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This article presents challenges and recommended practices for visualizing data about phenomena that 

are observed or simulated across space and time.  Some data may be collected for the express purpose 

of answering questions through quantitative analysis and simulation, especially about future 

occurrences or continuations of the phenomena – that is, prediction.  In this case, analytical 

computations may serve two purposes: to prepare the data for presentation and to answer questions by 

producing information, especially an informative model, that can also be visualized.   These purposes 

may have significant overlap.  Thus, the focus of the chapter will be about analytical techniques for 

visual display of quantitative data and information that scale up to large data sets. It begins by surveying 

trends in educational and scientific use of visualization, and reviewing taxonomies of data to be 

visualized.   Next, it reviews aspects of spatiotemporal data that pose challenges, such as heterogeneity 

and scale, along with techniques for dealing specifically with geospatial data and text.  An exploration of 

concrete applications then follows.   Finally, tenets of information visualization design, put forward by 

Tufte and other experts on data representation and presentation, are considered in the context of 

analytical applications for heterogeneous data in spatiotemporal domains.  



1. Trends in Data Visualization 
 

1.1 Learning and Analytics Tasks 
 

This section provides a brief history of information visualization for educational and scientific 

applications, followed by a survey of challenges and tools encountered in visualizing data. 

 

1.1.1 Brief History of Prediction 

 

Information visualization is the study of (interactive) visual representations of abstract data to reinforce 

human cognition. ("Information visualization", Wikipedia, 2013)  Abstract data include both numerical 

data such as geospatial locations or other physical measurements, and non-numerical data such as text. 

However, information visualization differs from scientific visualization: Munzner (2008) advises using the 

term “infovis (for information visualization) when the spatial representation is chosen”, and “scivis 

(scientific visualization) when the spatial representation is given”.   According to Friendly (2009), 

scientific visualization is primarily concerned with the “visualization of three-dimensional phenomena 

(architectural, meteorological, medical, biological, etc.), where the emphasis is on realistic renderings of 

volumes, surfaces, illumination sources, and so forth, perhaps with a dynamic (time) component”. 

Input data for visualization includes observational data, collected for the express purpose of answering 

questions through quantitative analysis, and simulated data, which is generated using a mathematical 

model. One particular type of simulated data consists of future occurrences or continuations of the 

phenomena – that is, prediction.  Modeling of phenomena for the purpose of forecasting predates 

computational realization of the methods used, including econometrics (Frisch, 1929) and statistical 

hypothesis testing (Neyman & Pearson, 1933; Fisher, 1935).  Some of the earliest methods for nonlinear 

time series prediction were extrapolation, interpolation, and smoothing methods derived by: Wiener 

(1949); Brown (1956), Holt (1957), and Winters (1960); and Box and Jenkins (1970).  These contributions 

comprise fundamental representation and estimation methods that underlie spectral analysis 

approaches to signal identification, including autoregressive moving average (ARMA) process models. 

Although specifically geared towards time series and geospatial data, the visualization approaches 

covered in this chapter are generally applicable to a variety of data sets and to the behavior and output 

of many type of machine learning algorithms.  Hall et al. (2009) give a much more detailed catalogue of 

the models and algorithms implemented in the Waikato Environment for Knowledge Analysis (WEKA), to 

which we refer the interested reader.  Predictive visualization, the aspect of information visualization 

that especially focuses on the continuation of time series beyond historical observations, often poses 

questions of evaluation using previous unseen data.  Watson and Wixom (2009) describe architectures 

for this type of analytical modeling, among others, in the domain of business intelligence (BI).  Business 

intelligence comprises theories, methodologies, and technologies that serve to transform raw data into 



information for business decision making.  Similar uses of prediction and visualization can be found in 

most fields where sequences and time series are observed as signals.  This includes neuroscience, where 

such measurements are fundamental, giving rise to the work of scientists such as Elger and Lehnertz 

(1998). 

