algorithms and Genetic Programming
The notion of using evolutionary computation to improve the representation of learning problems
in KD draws from foundational work on controlling genetic algorithms and finds applications in
evolutionary control and data mining using genetic algorithms as inducers.

In the field of evolutionary computation, many aspects of the genetic coding and
evolutionary system can be tuned automatically. Much of the recent research has focuses on this
meta-optimization problem and has led to both theoretical and empirical results on population
sizing (Horn, 1997), probability of selection, crossover, and mutation (Goldberg, 1998), and
parallel, distributed load balancing in genetic algorithms (Cantu-Paz, 1999). Genetic algorithms
that tune some of their own hyperparameters are referred to in the literature asparameterless
(Harik & Lobo, 1997). This idea has also been used to develop genetic wrappers for performance
enhancement in KD, an innovation dating back to the first applications of genetic algorithms to
inductive learning (Bookeret al, 1989; Goldberg, 1989; Dejonget al, 1993).

We seek to optimize the representation and preference biases of a learning system for
KD. Therefore, we are interested in four kinds of hyperparameter: input descriptors, output
descriptors, specifications for what kind of committee machine or ensemble architecture to use,
and control variables for the search algorithm (the choice of search algorithm itself, heuristic
coefficients, and hyperparameters in various learning frameworks). The first three kinds of
hyperparameter control representation bias, the fourth, preference bias. (Witten and Frank,
2000) This distinction is important in our study of evolutionary computation because it
generates requirements for coding and fitness evaluation in our specification of combinatorial
optimization problems. For example, finding intermediate learning targets can be formulated as
an unsupervised learning problem, and the gene expression of an evolved selector, partition, or
construction rule or program for describing these target outputs shall differ from that for inputs.

Koza (1992) defines five specification components for a GP system: determining the
terminal set, function set, fitness cases or evaluation function, termination conditions, and result.
The process of determining these drives the design of a GP-based wrapper. In data mining with
evolutionary algorithms, many direct approaches have been made toward constructive induction:
selecting and extracting features is very natural with a genetic algorithm because the
hyperparameters (e.g., feature subsets) can be encoded as bit strings and, provided the proper
parallel and distributed computing system is used, the task of evaluating fitness based upon
model criteria and statistical validation data is trivially parallelizable. Similarly, with the proper
encoding of synthetic variables as symbolic (e.g., logical or arithmetic) expressions over the
original ground variables, GP is well suited to performing feature construction by combinatorial
optimization.

There is a extensive but diffuse literature on hierarchical learning, especially in areas of
biologically inspired computing where it is studied in contexts of: neural modularity and
hierarchy; niching, speciation, and demes; and artificial societies. In contrast, the concept of
divide-and-conquer algorithms is pervasively and thoroughly studied. This line of research aims
toward raising the understanding of layered learning in soft computing to such a level,

particularly for evolutionary computation in KD and reinforcement learning over large spatial
and temporal databases.

METHODLOGIES

Metric-Based Model Selection in Time Series Learning

For time series, we are interested in actually identifying a stochastic process from the
training data (i.e., a process that generates the observations). The performance element, time
series classification, will then apply a model of this process to a continuation of the input (i.e.,
“test” data) to generate predictions. The question addressed in this section is: “To what degree
does the training data (or a restriction of that data to a subset of attributes) probabilistically
match a prototype of some known stochastic process?” This is the purpose of metric-based
model selection: to estimate the degree of match between a subset of the observed data and a
known prototype. Prototypes, in this framework, are memory forms (Mozer, 1994), and manifest
as embedded patterns generated by the stochastic process that the memory form describes. For
example, an exponential trace memory form can express certain types ofMA(1) processes. The
kernel function for this process is given in (Hsu, 1998). The more precisely a time series can be
described in terms of exponential processes (wherein future values depend on exponential
growth or decay of previous values), the more strongly it will match this memory form. The
stronger this match, the better the expected performance of anMA(1) learning model, such as an
input recurrent (IR) network. Therefore, a metric that measures this degree of match on an
arbitrary time series is a useful predictor of IR network performance.

Control of Representation Bias: A Time-Series Learning Example
Table 1 lists five learning representations, each exemplifying a type ofrepresentationor
restriction biasfor inductive learning from time series, and the metrics corresponding to their
strengths. These are referred to as representation metrics because, as documented in the first
section (see Figure 1), the choice of representation is local to each node (subnetwork) in the
hierarchy, corresponding to a single set within an attribute partition. The choice of hierarchical
model is global over the partition and the corresponding metrics are therefore called
representation metrics. Note that this set may be an abstraction, or “merge”, of the lowest-level
partition used, and is likely to be a refinement, or “split” of the top-level (unpartitioned) set. The
metrics are calledprescriptivebecause each one provides evidence in favor of a particular
architecture.

