

Genetic Programming

William H. Hsu, Kansas State University, USA

INTRODUCTION

Genetic programming (GP) is a subfield of evolutionary computation first explored in
depth by John Koza in Genetic Programming: On the Programming of Computers by
Means of Natural Selection and independently developed by Nichael Lynn Cramer. and
It is a method used to allow computer programs to evolve according to some user-defined
goal. It uses evolutionary patterns including crossover, selection, replication and
mutations to evolve the programs, which are usually represented by Lisp expressions. To
work effectively, it requires an appropriate selection of operators and variables.

Genetic programming uses methods which are similar to genetic algorithms (GA), but is
based on programs which perform tasks whose results can then be evaluated to deliver a
fitness function similar to GAs. Instead of using pools of parameter lists to be evaluated
by some evaluation procedure, GP uses pools of programs which are to be run to perform
the required task. A technical difference between GAs and GPs is that GAs use list
structures, often of fixed size, to store their data, while GPs use tree structures which can
vary in size and shape for each program used in the program pools.

BACKGROUND

The application of a tree representation (and required genetic operators) for using genetic
algorithms to generate programs was first described in 1985 by Cramer. Koza, though he
did not invent genetic programming, is indisputably the field's most prolific and
persuasive author.

So far GPs have successfully solved some toy problems, such as the lawn mower
problem, but the method is very computationally intensive, and may not compare
favourably where simpler methods, such as genetic algorithms or random optimisation
can be used instead. It is possible that some more complex problems may be more
amenable to solution using GPs than other optimization methods.

Unfortunately, due to the lack of solid theory regarding the performance of genetic
programming vs. traditional search methods (such as hill climbing), genetic programming
remains a sort of pariah amongst the various techniques of search. While genetic
programming has achieved results that are as good as and sometimes better than human-
generated results, more work needs to be done on the theory in order to bring the
technique into more widespread use.

MAIN THRUST OF THE CHAPTER

Evolutionary Computation in Java (ECJ) and Simulator

All GP experiments were all conducted using Luke’s Evolutionary Computation in Java
(ECJ) package [Lu02]. A set of operators was developed in Java for the 3-on-1 keep-
away task and is described in the Experiment Design section.

Where specified, ECJ defaults [Lu02] were overridden. These overrides, in turn, follow
Gustafson’s original implementation using an earlier version of ECJ [Gu00]. All
variations (simple GP, ADF-GP, GP-ISLES, and incremental ADF-GP) use ramped half-
and-half initialization, tournament selection with tournament size 7. The genetic
crossover operator generates 90 percent of the next generation; tournament selection
generates the other 10 percent. [Ko92] The GP variations use no mutation, permutation,
over-selection, or elitism.

Fitness evaluations are made using Gustafson’s 20-by-20 grid-based abstract simulator
for keep-away soccer [Gu00]. Previous work by Stone and Sutton [SS01] and by Hsu
and Gustafson [HG02] on the 3-on-1 task defined minimization of turnovers (change in
possession) as the objective function for the full keeper policy. Let us define this
problem specification as 3-on-1-turnovers and easier subtasks, based upon the number of
passes completed, as k-on-t-passing (for k ≤ 3, t ≤ 1).

For standardization, all runs use a generational GP with population size 4000 and 101
generations. Experiments with population size 1000, 2000, 4000, and 8000 and with
fewer (51) and more (201) generations showed the above parameters to be effective for
this test bed, as Gustafson also reports [Gu00].

Monolithic Simple GP and ADF-GP

As a baseline for comparison, we used SGP and ADF-GP with the single monolithic, or
non-incremental, objective of minimizing the number of turnovers that occur in a
simulation.

The ADF-GP is initialized with maximum size 6 for initial random programs. Hybrid
variations also use this constraint, but have no restrictions on ADF seeding (as
documented in the next sections). ADF-GP allows each tree for kicking and moving to
have two additional trees that represent ADFs, where the first ADF can call the second,
and both have access to the full function set available for SGP.

The next three sections describe incremental reuse: first using easy missions (GP-ISLES),
then using single-mission incremental ADFs.

FUTURE TRENDS

Basic GP-ISLES and Related Work

A basic version of GP-ISLES is described by Gustafson and called layered learning GP
(LLGP) [Gu00]. To modify standard GP for incrementally staged learning, we must
develop a learning objective for each layer, i.e., the fitness at each layer that selects ideal
individuals for the easier subtask. The GP-ISLES system focuses on automatically
discovering how to compose passing agents into keep-away soccer agents. GP-ISLES
has two layers; the fitness objective for the first layer is to maximize the number of
accurate passes (a two-agent task evaluated over teams of three copies of the same
individual, on the same size field as the keep-away soccer task), while fitness objective
for the second layer is to minimize the number of turnovers.

In comparing this incremental approach to the monolithic systems (using a simple GP
and a GP with ADFs), Gustafson found that it outperformed both GP and ADF-GP on
average, achieving a best-of-run fitness of 5.8 turnovers in a 200-time step simulation
[Gu00]

REFERENCES
[Gu00] S. M. Gustafson. Layered Learning in Genetic Programming for A Cooperative
Robot Soccer Problem. M.S. thesis, Department of Computing and Information
Sciences, Kansas State University, 2000.

[HG02] W. H. Hsu and S. M. Gustafson. Genetic Programming and Multi-Agent Layered
Learning by Reinforcements. In Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO-2002), New York, NY, 2002.