 

1.1.2 Challenges of Heterogeneity in Big Data 

 

The term heterogeneous data refers to variables that are fundamentally diverse in character, 

particularly their source and means of acquisition.  One of the key challenges to working with 

heterogeneous data is that multiple dimensions and a very high volume of data may result from 

differences in data provenance (origin and preprocessing history).  This issue gives rise to the problem of 

designing visual representations that can consistently support the display of such data. Heer, Kong, and 

Agrawala (2009) present adjustable parameters such as layering and chart sizing, and discuss the 

perceptual effects of introducing such degrees of freedom.  Monmonier (1990) discusses methods from 

statistics for coping with the additional technical challenge of working with spatial data over time. 

A further challenge is that of big data, a generic term used to refer to data of high complexity (especially 

intrinsic complexity), the value that can be derived from the data using various analytical methods, and 

longitudinal information.  Mike 2.0 (2013) notes furthermore that big data does not necessarily mean 

extremely large in size, if the other aspects of analytical task complexity are high. Kumar et al. (2005) 

present some specific approaches to scaling up visualizations to large data sets, such as introducing 

trend lines, quartile boxes, etc.   The provenance of big data, like that of visualization data, plays an 

important role.  

Cox and Ellsworth (1997) discuss facets of complexity, distinguishing between big data collections, which 

“typically arise in fields with acquired data, as from remote sensors and satellite imaging”, and big data 

objects, which "typically are the result of large-scale simulations in such areas as Computational Fluid 

Dynamics (CFD), Structural Analysis, Weather Modeling, and Astrophysics".  With respect to collections, 

they note that data within them often: 

1. Tend to be “distributed among multiple sites” 

2. Are stored within “collections of heterogeneous databases (each the repository for data 

acquired or processed at that site)” 

3. Have “generally incompatible data interfaces and representations” and are “generally not self-

describing” 

4. Admit “no platform-independent definition of the data types in the underlying data, and the 

relationship between them” (e.g.,  no well-defined relational data model) 

5. Do not have “meta-data that facilitate discovery and use” stored with them (e.g., describing 

where and when they were collected, what calibration was applied, what their units, are etc.). 



Such metadata “may (and probably should) also include compressed and/or condensed 

representations of the underlying data” to “enable browsing of a large collection” 

6. Are difficult to retrieve or locate: “Visualization can serve an important role in data location, in 

particular by compressing summary information in a format that can be visually understood 

quickly” 

7. Admit large storage requirements, “requiring partitioning between disk and tape” (or between 

secondary and tertiary storage in general). 

8. Admit “poor locality in the queries for the data (since, for example, requests may be to diverse 

variables measured at arbitrary times). Any particular request is more likely to require data from 

tap than from disk”, meaning that responses may need to be freshly computed or observed 

rather than retrieved from archives. 

9. Require “raw bandwidths required to satisfy requests [that] may be quite large for any actively 

used collection. These include bandwidths from tape to disk, from disk to memory, from 

memory to network, and across the network.” 

An independent set of characteristics for data objects is that they present challenges to: 

1. Data modeling: multi-dimensionality, lack of a standardized representation and interfaces for 

structured data (as above).  “As a result, visualization codes typically must handle multiple file 

formats and data representations.” 

2. Data model evolution: dynamicity of representations including relational schemas and formats, 

e.g., alternative grid structures in Computational Fluid Dynamics. 

Specific additional challenges for big data objects are: 

3. Data management: “there is generally not a clean division between the data models (where 

they exist) and data management”.  This requires “special handling of data sets that do not fit in 

main memory”.  In more current terminology, there is a resultant lack of good data description 

languages as used in semistructured data (especially XML, which includes a standard for 

document type definitions). 

4. “Data too big to be memory-resident”: “Often a single data object does not fit in main memory.” 

CFD applications earlier than the late 1990s produced time-varying data objects on the order of 

10 gigabytes (Gb) and those of 1997 were 100-200Gb.  As of 2013, this typical figure has grown 

by three decimal orders of magnitude to 300+ terabytes (Tb). 

5. “Data too big for local disk (perhaps even for remote disk)”: this meant hundreds of gigabytes 

(more than 650, approximately 7  1011 bytes) in 1997 and hundreds of terabytes to petabytes 

(1014-1015 bytes) at the time of this writing. 