(Time Series) Representation
Bias

Representation Metric

Simple recurrent network (SRN) Exponential trace (AR) score
Time delay neural network (TDNN) Moving average (MA) score
Gamma network Autoregressive moving average (ARMA) score
Temporal naïve Bayesian network Relevance score
Hidden Markov model (HMM) Test set perplexity

Table 1. Five time series representations and their prescriptive metrics

The design rationale is that each metric is based on an attribute chosen tocorrelate
positively(and, to the extent feasible,uniquely) with thecharacteristic memory formof a time
series. Amemory formas defined by Mozer (1994) is the representation of some specific
temporal pattern, such as a limited-depth buffer, exponential trace, gamma memory (Principé &
Lefebvre, 2001), or state transition model.

To model a time series as a stochastic process, one assumes that there is some mechanism
that generates a random variable at each point in time. The random variablesX(t) can be
univariate or multivariate (corresponding to single and multiple attributes orchannelsof input
per exemplar) and can take discrete or continuous values, and time can be either discrete or
continuous. For clarity of exposition, the experiments focus on discrete classification problems
with discrete time. The classification model isgeneralized linear regression(Neal, 1996), also
known as a1-of-C coding(Sarle, 2002) orlocal coding(Kohavi & John, 1997).

Following the parameter estimation literature (Dudaet al, 2000), time series learning can
be defined as finding the parameters { }nθθ ,,1 �=Θ that describe the stochastic mechanism,

typically by maximizing the likelihood that a set of realized orobservablevalues,
() () (){ }ktxtxtx ,,, 21 � , were actually generated by that mechanism. This corresponds to the

backward, or maximization, step in theexpectation-maximization (EM)algorithm (Dudaet al,
2000). Forecasting with time series is accomplished by calculating the conditional density

() () (){ }{ }()mtXtXtXP −−Θ ,,1,| � , when the stochastic mechanism and the parameters have been
identified by the observable values{x(t)}. The ordermof the stochastic mechanism can, in some
cases, be infinite; in this case, one can only approximate the conditional density.

Despite recent developments with nonlinear models, some of the most common
stochastic models used in time series learning are parametric linear models calledautoregressive
(AR), moving average (MA), andautoregressive moving average (ARMA)processes.

MA or moving average processes are the most straightforward to understand. First, let
{Z(t)} be some fixed zero-mean, unit-variance “white noise” or “purely random” process (i.e.,
one for which () ()[] 0,1, jiji ttifftZtZCov == otherwise).X(t) is anMA(q) process, or “moving

average process of orderq”, if () ()�
=

−=
q

tZtX
0τ

τ τβ , where the τβ are constants. It follows that

()[] 0=tXE and ()[] �
=

=
q

tXVar
0τ

τβ . Moving average processes are used to capture “exponential

traces” in a time series (Mozer, 1994; Mehrotraet al, 1997; Principé & Lefebvre, 2001). For
example, input recurrent neural networks (Ray & Hsu, 1998) are a restricted form of nonlinear
MA process model.

ARor autoregressive processes are processes in which the values at timet depend linearly
on the values at previous times. With{Z(t)} as defined above,X(t) is anAR(p)process, or

“autoregressive process of orderp”, if () ()tZtX
p

=−�
=0υ

υ υα , where the υα are constants. In this

case, ()[] 0=tXE , but the calculation of ()[]tXVar depends upon the relationship among theυα ; in

general, if 1≥υα , thenX(t) will quickly diverge. Autoregressive processes are often used to

describe stochastic mechanisms that have a finite, short-term, linear “memory”; they are

equivalent to infinite-lengthMA processes constants. BothJordan recurrent neural networks
(Mozer, 1994) andtime-delay neural networks(Langet al, 1990), also known astapped delay-
line neural networksor TDNNs, are a restricted form of nonlinearARprocess model (Mehrotraet
al, 1997, Principé & Lefebvre, 2001).

ARMAis a straightforward combination ofARandMA processes. With the above
definitions, anARMA(p, q)process is a stochastic processX(t) in which

() ()τβυα
τ

τ
υ

υ −=− ��
==

tZtX
qp

00

, where the{ }τυ βα , are constants (Mozer, 1994). Because it can be

shown thatARandMA are of equal expressive power, that is, because they can both represent
the same linear stochastic processes, possibly with infinitep or q (Box et al, 1994),ARMAmodel
selection and parameter fitting should be done with specific criteria in mind. For example, it is
typically appropriate to balance the roles of theAR(p)andMA(q), and to limitp andq to small
constant values (typically 4 or 5) for tractability (Boxet al, 1994; Principé & Lefebvre, 2001).
The Gamma memory (Principé & deVries, 1992; Principé & Lefebvre, 2001) is a restricted,
nonlinearARMAprocess model with a neural network architecture and learning rules.

In heterogeneoustime series, the embedded temporal patterns belong to different
categories of statistical models, such asMA(1) andAR(1). Examples of such embedded processes
are presented in the discussion of the experimental test beds. A multichannel time series learning
problem can be decomposed into homegeneous subtasks by aggregation or synthesis of
attributes.Aggregationoccurs in multimodal sensor fusion (e.g., for medical, industrial, and
military monitoring), where each group of input attributes represents the bands of information
available to a sensor (Stein & Meredith, 1993). In geospatial data mining, these groupings may
be topographic. Complex attributes may besynthesizedexplicitly by constructive induction, as
in causal discovery of latent (hidden) variables (Heckerman, 1996); or implicitly by
preprocessing transforms (Mehrotraet al, 1997; Ray & Hsu, 1998; Haykin, 1999).

