

Genetic Algorithms

William H. Hsu, Kansas State University, USA

INTRODUCTION

A genetic algorithm (GA) is an algorithm used to find approximate solutions to
difficult-to-solve problems through application of the principles of evolutionary biology
to computer science. Genetic algorithms use biologically-derived techniques such as
inheritance, mutation, natural selection, and recombination. Genetic algorithms are a
particular class of evolutionary algorithms.

Genetic algorithms are typically implemented as a computer simulation in which a
population of abstract representations (called chromosomes) of candidate solutions
(called individuals) to an optimization problem evolves toward better solutions.
Traditionally, solutions are represented in binary as strings of 0s and 1s, but different
encodings are also possible. The evolution starts from a population of completely random
individuals and happens in generations. In each generation, multiple individuals are
stochastically selected from the current population, modified (mutated or recombined) to
form a new population, which becomes current in the next iteration of the algorithm.

BACKGROUND

Operation of a GA

The problem to be solved is represented by a list of parameters which can be used to
drive an evaluation procedure, called chromosomes or genomes. Chromosomes are
typically represented as simple strings of data and instructions, in a manner not unlike
instructions for a von Neumann machine, although a wide variety of other data structures
for storing chromosomes have also been tested, with varying degrees of success in
different problem domains.

Initially several such parameter lists or chromosomes are generated. This may be totally
random, or the programmer may seed the gene pool with "hints" to form an initial pool of
possible solutions. This is called the first generation pool.

During each successive generation, each organism is evaluated, and a value of goodness
or fitness is returned by a fitness function. The pool is sorted, with those having better
fitness (representing better solutions to the problem) ranked at the top. Notice that
"better" in this context is relative, as initial solutions are all likely to be rather poor.

The next step is to generate a second generation pool of organisms, which is done using
any or all of the genetic operators: selection, crossover (or recombination), and mutation.
A pair of organisms are selected for breeding. Selection is biased towards elements of the
initial generation which have better fitness, though it is usually not so biased that poorer
elements have no chance to participate, in order to prevent the solution set from

converging too early to a sub-optimal or local solution. There are several well-defined
organism selection methods; roulette wheel selection and tournament selection are
popular methods.

Following selection, the crossover (or recombination) operation is performed upon the
selected chromosomes. Most genetic algorithms will have a single tweakable probability
of crossover (Pc), typically between 0.6 and 1.0, which encodes the probability that two
selected organisms will actually breed. A random number between 0 and 1 is generated,
and if it falls under the crossover threshold, the organisms are mated; otherwise, they are
propagated into the next generation unchanged. Crossover results in two new child
chromosomes, which are added to the second generation pool. The chromosomes of the
parents are mixed in some way during crossover, typically by simply swapping a portion
of the underlying data structure (although other, more complex merging mechanisms
have proved useful for certain types of problems.) This process is repeated with different
parent organisms until there are an appropriate number of candidate solutions in the
second generation pool.

The next step is to mutate the newly created offspring. Typical genetic algorithms have a
fixed, very small probability of mutation (Pm) of perhaps 0.01 or less. A random number
between 0 and 1 is generated; if it falls within the Pm range, the new child organism's
chromosome is randomly mutated in some way, typically by simply randomly altering
bits in the chromosome data structure.

These processes ultimately result in a second generation pool of chromosomes that is
different from the initial generation. Generally the average degree of fitness will have
increased by this procedure for the second generation pool, since only the best organisms
from the first generation are selected for breeding. The entire process is repeated for this
second generation: each organism in the second generation pool is then evaluated, the
fitness value for each organism is obtained, pairs are selected for breeding, a third
generation pool is generated, etc. The process is repeated until an organism is produced
which gives a solution that is "good enough".

A slight variant of this method of pool generation is to allow some of the better
organisms from the first generation to carry over to the second, unaltered. This form of
genetic algorithm is known as an elite selection strategy.

MAIN THRUST OF THE CHAPTER
Observations

There are several general observations about the generation of solutions via a genetic
algorithm:

• GAs may have a tendency to converge towards local solutions rather than global
solutions to the problem to be solved.

• Operating on dynamic data sets is difficult, as genomes begin to converge early
on towards solutions which may no longer be valid for later data. Several methods
have been proposed to remedy this by increasing genetic diversity somehow and
preventing early convergence, either by increasing the probability of mutation
when the solution quality drops (called triggered hypermutation), or by
occasionally introducing entirely new, randomly generated elements into the gene
pool (called random immigrants).

• As time goes on, each generation will tend to have multiple copies of successful
parameter lists, which require evaluation, and this can slow down processing.