6. “Bandwidth and latency”: the need, resulting in part from the preceding challenges, to find 

alternatives to secondary storage-based virtual memory with a high bandwidth, low latency data 

pathway between the data store and main memory. 

 



Steele and Illinsky (2010) survey and catalog the above challenges in several modern domains, viewing 

these requirements in the context of functional and aesthetic criteria.   Cuzzocrea, Song, and Davis 

(2011) further discuss the challenges inherent in dealing with large-scale multidimensional data 

analytics, especially moving towards NoSQL query languages and Map-Reduce platforms such as 

Hadoop.  A 2011 panel at the DOLAP conference on online analytical processing that discussed 

visualization issues, among other aspects of analytics, advocated an emphasis on decision support 

context and the ability to explore multidimensional spaces. 

 

1.1.3 Current and Emerging Technologies for Visualizing Data 

 

Goldstein and Roth (1994) introduced a hierarchical framework for data browsing, comprising an 

interface mechanism they called the Aggregate Manipulator (AM).  Combined with the Dynamic Query 

(DQ) mechanism of Ahlberg, Williamson, and Shneiderman (1992), this system has served as a widely 

adopted paradigm, much like the model-view-controller framework of Reenskaug (1979) among 

graphical user interface (GUI) developers. 

The term visual analytics was coined to describe “an outgrowth of the fields of information visualization 

and scientific visualization that focuses on analytical reasoning facilitated by interactive visual 

interfaces”. (Kovalerchuk & Schwing, 2004; “visual analytics”, Wikipedia, 2013)  Active clientele of this 

technology include developers of business decision support technology.   In particular, the use of 

visualization in e-commerce has recently risen, exemplified by customer relationship management 

(CRM) and business intelligence tools that incorporate data mining-based analytics and visualization. 

(Cadez et al., 2000)  Cannataro and Talia (2003) present an architecture they call the knowledge grid 

that implements a scalable infrastructure for widespread access to online services as visualization or 

analytics. 

Meanwhile, Keim et al. (2006) note in a survey article that visual analytics “combines strengths from 

information analytics, geospatial analytics, scientific analytics, statistical analytics, knowledge discovery, 

data management and knowledge representation, presentation, production and dissemination, 

cognition, perception, and interaction”.  They also discuss the following specific open problems of 

visualization in detail: 

1. Synthesis of heterogeneous types of data 

2. Human interpretability requirements 

3. Data transformations and integration constraints 

4. "Problem solving, decision science, and human information discourse" 

5. Semantics for future analytical tasks and decision-centered visualization (a key feature of user 

modeling, adaptation, and personalization) 

6. Promotion of user acceptability by “addressing the challenges of new systems to be pervasive, 

embedded, nomadic, adaptable, powerful, intentional and eternal" cf. MIT Project Oxygen 

(2004) 



7. Integration into intelligent user interfaces  

8. Derivation of objective evaluation criteria 

Summarizing common design tenets that for the above requirements, Keim et al. derive the following 

“visual analytics mantra”: 

 

1.2 Taxonomies: Scientific, Data, and Information Visualization 
 

As Munzner (2008) notes, the term scientific visualization is distinct from information visualization, in 

that scientific visualization aims at rendering phenomena, to a given spatial representation. That is, 

scientific observations entail a set of requirements and a specification – sometimes constrained by the 

instrumentation or use cases, such as geographic information systems (GIS) software.  Information 

visualization typically leaves more degrees of representational freedom to the designer, having 

performance criteria related to usability and graphical excellence, rather than using predetermined 

constraints.   Finally, data visualization gives some of the design freedom of information visualization 

but involves abstraction of raw observation data to some schematic form, and generally involves less 

preprocessing, analysis, and annotation of the source data. 

2. Aspects of Spatiotemporal Data 
 

We now discuss some aspects of data that include a spatial (“length-scale”) or temporal (“time-scale”) 

measure.  Theses spatiotemporal data are most frequently presented in map and timeline form, but can 

be captured and represented in other ways. 