Control of Preference Bias: A Data Fusion Example

Preference Bias (Combiner Type) Preference Metric
Specialist-Moderator (SM) Network Factorization score
Multistrategy Hierarchical Mixture of
Experts (MS-HME) Network

Modular mutual information score

Table 2. Hierarchical committee machines (combiners) and their prescriptive metrics

The learning methods being evaluated define the hierarchical model used to perform
multistrategy learning in the integrated, or composite, learning system. Examples of these are
listed in Table 2. Continuing research (Hsu, 1998) also considers the training algorithm to use,
but is beyond the scope of this chapter. This section presents the metrics for preference bias (the
combinertype) and presents hierarchical models for classifier fusion in greater detail.

The expected performance of a hierarchical model is aholistic measurement; that is, it
involves all of the subproblem definitions, the learning architecture used for each one, and even
the training algorithm used. It must therefore take into account at least the subproblem
definitions. Hence, the metrics used to select a hierarchical model are referred to aspreference
metrics. Preference metrics in this case are designed to evaluate only the subproblem definitions.
This criterion has three benefits: first, it is consistent with the holistic function of hierarchical

models; second, it is minimally complex, in that it omits less relevant issues such as the learning
architecture for each subproblem from consideration; and third, it measures the quality of an
attribute partition. The third property is very useful in heuristic search over attribute partitions:
the tree metric can thus serve double duty as an evaluation function for a partition (given a
hierarchical model to be used) and for mixture model (given a partitioned data set). As a
convention, the choice ofpartition is committed first; next, the hierarchical model type; then, the
learning architectures for each subset, with each selection being made subject to the previous
choices.

The preference metric for specialist-moderator networks is thefactorization score. The
interested reader is referred to (Hsu, 1998; Hsuet al, 2000).

Multistrategy Hierarchical Mixture of Experts (MS-HME) Network

The tree metric for HME-type networks is themodular mutual information score. This score
measures mutual information across subsets of a partition2. It is directly proportional to the
conditional mutual information of the desired output given each subsetby itself(i.e., the mutual
information between one subset and the target class,given all other subsets). It is inversely
proportional to the difference between joint and total conditional mutual information (i.e., shared
information among all subsets). Let the first quantity be denotedIi for each subsetai, and the
second quantity as∇I for an entire partition.

The mutual information between discrete random variablesX andY is defined (Cover &
Thomas, 1991) as the Kullback-Leibler distance between joint and product distributions:

() () ()()
() ()
() () ()
() ()XYHYH

YXHYHXH

YXHXH

ypxpyxpDYXI def

|

rule)(chain,

|

||,);(

−=
−+=

−=

=

The conditional mutual information ofX andYgivenZ is defined (Cover & Thomas, 1991)
as the change in conditional entropy when the value ofZ is known:

() () ()
() ()ZXYHZYH

ZYXHZXHX;Y|ZI def

,||

,||

−=
−=

Thecommon informationof X, Y, andZ (the analogue ofk-way intersection in set theory,
except that it can have negative value) can now be defined:

() () ()
() ()
() ()
() ()
() ()YZYIZYI

YZXIZXI

YZYIZYI

YZXIZXI

ZYXIYXIX;Y;ZI def

|;;

|;;

|;;

|;;

|;;

−=
−=
−=
−=

−=

The idea behind the modular mutual information score is that it should reward high
conditional mutual information between an attribute subset and the desired output given other
subsets (i.e., each expert subnetwork will be alloted a large share of the work). It should also
penalize high common information (i.e., the gating network is alloted more work relative to the
experts). Given these dicta, we can define the modular mutual information for a partition as
follows:

() () () () () ()()
{ }

{ }n

k

i
i

k

i
i

k

nndef

XXX

ypxpxpxpyxxxpDI

,,,

,,

||,,,,;

21
1

1

1

2121

�

�

��

�

�

=

∅=

=

=

=

=

X

X

XXX

YX

which leads to the definition ofIi (modular mutual information) and∇I (modular common
information):

()
() ()

()

() �
=

∇

+−

≠

−=

=

−=

=

k

i
idef

kdef

kiiidef

iidefi

II

II

HH

II

1

21

111

;

;;;;

,,,,,,|;

|;

YX

YXXX

XXXXYXYX

XYX

�

��

Because the desired metric rewards highIi and penalizes high∇I , we can define:

()

()YX

YX

;2

;

