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INTRODUCTION 

Genetic programming (GP) is a subfield of evolutionary computation first explored in 
depth by John Koza in Genetic Programming: On the Programming of Computers by 
Means of Natural Selection and independently developed by Nichael Lynn Cramer.  and 
It is a method used to allow computer programs to evolve according to some user-defined 
goal. It uses evolutionary patterns including crossover, selection, replication and 
mutations to evolve the programs, which are usually represented by Lisp expressions. To 
work effectively, it requires an appropriate selection of operators and variables.  

Genetic programming uses methods which are similar to genetic algorithms (GA), but is 
based on programs which perform tasks whose results can then be evaluated to deliver a 
fitness function similar to GAs. Instead of using pools of parameter lists to be evaluated 
by some evaluation procedure, GP uses pools of programs which are to be run to perform 
the required task. A technical difference between GAs and GPs is that GAs use list 
structures, often of fixed size, to store their data, while GPs use tree structures which can 
vary in size and shape for each program used in the program pools.  

BACKGROUND 

The application of a tree representation (and required genetic operators) for using genetic 
algorithms to generate programs was first described in 1985 by Cramer. Koza, though he 
did not invent genetic programming, is indisputably the field's most prolific and 
persuasive author.  

So far GPs have successfully solved some toy problems, such as the lawn mower 
problem, but the method is very computationally intensive, and may not compare 
favourably where simpler methods, such as genetic algorithms or random optimisation 
can be used instead. It is possible that some more complex problems may be more 
amenable to solution using GPs than other optimization methods.  

Unfortunately, due to the lack of solid theory regarding the performance of genetic 
programming vs. traditional search methods (such as hill climbing), genetic programming 
remains a sort of pariah amongst the various techniques of search. While genetic 
programming has achieved results that are as good as and sometimes better than human-
generated results, more work needs to be done on the theory in order to bring the 
technique into more widespread use.  

 



 

MAIN THRUST OF THE CHAPTER 

Evolutionary Computation in Java (ECJ) and Simulator 

All GP experiments were all conducted using Luke’s Evolutionary Computation in Java 
(ECJ) package [Lu02].  A set of operators was developed in Java for the 3-on-1 keep-
away task and is described in the Experiment Design section. 

Where specified, ECJ defaults [Lu02] were overridden.   These overrides, in turn, follow 
Gustafson’s original implementation using an earlier version of ECJ [Gu00].  All 
variations (simple GP, ADF-GP, GP-ISLES, and incremental ADF-GP) use ramped half-
and-half initialization, tournament selection with tournament size 7.  The genetic 
crossover operator generates 90 percent of the next generation; tournament selection 
generates the other 10 percent. [Ko92]  The GP variations use no mutation, permutation, 
over-selection, or elitism. 

Fitness evaluations are made using Gustafson’s 20-by-20 grid-based abstract simulator 
for keep-away soccer [Gu00].  Previous work by Stone and Sutton [SS01] and by Hsu 
and Gustafson [HG02] on the 3-on-1 task defined minimization of turnovers (change in 
possession) as the objective function for the full keeper policy.  Let us define this 
problem specification as 3-on-1-turnovers and easier subtasks, based upon the number of 
passes completed, as k-on-t-passing (for k ≤ 3, t ≤ 1). 

For standardization, all runs use a generational GP with population size 4000 and 101 
generations.  Experiments with population size 1000, 2000, 4000, and 8000 and with 
fewer (51) and more (201) generations showed the above parameters to be effective for 
this test bed, as Gustafson also reports [Gu00]. 

Monolithic Simple GP and ADF-GP 

As a baseline for comparison, we used SGP and ADF-GP with the single monolithic, or 
non-incremental, objective of minimizing the number of turnovers that occur in a 
simulation. 

The ADF-GP is initialized with maximum size 6 for initial random programs.  Hybrid 
variations also use this constraint, but have no restrictions on ADF seeding (as 
documented in the next sections).  ADF-GP allows each tree for kicking and moving to 
have two additional trees that represent ADFs, where the first ADF can call the second, 
and both have access to the full function set available for SGP. 

The next three sections describe incremental reuse: first using easy missions (GP-ISLES), 
then using single-mission incremental ADFs. 



 

 
FUTURE TRENDS 

Basic GP-ISLES and Related Work 

A basic version of GP-ISLES is described by Gustafson and called layered learning GP 
(LLGP) [Gu00].  To modify standard GP for incrementally staged learning, we must 
develop a learning objective for each layer, i.e., the fitness at each layer that selects ideal 
individuals for the easier subtask.  The GP-ISLES system focuses on automatically 
discovering how to compose passing agents into keep-away soccer agents.  GP-ISLES 
has two layers; the fitness objective for the first layer is to maximize the number of 
accurate passes (a two-agent task evaluated over teams of three copies of the same 
individual, on the same size field as the keep-away soccer task), while fitness objective 
for the second layer is to minimize the number of turnovers. 

In comparing this incremental approach to the monolithic systems (using a simple GP 
and a GP with ADFs), Gustafson found that it outperformed both GP and ADF-GP on 
average, achieving a best-of-run fitness of 5.8 turnovers in a 200-time step simulation 
[Gu00] 
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TERMS AND THEIR DEFINITION 
Clickstream: The sequence of mouse clicks executed by an individual during an online 

Internet session. 
Data Mining: The application of analytical methods and tools to data for the purpose of 

identifying patterns and relationships such as classification, prediction, estimation, 
or affinity grouping. 

Discovery Informatics: The study and practice of employing the full spectrum of 
computing and analytical science and technology to the singular pursuit of 
discovering new information by identifying and validating patterns in data. 

Evolutionary Computation: Solution approach guided by biological evolution, which 
begins with potential solution models, then iteratively applies algorithms to find the 
fittest models from the set to serve as inputs to the next iteration, ultimately leading 
to a model that best represents the data. 

Knowledge Management: The practice of transforming the intellectual assets of an 
organization into business value. 

Neural Networks: Learning systems, designed by analogy with a simplified model of the 
neural connections in the brain, which can be trained to find nonlinear relationships 
in data.  

Rule Induction: Process of learning, from cases or instances, if-then rule relationships 
consisting of an antecedent (if-part, defining the preconditions or coverage of the 
rule) and a consequent (then-part, stating a classification, prediction, or other 
expression of a property that holds for cases defined in the antecedent). 