2.1 Space and Time 
 

A spatiotemporal sequence is a data set whose points are ordered by location and time.  Spatiotemporal 

sequences arise in analytical applications such as time series prediction and monitoring, sensor 

integration, and multimodal human-computer intelligent interaction.  Learning to classify time series is an 

important capability of intelligent systems for such applications.  Many problems and types of knowledge 

in intelligent reasoning with time series, such as diagnostic monitoring, prediction (or forecasting), and 

“Analyse First – 

Show the Important – 

Zoom, Filter and Analyse Further – 

Details on Demand” 



control automation can be represented as classification.  The machine learning task that yields the 

capability of forecasting is described using the term modeling, while higher-level descriptive 

characterization of the time series is referred to as understanding.Spatiotemporal physical data can 

include scientific and engineering measurements at microscopic or sub-microscopic orders of spatial 

magnitude, and similarly small orders of temporal magnitude.  Some domains such as  genome biology 

and particle physics admit both information visualization and scientific visualization.  Infovis may be 

feasible using descriptive statistics or summary attributes of an entire entity such as the genome of an 

entire organism, whereas scivis may use a standard visual metaphor such as a ladder depiction of the DNA 

double helix or the colored-ball molecular renderings produced by RasMol (2013).   

2.1.1 Capturing and Creating Spatial Data: Georeferencing 

 

 

Figure 1. Map and timeline visualization of meth lab seizure events (2004-2011) using Google Maps and MIT SIMILE. 

Seizures from the first half of 2010 are depicted, with one event selected. 

Extracting spatially-referenced events, even using structured data sources, entails a straightforward but 

data-intensive georeferencing task: looking up the coordinates (latitude and longitude) of locations where 

events are reported to have occurred.  These may be identified as buildings or landmarks.  The resulting 

coordinates are placed into a spatial database management system (SDBMS) for visualization using 

software libraries and services, as shown in Figure 1.  Such a system uses two access layers with a unified 

representation and geographic information system (GIS) data model: one based on a geospatial markup 

language such as Google’s Keyhole Markup Language (KML) and a file-based application programmer 

interface (API), while the second layer is based on a server-side interface to a relational database 

implementing the schema.   



2.1.2 Capturing Temporal Data 

 

Figure 1 also depicts the data integration between the map and timeline visualization subsystems. The 

seizure event in April, 2010 is represented on the map by a pop-up note, on the monthly scale timeline 

(upper right) by a circled dot, and on the yearly scale timeline (lower right) by a circled point. 

2.1.3 Predictive Analytics: Forecasting, Modeling, and Understanding 

 

A spatiotemporal sequence is a data set whose points are ordered by location and time.  Spatiotemporal 

sequences arise in analytical applications such as time series prediction and monitoring, sensor 

integration, and multimodal human-computer intelligent interaction.  Learning to classify time series is an 

important capability of intelligent systems for such applications.  Many problems and types of knowledge 

in intelligent reasoning with time series, such as diagnostic monitoring, prediction (or forecasting), and 

control automation can be represented as classification.  The machine learning task that yields the 

capability of forecasting is described using the term modeling, while higher-level descriptive 

characterization of the time series is referred to as understanding. 

 

2.2 Big Data: Multidimensionality and the Need for Scalability 
 

Visualization can help make both multi-dimensional data and the results of an analytical or optimization 

algorithm more accessible.  Oftentimes, it is used to project data and objects into a lower dimension space 

to make the data set more manageable.  It can also help the user grasp the broad characteristics of the 

data.  The complexity challenges of big data applications underscore a need to limit the growth of the 

complexity of visualization.  Like analytics algorithms for text and numerical data, visualization algorithms 

must generally have worst-case asymptotic running time linear in the problem size. 

2.3 Heterogeneity 
 

Software tools for visualization also play a key role in coping with heterogeneity, as they allow disparate 

aspects to be hidden.  This is comparable to projecting only the shared attributes of two tables in a 

relational database, corresponding to the intersection of their schemas.  The key challenge in visualization 

is accounting for relevant and interesting differences in disparate parts of a data set in order to reveal 

variation in the data to the user.  Some text domains exhibit semantic heterogeneity, a disparity in the 

sense or meaning of terms used.  Coping with this is an open research problem in general, but presents a 

specific set of issues for visualization, in that showing the differences (and similarities) does not necessarily 

confer an ability to disambiguate a model manually – i.e., based on inspection. 