• Selection is clearly an important genetic operator, but opinion is divided over the
importance of crossover verses mutation. Some argue that crossover is the most
important, while mutation is only necessary to ensure that potential solutions are
not lost. Others argue that crossover in a largely uniform population only serves to
propagate innovations originally found by mutation, and in a non-uniform
population crossover is nearly always equivalent to a very large mutation (which
is likely to be catastrophic).

• GAs are not good at finding optimal solutions, but can rapidly locate good
solutions, even for difficult search spaces.

Variants

The simplest algorithm represents each chromosome as a bit string. Typically, numeric
parameters can be represented by integers, though it is possible to use floating point
representations. The basic algorithm performs crossover and mutation at the bit level.

Other variants treat the chromosome as a list of numbers which are indexes into an
instruction table, nodes in a linked list, hashes, objects, or any other imaginable data
structure. Crossover and mutation are performed so as to respect data element boundaries.
For most data types, specific variation operators can be designed. Different chromosomal
data types seem to work better or worse for different specific problem domains.

Efficiency

Genetic algorithms are known to produce good results for some problems. Their major
disadvantage is that they are relatively slow, being very computationally intensive
compared to other methods, such as random optimization.

Recent speed improvements have focused on speciation, where crossover can only occur
if individuals are closely-enough related.

Genetic algorithms are extremely easy to adapt to parallel computing and clustering
environments. One method simply treats each node as a parallel population. Organisms
are then migrated from one pool to another according to various propagation techniques.

Another method, the Farmer/worker architecture, designates one node the farmer,
responsible for organism selection and fitness assignment, and the other nodes as
workers, responsible for recombination, mutation, and function evaluation.

Genetic Wrappers

A genetic program is ideal for implementing wrappers where parameters are naturally
encoded as chromosomes such as bit strings or permutations. This is precisely the case
with variable (feature subset) selection, where a bit string can denote membership in the
subset, and with variable ordering, where a permutation denotes α, the order in which
nodes are added to the BN. Both of these are methods for inductive bias control where
the input representation is changed from the default [Be90] – here, the full subset χ or an
arbitrary ordering α0.

With a genetic wrapper, we seek to evolve parameter values using the performance
criterion of the overall learning system as fitness. In learning to classify, this may simply
mean validation set accuracy. However, as we have noted, many authors of GA-based
wrappers have independently derived criteria that resemble minimum description length
(MDL) estimators – that is, they seek to minimize model size and the sample complexity
of input as well as maximize generalization accuracy. [CS96, RPG+97, GW99,
HWRC00]

An additional benefit of genetic algorithm-based wrappers is that it can automatically
calibrate “empirically determined” constants such as the coefficients a, b, and c
introduced in the previous section. As we noted, this can be done using individual
training data sets rather than assuming that a single optimum exists for a large set of
machine learning problems. This is preferable to empirically calibrating parameters as if
a single “best mixture” existed. Even if a very large and representative corpus of data
sets were used for this purpose, there is no reason to believe that there is a single a
posteriori optimum for genetic parameters such as weight allocation to inferential loss,
model complexity, and sample complexity of data in the variable selection wrapper.

Finally, genetic wrappers can “tune themselves” – for example, the GA-Based Inductive
Learning (GABIL) system of Dejong et al [DSG93] learns propositional rules from data
and adjusts constraint parameters that control how these rules can be generalized.
Mitchell notes that this is a method for evolving the learning strategy itself. [Mi97]
Many classifier systems also implement performance-tuning wrappers in this way.
[BGH89] Finally, population size and other constants for controlling elitism, niching,
sharing, and scaling can be controlled using parameterless GAs. [HL99]

Problem domains

Problems which appear to be particularly appropriate for solution by genetic algorithms
include timetabling and scheduling problems, and many scheduling software packages

are based on GAs. GAs have also been applied to engineering. Genetic algorithms are
often applied as an approach to solve global optimization problems. Genetic algorithms
have been successfully applied to the study of neurological evolution (see
NeuroEvolution by Augmented Topologies).

History

John Holland was the pioneering founder of much of today's work in genetic algorithms,
which has moved on from a purely theoretical subject (though based on computer
modelling) to provide methods which can be used to actually solve some difficult
problems today.

Pseudo-code Algorithm
 Choose initial population
 Evaluate each individual's fitness
 Repeat
 Select best-ranking individuals to reproduce
 Mate pairs at random
 Apply crossover operator
 Apply mutation operator
 Evaluate each individual's fitness
 Until terminating condition (see below)

Terminating conditions often include:

• Fixed number of generations reached
• Budgeting: allocated computation time/money used up
• An individual is found that satisfies minimum criteria
• The highest ranking individual's fitness is reaching or has reached a plateau such

that successive iterations are not producing better results anymore.
• Manual inspection. May require start-and-stop ability
• Combinations of the above

FUTURE TRENDS
Related techniques

Genetic programming is a related technique developed by John Koza, in which computer
programs, rather than function parameters, are optimised. Genetic programming often
uses tree-based internal data structures to represent the computer programs for adaptation
instead of the list, or array, structures typical of genetic algorithms. Genetic programming
algorithms typically require running time that is orders of magnitude greater than that for
genetic algorithms, but they may be suitable for problems that are intractable with genetic
algorithms.