1

11

1

II

III

IIM

k

i
i

k

i
i

k

i
i

k

i
iMSHME

−��
�

�
��
�

�
=

−−��
�

�
��
�

�
=

−��
�

�
��
�

�
=

�

��

�

=

==

∇
=

Model Selection and Composite Learning
As explained in the introduction, being able to decompose a learning problem into

simpler subproblems still leaves the task of mapping each to its appropriate model – the
hypothesis language orrepresentation bias(Mitchell, 1997; Witten and Frank, 2000). In the
above methodology section, we have just formulated a rationale for using quantitative metrics to
accumulate evidence in favor of particular models. This leads to the design presented here, a
metric-based selection system fortime series learning architecturesandgeneral learning
methods. Next, we have studied specific time series learning architectures that populate part of a
collection of model components, along with the metrics that correspond to each. We then
addressed the problem of determining a preference bias (data fusion algorithm) for multistrategy
learning by examining two hierarchical mixture models to see how they can be converted into
classifier fusion models that also populate this collection. Finally, we surveyed metrics that
correspond to each.

I pause to justify this coarse-grained approach to model selection. As earlier defined,
model selectionis the problem of choosing a hypothesis class that has the appropriate complexity
for the given training data (Stone, 1977; Hjorth, 1994; Schuurmans, 1997). Quantitative, or
metric-based, methods for model selection have previously been used to learn using highly
flexible models with many degrees of freedom (Schuurmans, 1997), but with no particular
assumptions on the structure of decision surfaces, e.g., that they are linear or quadratic (Geman
et al, 1992). Learning without this characterization is known in the statistics literature asmodel-
free estimationor nonparametric statistical inference. A premise of this chapter is that, for
learning from heterogeneous time series, indiscriminate use of such models is too unmanageable.
This is especially true in diagnostic monitoring applications such as crisis monitoring, because
decision surfaces are more sensitive to error when the target concept is a catastrophic event (Hsu
et al, 1998).

The purpose of using model selection indecomposablelearning problems is tofit a
suitable hypothesis language (model) to each subproblem. (Engelset al, 1998) A subproblem is
defined in terms of a subset of the input and an intermediate concept, formed by unsupervised
learning from that subset. Selecting a model entails three tasks. The first isfinding partitions
that are consistent enough to admit at most one “suitable” model per subset. The second is
building a collection of modelsthat is flexible enough so that some partition can have at least one
model matched to each of its subsets. The third is toderive a principled quantitative system for
model evaluationso that exactly one model can be correctly chosen per subset of the acceptable
partition or partitions. These tasks indicate that a model selection systemat the level of
subproblem definitionis desirable, because this corresponds to the granularity of problem
decomposition, the design choices for the collection of models, and the evaluation function. This
is a more comprehensive optimization problem than traditional model selection typically adopts
(Gemanet al, 1992; Hjorth, 1994), but it is also approached from a less precise perspective;
hence the termcoarse-grained.

RESULTS

Synthetic and Small-Scale Data Mining Problems
This section presents experimental results with comparisons to existing inductive learning

systems (Kohaviet al, 1996): decision trees, traditional regression-based methods as adapted to

time series prediction, and non-modular probabilistic networks (both atemporal and ARIMA-
type ANNs).

The Modular Parity Problem
Figure 3 shows the classification accuracy in percent for specialist and moderator output for the
concept:

{ }1,0

21

21

1

≡∈

⊕⊕⊕=
×××=

= ∏
=

H

Y

ij

iniii

k

k

i
i

X

XXXY

YYY

Y

i
�

�

All mixture models are trained using 24 hidden units, distributed across all specialists and
moderators. When used as a heuristic evaluation function for partition search, the HME metric
documented in the previous section finds the best partition for the 5-attribute problem (shown
below) as well as 6, 7, and 8, with no backtracking, and indicates that an MS-HME model should
be used.

This section documents improvements in classification accuracy as achieved by attribute
partitioning. Figure 3 shows how the optimum partition {{1,2,3}{4,5}} for the concept:

parity(x1, x2, x3) × parity(x4, x5)
achieves the best specialist performance for any size-2 partition.

0

10

20

30

40

50

60

70

80

90

100

Partition

Figure 3. Mean Classification Accuracy of Specialists vs. Moderators
for all (52) Partitions of 5-Attribute Modular Parity Problem

Figure 3 shows how this allows it to achieve the best moderator performance overall.
Empirically, “good splits” – especially descendants and ancestors of the optimal one, i.e.,
members of its schema (Goldberg, 1989) – tend to perform well.

As documented in the background section, partition search is able to find Partition #16,
{{1,2,3}{4,5}} (the optimum partition) after expanding all of the 2-subset partitions. This
reducesBn evaluations toΘ(2n); attribute partitioning therefore remains an intractable problem,
but is more feasible for small to moderate numbers of attributes (30-40 can be handled by high-
performance computers, instead of 15-20 using exhaustive search). Approximation algorithms
for polynomial-time evaluation (Cormenet al, 2001) are currently being investigated by the
author.

0

10

20

30

40

50

60

70

80

90

Partition

For experiments using specialist-moderator networks on a musical tune classification
problem – synthetic data quantized from real-world audio recordings – the interested reader is
referred to (Hsuet al, 2000).