3. Techniques for Analyzing and Learning from Big Data 
 

3.1 Thematic Maps 

 

Figure 2. Choropleth map of heart disease death rates in the USA by county, 2000-2006. (CDC, 2011) 

The object of thematic mapping is to depict phenomena and trends in a geospatial context.  Toward this 

end, most frameworks allow data to be superimposed or blended with a color or grayscale map that 

depicts region boundaries, baseline, etc.  This includes choropleth maps with dynamically computable 

color palettes.   

Figure 2 is a choropleth map depicting the rate of death attributed to heart disease by county in the USA 

from 2000 through 2006. This map, which was published by the Centers for Disease Control, takes inter-

county population distribution (but not intra-county population distribution) into account by normalizing 

to a death rate per 100,000 individuals.  For information retrieval applications, it does not provide any 

drill-down interface cf. HealthMap or similar event visualization services.  One of the reasons for the 

development of the geospatial visualization components of an event monitoring system is to facilitate 

information retrieval and multimodal information access using well-established visualization techniques 

such as thematic mapping and small multiples. 



3.2 Text Analytics: Visualizing Natural Language 

3.2.1 Text Annotation and Markup 

 

Named entity recognition (NER) seeks to locate and classify atomic elements in text into predefined 

categories such as the names of persons, organizations, locations, etc. The list of categories can be 

extended to include disease names in the biomedical paradigm.  Most NER research consists of taking an 

unannotated, unstructured block of text such as: 

Chancellor Ridcully hired three new faculty to work at Unseen University in 

Ankh-Morpork. 

and producing an annotated output such as: 

{Chancellor Ridcully}\PERSON hired {three new faculty}\QUANTITY to work at 

{Unseen University}\ORGANIZATION in {Ankh-Morpork}\LOCATION. 

In addition to people, organizations, and locations, quantities and dates are often included in NER systems.  

Quantities are particularly relevant to textual IE in the domain of epidemiology because of the many units 

of measurement (length, area, volume, mass and weight, monetary units, time, etc.) that are required 

and the variety of agents (infectious agents and host organisms) that may be named. 

Research indicates that NER systems developed for one domain do not typically perform well on other 

domains.  Early work in NER systems in the 1990s was aimed primarily at extraction from journalistic 

articles. Attention then turned to processing of military dispatches and reports. Since about 1998, there 

has been a great deal of interest in entity identification in the molecular biology, bioinformatics, and 

medical natural language processing communities. The most common entity of interest in that domain 

has been names of genes and gene products.  The Stanford Named Entity Recognizer (Stanford NER) labels 

sequences of words in a text which are the names of things, such as person and company names, or gene 

and protein names. The software provides a general (arbitrary order) implementation of linear chain 

Conditional Random Field (CRF) sequence models, coupled with well-engineered feature extractors for 

Named Entity Recognition.  Included are a good 3-class (PERSON, ORGANIZATION, LOCATION) named 

entity recognizer for English (in versions with and without additional distributional similarity features) and 

another pair of models trained on the CoNLL 2003 English training data. 

 

3.2.2 Processing Tasks: Information Extraction and Topic Modeling 

 

Coreference resolution (abbreiviated coref) is the problem of deciding which of multiple expressions in a 

sentence or document refer to the same object, quantity, or entity.  For example, in the sentence "NIH 

policy was that if a submitted proposal was not funded, a review report would be generated for it by the 

study section assigned to it", the anaphoric reference "it” refers to the submitted proposal. 



Coreference resolution is a significant, though not essential task in spatiotemporal event extraction; an 

example can be found in the statement, "informed estimates suggest that up to 17,000,000 children suffer 

from hunger throughout the USA, many of them living in poverty".  The QA task of determining how many 

animals this sentence says were killed, and the textual entailment task of determining whether the 

children live in the United States, are relatively straightfoward, whereas the coreference resolution task 

of identifying what subset of entities were said to be impoverished is more difficult.  Thus, a high-level 

event wherein "17 million children suffer from hunger in the USA" can be detected even without 

coreference resolution, whereas the more challenging problem of tagging "locales where children in 

poverty suffer from hunger" requires it. 