CONCLUSION
Genetic programming is an emerging methodology that promotes a crosscutting

and integrative view. It looks across both technologies and application domains to
identify and organize the techniques, tools, and models that improve data-driven
discovery.

There are significant research questions as this methodology evolves. Continuing
progress will be eagerly received from efforts in individual strategies for knowledge
discovery and machine learning, such as the excellent contributions in (Koza, Keane,
Streeter, Mydlowec, Yu, and Lanza, 2003). An additional opportunity is to pursue the
recognition of unifying aspects of practices now associated with diverse disciplines.
While the anticipation of new discoveries is exciting, the evolving practical application of
discovery methods needs to respect individual privacy and a diverse collection of laws
and regulations. Balancing these requirements constitutes a significant and persistent
challenge as new concerns emerge and laws are drafted.

Looking ahead to the challenges and opportunities of the 21st century, discovery
informatics is poised to help people and organizations learn as much as possible from the
world’s abundant and ever growing data assets.

REFERENCES

Brameier, M. & Banzhaf, W. (2001). Evolving Teams of Predictors with Linear Genetic
Programming. Genetic Programming and Evolvable Machines 2(4), p. 381-407.

Burke, E. K., Gustafson, S. & Kendall, G. (2004). Diversity in genetic programming: an
analysis of measures and correlation with fitness. IEEE Transactions on Evolutionary
Computation 8(1), p. 47-62.

Goldberg, David E (1989), Genetic Algorithms in Search, Optimization and Machine
Learning.

Harvey, Inman (1992), Species Adaptation Genetic Algorithms: A basis for a continuing
SAGA, in 'Toward a Practice of Autonomous Systems: Proceedings of the First European
Conference on Artificial Life', F.J. Varela and P. Bourgine (eds.), MIT Press/Bradford
Books, Cambridge, MA, pp. 346-354.

Keijzer, M. & Babovic, V. (2002). Declarative and Preferential Bias in GP-based
Scientific Discovery. Genetic Programming and Evolvable Machines 3(1), p. 41-79.

Kishore, J. K., Patnaik, L. M., Mani, V. & Agrawal, V.K. (2000). Application of
genetic programming for multicategory pattern classification. IEEE Transactions on
Evolutionary Computation 4(3), p. 242-258.

Koza, John (1992), Genetic Programming: On the Programing of Computers by Means
of Natural Selection

Krawiec, K. (2002). Genetic Programming-based Construction of Features for Machine
Learning and Knowledge Discovery Tasks. Genetic Programming and Evolvable
Machines 3(4), p. 329-343.

Mitchell, Melanie, (1996), An Introduction to Genetic Algorithms, MIT Press,
Cambridge, MA Addison-Wesley

Muni, D. P., Pal, N. R. & Das, J. (2004). A novel approach to design classifiers using
genetic programming. IEEE Transactions on Evolutionary Computation 8(2), p. 183-
196.

Nikolaev, N. Y. & Iba, H. (2001). Regularization approach to inductive genetic
programming. IEEE Transactions on Evolutionary Computation 5(4), p. 359-375.

Nikolaev, N. Y. & Iba, H. (2001). Accelerated Genetic Programming of Polynomials.
Genetic Programming and Evolvable Machines 2(3), p. 231-257.

TERMS AND THEIR DEFINITION
Clickstream: The sequence of mouse clicks executed by an individual during an online

Internet session.
Data Mining: The application of analytical methods and tools to data for the purpose of

identifying patterns and relationships such as classification, prediction, estimation,
or affinity grouping.

Discovery Informatics: The study and practice of employing the full spectrum of
computing and analytical science and technology to the singular pursuit of
discovering new information by identifying and validating patterns in data.

Evolutionary Computation: Solution approach guided by biological evolution, which
begins with potential solution models, then iteratively applies algorithms to find the
fittest models from the set to serve as inputs to the next iteration, ultimately leading
to a model that best represents the data.

Knowledge Management: The practice of transforming the intellectual assets of an
organization into business value.

Neural Networks: Learning systems, designed by analogy with a simplified model of the
neural connections in the brain, which can be trained to find nonlinear relationships
in data.

Rule Induction: Process of learning, from cases or instances, if-then rule relationships
consisting of an antecedent (if-part, defining the preconditions or coverage of the
rule) and a consequent (then-part, stating a classification, prediction, or other
expression of a property that holds for cases defined in the antecedent).