Application: Crop Condition Monitoring

Phased Autocorrelogram of Corn Condition, 1985-1995

0

0.2

0.4

0.6

0.8

1

1.2

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

Week of Growing Season

C
or

re
la

tio
n

Week 4
Week 5
Week 6
Week 7
Week 8
Week 9
Week 10
Week 11
Week 12
Week 13
Week 14
Week 15
Week 16
Week 17
Week 18
Week 19
Week 20
Week 21
Week 22
Week 23
Week 24
Week 25
Week 26
Week 27
Week 28
Week 29

Figure 4. Phased autocorrelogram (plot of autocorrelation shifted over time) for crop condition (average
quantized estimates)

Figure 4 visualizes a heterogeneous time series. The lines shown are phased
autocorrelograms, or plots of autocorrelation shifted in time, for (subjective) weeklycrop
conditionestimates, averaged from 1985-1995 for the state of Illinois. Eachpoint represents the
correlation between one week's mean estimate and the mean estimate for a subsequent week.
Eachline contains the correlation between values for a particular week and all subsequent weeks.
The data is heterogeneous because it contains both an autoregressive pattern (the linear
increments in autocorrelation for the first 10 weeks) and a moving average pattern (the larger,
unevenly spaced increments from 0.4 to about 0.95 in the rightmost column). The autoregressive
process, which can be represented by a time-delay model, expresses weather “memory”
(correlating early and late drought); the moving average process, which can be represented by an
exponential trace model, physiological damage from drought. Task decomposition can improve
performance here, by isolating the AR and MA components for identification and application of
the correct specialized architecture – a time delay neural network (Langet al, 1990; Haykin,
1999) or simple recurrent network (Principé & Lefebvre, 2001), respectively.

We applied a simple mixture model to reduce variance in ANN-based classifiers. A
paired t-test with 10 degrees of freedom (for 11-year cross-validation over the weekly
predictions) indicates significance at the level ofp < 0.004 for the moderator versus TDNN and
at the level ofp < 0.0002 for the moderator versus IR. The null hypothesis is rejected at the 95%
level of confidence for TDNN outperforming IR (p < 0.09), which is consistent with the
hypothesis that an MS-HME network yields a performance boost over either network type alone.
This result, however, is based on relatively few samples (in terms of weeks per year) and very
coarse spatial granularity (statewide averages).

Classification Accuracy, Crop Condition Monitoring (%)

Training Cross Validation

Inducer Min Mean Max StdDev Min Mean Max StdDev
ID3 100.0 100.0 100.0 0.00 33.3 55.6 82.4 17.51
ID3, bagged 99.7 99.9 100.0 0.15 30.3 58.2 88.2 18.30
ID3, boosted 100.0 100.0 100.0 0.00 33.3 55.6 82.4 17.51
C5.0 90.7 91.7 93.2 0.75 38.7 58.7 81.8 14.30
C5.0, boosted 98.8 99.7 100.0 0.40 38.7 60.9 79.4 13.06
IBL 93.4 94.7 96.7 0.80 33.3 59.2 73.5 11.91
Discrete
Naïve-Bayes

74.0 77.4 81.8 2.16 38.7 68.4 96.7 22.85

DNB, bagged 73.4 76.8 80.9 2.35 38.7 70.8 93.9 19.63
DNB, boosted 76.7 78.7 81.5 1.83 38.7 69.7 96.7 21.92
PEBLS 91.6 94.2 96.4 1.68 27.3 58.1 76.5 14.24
IR Expert 91.0 93.7 97.2 1.67 41.9 72.8 94.1 20.45
TDNN Expert 91.9 96.8 99.7 2.02 48.4 74.8 93.8 14.40
Pseudo-HME 98.2 98.9 100.0 0.54 52.9 79.0 96.9 14.99

Table 3. Performance of a HME-type mixture model compared with compared with that of other inducers on
the crop condition monitoring problem

Table 3 summarizes the performance of an MS-HME network versus that of other induction
algorithms fromMLC++ (Kohaviet al, 1996) on the crop condition monitoring problem. This
experiment illustrates the usefulness of learning task decomposition over heterogeneous time
series. The improved learning results due to application of multiple models (TDNN and IR
specialists) and a mixture model (the Gamma network moderator). Reports from the literature
on common statistical models for time series (Boxet al, 1994; Gershenfeld & Weigend, 1994;
Neal, 1996) and experience with the (highly heterogeneous) test bed domains documented here
bears out the idea that “fitting the right tool to each job” is critical.