 

3.2.3 From Tag Clouds to Opinion Mapping  

 

Tag clouds are simple visualizations of documents that depict words used in a single document or a 

collection of documents, scaled in descending order by frequency of occurrence.  Often, differences in 

word orientation, size, etc. are emphasized. Figure 3 shows a tag cloud published as part of a Voice of 

America report on cyber-bullying, generated from students’ own survey responses. 

 

 

Figure 3. Tag cloud of teen's descriptions of bad behaviors they've seen online. (Voice of America, 2011) 

A major limitation of tag clouds is that it does not show distributions comparatively, between two or more 

documents (or collections), and does not admit simple comparison between clouds.  In order to produce 

a more informative visualization of word distributions, some form of topic modeling is needed, which as 

discussed above can also support geographic mapping of sentiments. 



3.3 Heterogeneous Information Networks 
 

Heterogeneous information networks (HIN) are a type of graph-based model of communication and trust 

that include a large proportion of all social networks.  Research on heterogeneous information networks  

as led to a convergence of methodologies for network modeling, incorporating classification, learning and 

reasoning with graphical models, frequent subgraph mining, relational representation, and link 

annotation, among other techniques.  Many intelligent systems applications to information extraction, 

web search, and recommendation call for inferences to be made regarding the existence, type, or 

attributes of links.  Some tasks, such as question answering using information networks, may require that 

inferences be based upon partial link information and made under uncertainty about participating entities 

and relationships.  

3.3.1 Visualization of Large and Interesting Graphs 

 

Application areas that often exhibit a need for heterogeneous information network analysis include: 

 information diffusion and sharing systems: sensor networks, social media (opinions and 

sentiments, meme propagation, viral content, political commentary, etc.) 

 behavioral modeling: community recruitment and mass activity, large-scale patterns, traffic, 

spatiotemporal effects 

 content-management systems: version control, wikification 

 social recommender systems: communities, experts, friends, products, reviewers, providers 

 application areas: cybersecurity (information flow, trust networks, attack graphs, mechanism 

design), bioinformatics and biomedicine (genomics, proteomics, metabolomics), epidemiology 

3.3.2 Descriptive Analytics of Graphs 

 

Figure 4. Different graph topologies, visualized (Part 1 of 2) –                                                                        

Havel-Koren fast multiscale graph, horizontal sine wave, spiral graph, uniform random graph. 

 



 

Figure 5. Different graph topologies, visualized (Part 2 of 2) –                                                                        

sparse (2-D) vs. dense (3-D) Havel-Koren fast multiscale graph. 

 

As shown in Figure 4 and Figure 5, visualization can also help differentiate key features of different 

specified topologies, particularly when the connectivity is generated by a random or semirandom 

process.  These include the maximum and minimum degrees, number of connected components, and 

centrality of the graph. 

3.3.3 Emerging Techniques 

 

Active research areas that are relevant to heterogeneous information networks include: 

 community detection and formation modeling 

 ranking-based clustering methods: learning to rank in information networks 

 path-based similarity measures and relationship extraction 

 modeling of link types and relationship strength 

 applications to modeling of weblogs, social media, social networks, and the semantic web 

 frequent pattern mining in graph and sequence data 

 statistical relational learning 

 trust networks and information sharing 

 



4. Case Studies of Thematic Maps 
 

4.1 Epidemiology: Historical and Predictive 
 

Predictive epidemiology refers to the analytical study of disease dynamics to predict future outbreaks in 

space and time so that effective mitigation strategies can be implemented to curb the recurrence of 

epidemics.  Since epizootic diseases such as the Foot and Mouth Disease (FMD), which periodically or 

sporadically break out within livestock populations,  raise several political, administrative,  economic and  

welfare issues, it is imperative to  analyze  the  disease dynamics  to  facilitate  adequate  preventive  

measures,  especially in countries  that  report  recurring  epidemic outbreaks  instances. Figure 6 

depicts a simulation described in (Roy Chowdhury, Scoglio, & Hsu, 2011) that was used to generate all of 

the states other than the upper-left hand corner. 