[Lu00] S. Luke. Issues in Scaling Genetic Programming: Breeding Strategies, Tree
Generation, and Code Bloat. Ph.D. Dissertation, Department of Computer Science,
University of Maryland, College Park, MD, 2000.

[Lu04] S. Luke. Evolutionary Computation in Java v9. Available from URL:
http://www.cs.umd.edu/projects/plus/ec/ecj/.

[SF98] T. Soule and J. A. Foster. Removal bias: a new cause of code growth in tree
based evolutionary programming. In Proceedings of the IEEE International Conference
on Evolutionary Computation (ICEC-1998), p. 781-786. IEEE Press, 1998.

[SV00b] P. Stone and M. Veloso. Multiagent Systems: A Survey from a Machine
Learning Perspective. Autonomous Robots, 8(3): 345-383. Kluwer, 2000.

Brameier, M. & Banzhaf, W. (2001). Evolving Teams of Predictors with Linear Genetic
Programming. Genetic Programming and Evolvable Machines 2(4), p. 381-407.

Burke, E. K., Gustafson, S. & Kendall, G. (2004). Diversity in genetic programming: an
analysis of measures and correlation with fitness. IEEE Transactions on Evolutionary
Computation 8(1), p. 47-62.

Cantu-Paz, E. (1999). Designing Efficient and Accurate Parallel Genetic Algorithms.
Ph.D. thesis, University of Illinois at Urbana-Champaign. Technical report, Illinois
Genetic Algorithms Laboratory (IlliGAL).

Cramer, Nichael Lynn (1985), "A representation for the Adaptive Generation of Simple
Sequential Programs" in Proceedings of an International Conference on Genetic
Algorithms and the Applications, Grefenstette, John J. (ed.), CMU

Duda, R. O., Hart, P. E., & Stork, D. (2000). Pattern Classification, Second Edition.
New York, NY: John Wiley and Sons.

Hsu, W. H., Ray, S. R., & Wilkins, D. C. (2000). A Multistrategy Approach to Classifier
Learning from Time Series. Machine Learning, 38, 213-236.

Hsu, W. H., Welge, M., Redman, T., & Clutter, D. (2002). Constructive Induction
Wrappers in High-Performance Commercial Data Mining and Decision Support Systems.
Data Mining and Knowledge Discovery.

Keijzer, M. & Babovic, V. (2002). Declarative and Preferential Bias in GP-based
Scientific Discovery. Genetic Programming and Evolvable Machines 3(1), p. 41-79.

Kishore, J. K., Patnaik, L. M., Mani, V. & Agrawal, V.K. (2000). Application of
genetic programming for multicategory pattern classification. IEEE Transactions on
Evolutionary Computation 4(3), p. 242-258.

Koza, J.R. (1992), Genetic Programming: On the Programming of Computers by Means
of Natural Selection, MIT Press

Koza, J.R. (1994), Genetic Programming II: Automatic Discovery of Reusable Programs,
MIT Press

Koza, J.R., (2003). Genetic Programming IV, Morgan Kaufmann.

Koza, J.R., Bennett, F.H., Andre, D., and Keane, M.A. (1999), Genetic Programming III:
Darwinian Invention and Problem Solving, Morgan Kaufmann.

Krawiec, K. (2002). Genetic Programming-based Construction of Features for Machine
Learning and Knowledge Discovery Tasks. Genetic Programming and Evolvable
Machines 3(4), p. 329-343.

Muni, D. P., Pal, N. R. & Das, J. (2004). A novel approach to design classifiers using
genetic programming. IEEE Transactions on Evolutionary Computation 8(2), p. 183-
196.

Nikolaev, N. Y. & Iba, H. (2001). Regularization approach to inductive genetic
programming. IEEE Transactions on Evolutionary Computation 5(4), p. 359-375.

Nikolaev, N. Y. & Iba, H. (2001). Accelerated Genetic Programming of Polynomials.
Genetic Programming and Evolvable Machines 2(3), p. 231-257.

Principé, J. & Lefebvre, C. (2001). NeuroSolutions v4.0, Gainesville, FL:
NeuroDimension. URL: http://www.nd.com.

Wong, M. L. & Leung, K. S. (2000). Data Mining Using Grammar Based Genetic
Programming and Applications (Genetic Programming Series, Volume 3). Norwell, MA:
Kluwer.

TERMS AND THEIR DEFINITION
Clickstream: The sequence of mouse clicks executed by an individual during an online

Internet session.
Data Mining: The application of analytical methods and tools to data for the purpose of

identifying patterns and relationships such as classification, prediction, estimation,
or affinity grouping.

Discovery Informatics: The study and practice of employing the full spectrum of
computing and analytical science and technology to the singular pursuit of
discovering new information by identifying and validating patterns in data.

Evolutionary Computation: Solution approach guided by biological evolution, which
begins with potential solution models, then iteratively applies algorithms to find the
fittest models from the set to serve as inputs to the next iteration, ultimately leading
to a model that best represents the data.

Knowledge Management: The practice of transforming the intellectual assets of an
organization into business value.

Neural Networks: Learning systems, designed by analogy with a simplified model of the
neural connections in the brain, which can be trained to find nonlinear relationships
in data.

Rule Induction: Process of learning, from cases or instances, if-then rule relationships
consisting of an antecedent (if-part, defining the preconditions or coverage of the
rule) and a consequent (then-part, stating a classification, prediction, or other
expression of a property that holds for cases defined in the antecedent).