Application: Loss Ratio Prediction in Automobile Insurance Pricing
Table 4 summarizes the performance of theID3 decision tree induction algorithm and the

state-space search-based feature subset selection (FSS) wrapper inMLC++ (Kohavi et al, 1996)
compared to that of agenetic wrapperfor feature selection. This system is documented in detail
in (Hsu et al, 2002). We used a version ofALLVAR-2, a data set for decision support in
automobile insurance policy pricing. This data set was used for clustering and classification and
initially contained 471-attribute record for each of over 300000 automobile insurance policies,
with 5 bins of loss ratio as a prediction target. Wall clock time for theJenesisand FSS-ID3

wrappers was comparable. As the table shows, both theJenesiswrapper and theMLC++
wrapper (usingID3 as the wrapped inducer) produce significant improvements over unwrapped
ID3 in classification accuracy and very large reductions in the number of attributes used. The
test set accuracy, and the number of selected attributes, are averaged over 5 cross validation folds
(70 aggregate test cases each). Results for data sets from the Irvine database repository that are
known to contain irrelevant attributes are also positive.able 10 presents more descriptive
statistics on the 5-way cross-validated performance of ID3, FSS-ID3 (theMLC++
implementation ofID3 with its feature subset selection wrapper), andJenesis. Severe overfitting
is quite evident forID3, based on the difference between training and test set error (perfect purity
is achieved in all 5 folds) and the larger number of attributes actually used compared to the
wrappers. JenesisandFSS-ID3perform comparably in terms of test set error, thoughFSS-ID3
has less difference between training and test set error andJenesisis less likely to overprune the
attribute subset. Note thatFSS-ID3consistently selects the fewest attributes, but still overfits
(Jenesisachieves lower test set error in 3 of 5 cross validation cases). The test set errors of
JenesisandFSS-ID3are not significantly different, so generalization quality is not conclusively
distinguishable in this case. We note, however, that excessively shrinking the subset indicates a
significant tradeoff regarding generalization quality. The classification model was used to audit
an existing rule-based classification system over the same instance space, and to calibrate an
underwriting model (to guide pricing decisions for policies) for an experimental market.

Cross Validation Segment
0 1 2 3 4 Mean Stdev

ID3 100.0 100.0 100.0 100.0 100.0 100.00.00
FSS-ID3 55.00 54.29 67.86 50.36 60.71 57.64 6.08

Training Set
Accuracy (%)

Jenesis 65.71 67.14 71.43 71.43 55.71 66.29 5.76
ID3 41.43 42.86 28.57 41.43 44.29 39.71 5.67
FSS-ID3 48.57 35.71 34.29 47.14 54.29 44.00 7.74

Test Set
Accuracy (%)

Jenesis 41.43 42.86 31.43 52.86 55.71 44.86 8.69
ID3 35 35 37 40 35 36.40 1.96
FSS-ID3 7 8 7 13 18 10.60 4.32

Attributes
Selected

Jenesis 20 19 22 20 23 20.80 1.47

Table 4. Results fromJenesisfor One Company (5-way cross validation), representative data sets

We have observed that the aggregation method scales well across lines of business (the
indemnity and non-indemnity companies) and states. This was demonstrated using many of our
decision tree experiments and visualizations usingALLVAR-2samples and subsamples by state.

ACKNOWLEDGEMENTS
Support for this research was provided in part by the Army Research Lab under grant ARL-PET-
IMT-KSU-07, by the Office of Naval Research under grant N00014-01-1-0519, and by the
Naval Research Laboratory under grant N00014-97-C-2061. The authors thank Nathan D.
Gettings for helpful discussions on data fusion and time series analysis and the anonymous
reviewer for comments on background material. Thanks also to David Clutter, Matt A. Durst,
Nathan D. Gettings, James A. Louis, Yuching Ni, Yu Pan, Mike Perry, James W. Plummer,
Victoria E. Lease, Tom Redman, Cecil P. Schmidt, and Kris Wuollett for implementations of
software components of the system described in this chapter.

References
Benjamin, D. P. editor (1990).Change of Representation and Inductive Bias. Norwell, MA:

Kluwer Academic Publishers.
Bogart, K. P. (1990).Introductory Combinatorics, 2nd Edition. Orlando, FL: Harcourt.
Booker, L. B., Goldberg, D. E., & Holland, J. H. (1989). Classifier Systems and Genetic

Algorithms. Artificial Intelligence, 40, 235-282.
Box, G. E. P., Jenkins, G. M., & Reinsel, G. C. (1994).Time Series Analysis, Forecasting, and

Control (3rd edition). San Francisco, CA: Holden-Day.
Breiman, L. (1996) Bagging Predictors.Machine Learning, 24, 123-140.
Brooks, F. P. (1995).The Mythical-Man Month, Anniversary Edition: Essays on Software

Engineering. Reading, MA: Addison-Wesley.
Cantu-Paz, E. (1999).Designing Efficient and Accurate Parallel Genetic Algorithms. Ph.D.

thesis, University of Illinois at Urbana-Champaign. Technical report, Illinois Genetic
Algorithms Laboratory (IlliGAL).

Cover, T. M. & Thomas, J. A. (1991).Elements of Information Theory. New York, NY: John
Wiley and Sons.

Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stern, C. (2001).Introduction to Algorithms,
Second Edition.Cambridge, MA: MIT Press.

DeJong, K. A., Spears, W. M., & Gordon, D. F. (1993). Using genetic algorithms for concept
learning.Machine Learning, 13, 161-188.

Donoho, S. K. (1996).Knowledge-Guided Constructive Induction.Ph.D. thesis, Department of
Computer Science, University of Illinois at Urbana-Champaign.

Duda, R. O., Hart, P. E., & Stork, D. (2000).Pattern Classification, Second Edition. New York,
NY: John Wiley and Sons.

Engels, R., Verdenius, F., & Aha, D. (1998).Proceedings of the 1998 Joint AAAI-ICML
Workshop on the Methodology of Applying Machine Learning (Technical Report WS-98-
16), AAAI Press, Menlo Park, CA.

Freund, T. & Schapire, R. E. (1996). Experiments with a New Boosting Algorithm. In
Proceedings of ICML-96.

Fu, L.-M. & Buchanan, B. G. (1985). Learning Intermediate Concepts in Constructing a
Hierarchical Knowledge Base. InProceedings of the International Joint Conference on
Artificial Intelligence (IJCAI-85), pages 659-666, Los Angeles, CA.

Gaba, D. M., Fish, K. J., & Howard, S. K. (1994).Crisis Management in Anesthesiology. New
York, NY: Churchill Livingstone.

Geman, S., Bienenstock, E., & Doursat, R. (1992). Neural Networks and the Bias/Variance
Dilemna. Neural Computation, 4, 1-58.

Gershenfeld, N. A. & Weigend, A. S., editors. (1994). The Future of Time Series: Learning and
Understanding. InTime Series Prediction: Forecasting the Future and Understanding the
Past (Santa Fe Institute Studies in the Sciences of Complexity XV).Reading, MA:
Addison-Wesley.

Goldberg, D. E. (1989).Genetic Algorithms in Search, Optimization, and Machine Learning.
Reading, MA: Addison-Wesley.

Goldberg, D. E. (1998).The Race, The Hurdle, and The Sweet Spot: Lessons from Genetic
Algorithms for the Automation of Design Innovation and Creativity. Technical report,
Illinois Genetic Algorithms Laboratory (IlliGAL).

Grois, E., Hsu, W. H., Voloshin, M., & Wilkins, D. C. (1998). Bayesian Network Models for
Generation of Crisis Management Training Scenarios. InProceedings of IAAI-98. Menlo
Park, CA: AAAI Press.

Harik, G. & Lobo, F. (1997).A parameter-less genetic algorithm.Technical report, Illinois
Genetic Algorithms Laboratory (IlliGAL).

Hassoun, M. H. (1995).Fundamentals of Artificial Neural Networks. Cambridge, MA: MIT
Press.

Hayes-Roth, B., Larsson, J. E., Brownston, L., Gaba, D., & Flanagan, B. (1996).Guardian
Project Home Page, URL: http://www-ksl.stanford.edu/projects/guardian/

Haykin, S. (1999).Neural Networks: A Comprehensive Foundation, Second Edition. Englewood
Cliffs, NJ: Prentice Hall.

Heckerman, D. A. (1991).Probabilistic Similarity Networks. Cambridge, MA: MIT Press.
Heckerman, D. A. (1996).A Tutorial on Learning With Bayesian Networks. Microsoft Research

Technical Report 95-06, revised June 1996.
Hjorth, J. S. U. (1994).Computer Intensive Statistical Methods: Validation, Model Selection and

Bootstrap. London, UK: Chapman and Hall.
Horn, J. (1997). The Nature of Niching: Genetic Algorithms and The Evolution of Optimal,

Cooperative Populations. Ph.D. thesis, University of Illinois at Urbana-Champaign.
Technical report, Illinois Genetic Algorithms Laboratory (IlliGAL).

Horvitz, E. & Barry, M. (1995). Display of Information for Time-Critical Decision Making. In
Proceedings of the Eleventh International Conference on Uncertainty in Artificial
Intelligence (UAI-95). San Mateo, CA: Morgan-Kaufmann.

Hsu, W. H. (1998).Time Series Learning With Probabilistic Network Composites. Ph.D. thesis,
University of Illinois at Urbana-Champaign. Technical Report UIUC-DCS-R2063. URL:
http://www.kddresearch.org/Publications/Theses/PhD/Hsu, 1998.

Hsu, W. H., Gettings, N. D., Lease, V. E., Pan, Y., & Wilkins, D. C. (1998). A New Approach to
Multistrategy Learning from Heterogeneous Time Series. InProceedings of the
International Workshop on Multistrategy Learning.

Hsu, W. H., Ray, S. R., & Wilkins, D. C. (2000). A Multistrategy Approach to Classifier
Learning from Time Series.Machine Learning, 38, 213-236.

Hsu, W. H., Welge, M., Redman, T., & Clutter, D. (2002). Constructive Induction Wrappers in
High-Performance Commercial Data Mining and Decision Support Systems.Data Mining
and Knowledge Discovery, to appear. Preprint URL:
http://www.kddresearch.org/Publications/Journal/KDDM-D2K-07052000.zip

Jordan, M. I., & Jacobs, R. A. (1994). Hierarchical Mixtures of Experts and the EM Algorithm.
Neural Computation, 6, 181-214.

Kohavi, R. & John, G. H. (1997). Wrappers for Feature Subset Selection.Artificial Intelligence,
Special Issue on Relevance, 97(1-2), 273-324.

Kohavi, R., Sommerfield, D., & Dougherty, J. Data Mining UsingMLC++ : A Machine
Learning Library in C++. InTools with Artificial Intelligence, p. 234-245, IEEE Computer
Society Press, Rockville, MD, 1996. URL:http://www.sgi.com/Technology/mlc.

Kohonen, T. (1990). The Self-Organizing Map.Proceedings of the IEEE, 78:1464-1480.
Koza, J. R. (1992).Genetic Programming. Cambridge, MA: MIT Press.
Lang, K. J., Waibel, A. H., & Hinton, G. E. (1990). A Time-Delay Neural Network Architecture

for Isolated Word Recognition.Neural Networks, 3, 23-43.

Lee, K.-F. (1989).Automatic Speech Recognition: The Development of the SPHINX System.
Norwell, MA: Kluwer Academic Publishers.

Li, T., Fang. L., & Li, K. Q-Q. (1993). Hierarchical Classification and Vector Quantization With
Neural Trees.Neurocomputing, 5, 119-139.

Lowe, D. (1995). Radial Basis Function Networks. In Arbib, M. A., editor,The Handbook of
Brain Theory and Neural Networks, 779-782.

Mehrotra, K., Mohan, C. K., & Ranka, S. (1997).Elements of Artificial Neural Networks.
Cambridge, MA: MIT Press.

Michalski, R. S. (1993). A Theory and Methodology of Inductive Learning.Artificial
Intelligence, 20(2), 111-161, reprinted in Buchanan, B. G. & Wilkins, D. C., editors,
Readings in Knowledge Acquisition and Learning,. San Mateo, CA: Morgan-Kaufmann.

Michalski, R. S., and Stepp, R. E. (1983). Learning from observation: Conceptual clustering. In
Michalski, R. S.; Carbonell, J. G.; and Mitchell, T. M., eds.,Machine Learning: An
Artificial Intelligence Approach. San Mateo, CA: Morgan Kaufmann.

Mitchell, T. M. (1997). Machine Learning. New York, NY: McGraw-Hill.
Mozer, M. C. (1994). Neural Net Architectures for Temporal Sequence Processing. In Weigend,

A. S. & Gershenfeld, N. A., editors, Time Series Prediction: Forecasting the Future and
Understanding the Past (Santa Fe Institute Studies in the Sciences of Complexity XV).
Reading, MA: Addison-Wesley.

Neal, R. M. (1996).Bayesian Learning for Neural Networks. New York, NY: Springer-Verlag.
Palmer, W. C. (1965).Meteorological Drought. Research Paper Number 45, Office of

Climatology, United States Weather Bureau.
Principé, J. & deVries. (1992). The Gamma Model – A New Neural Net Model for Temporal

Processing.Neural Networks, 5, 565-576.
Principé, J. & Lefebvre, C. (2001).NeuroSolutions v4.0,Gainesville, FL: NeuroDimension.

URL: http://www.nd.com.
Ray, S. R. & Hsu, W. H. (1998). Self-Organized-Expert Modular Network for Classification of

Spatiotemporal Sequences.Journal of Intelligent Data Analysis, 2(4).
Resnick, P. & Varian, H. R. (1997). Recommender Systems.Communications of the ACM,

40(3):56-58.
Russell, S. & Norvig, P. (1995).Artificial Intelligence: A Modern Approach. Englewood Cliffs,

NJ: Prentice Hall.
Sarle, W. S., editor. (2002).Neural Network FAQ, periodic posting to the Usenet newsgroup

comp.ai.neural-nets, URL: ftp://ftp.sas.com/pub/neural/FAQ.html
Schuurmans, D. (1997). A New Metric-Based Approach to Model Selection. InProceedings of

the Fourteenth National Conference on Artificial Intelligence (AAAI-97), Providence, RI,
552-558. Menlo Park, CA: AAAI Press.

Stein, B. & Meredith, M. A. (1993).The Merging of the Senses. Cambridge, MA: MIT Press.
Stone, M. (1997). An Asymptotic Equivalence of Choice of Models by Cross-Validation and

Akaike’s Criterion. Journal of the Royal Statistical Society Series B, 39, 44-47.
Watanabe, S. (1985).Pattern Recognition: Human and Mechanical. New York, NY: John Wiley

and Sons.
Witten, I. H. and Frank, E. (2000).Data Mining: Practical Machine Learning Tools and

Techniques with Java Implementations.San Mateo, CA: Morgan-Kaufmann.
Wolpert, D. H. (1992). Stacked Generalization.Neural Networks, 5, 241-259.

1 S is a recurrence known as the Stirling Triangle of the Second Kind. It counts the number of partitions of ann-set
into k classes (Bogart, 1990).
2 This idea is based upon suggestions by Michael I. Jordan.