 

Figure 6. Simulation-based visualization of spread models for foot-and-mouth disease (Roy Chowdhury, Scoglio, & Hsu, 

2011). 

 

4.2 Text Information Retrieval and Extraction: Sentiment Analysis 
 

The specific aims of the techniques surveyed in this section are as follows: 

Aim 1.  Extend known algorithms for named entity recognition and relationship extraction, to 

produce basic summaries of entities and relationships mentioned in texts.  The technical objective 



is to tag where basic entities and opinions are mentioned in freely available text (including both 

user posts and profiles), then map these tagged elements in space, time, and by topic, to 

acceptable levels of precision and recall. 

Aim 2.  Adapt basic known techniques to a particular domain of interest – specifically, extracting 

data from text discussions that are archived from the dark web (including blogs and forums) using 

web crawlers.  This entails developing a means of handling entities and quantitative data that 

have not previously been extracted from text.  Another functional requirement is some 

mechanism for entity reference resolution, e.g., abbreviations and synonyms, for known terms.  

Finally, a domain-specific ontology of relevant aspects or attributes of the domain of discourse is 

proposed.  This includes topics frequently discussed in blogs and forums, to better facilitate 

information retrieval applications such as question answering about the domain and gathering 

recommendations from subject matter experts. 

Aim 3.  Develop methods for sentiment analysis and improve existing ones, to summarize 

opinions and discover patterns. The technical objective is to relate demographic data extracted 

from text and profiles to qualitative data – namely, the polarity of text at the document, sentence, 

or aspect level, aggregated across demographic categories such as geographic region of residence.  

Objects of interest for sentiment analysis include recommended solutions, but can extend to 

aspects of the domain. 

 

4.3 Event Tracking: Clandestine Labs 
 

The problem of event visualization based on structured data, in the form of time-referenced and 

georeferenced relational tuples, and on unstructured data, in the form of free text.  Information 

extraction systems based on named entity recognition (NER) and relationship extraction have enabled 

detection of events mentioned in free text and extraction of structured tuples describing the location, 

time, along with other attributes of an event.  Identifying hotspots and trends, however, remains an 

open problem.  One limitation is the absence of ground truth for high event activity. In some cases this is 

due to a lack of well-defined criteria for activity and relevance, while in some it is due to limitations in 

existing annotation interfaces. 

We first present a basic approach to event visualization. Our general framework makes use of mapping 

tools such as Google Maps, the Google web toolkit, and timeline visualization tools such as MIT SIMILE.  

It also builds upon previous work on gazetteer-based event recognition and syntactic patterns for 

semantic relationship detection.  Next, we show how a system developed originally for visualization of 

animal disease outbreaks reported in online news documents can be adapted to display reports of 

methamphetamine lab seizures compiled by regional law enforcement. We briefly outline the 

development of a domain-specific data description language for increased portability and ease of 

information integration. We then discuss the role of topic modeling and information retrieval 

approaches in filtering and ranking events. 



A key technical contribution of this work is the application of topic modeling algorithms in order to 

compute the posterior probability of a particular spatial location, time unit, or combination given the 

type of event, which is treated as a topic.  This allows the data to be interrogated systematically in order 

to display geographic regions that are more prone to events of interest.  A potential application of this is 

to construct a time composite map of administrative divisions within a state or province, or a spatial 

composite time series by month or year, showing active regions.  These can be visualized using a 

choropleth map: a map in which regions (geographic regions in this case) are coded by colors or 

grayscale intensity levels.  These represent a variable of interest – in this case, event frequency. Finally, 

the ability to estimate marginal likelihoods over locations and times given the event type parameters 

can also be used to filter events, to display only those that fall within a specified frequency range.  For 

example, the system can be configured to search for seizures of methaphetamine production labs in 

counties or districts where they are common or rare. 

5. Effective Practices for Integrative Information Visualization 
 

The basis tenets of information graphic design as related, critically analyzed, and demonstrated by Tufte 

(1990, 1997, 2001, 2003, 2006), are as follows: 

1. Show the data 

2. Induce the reader to think about the substance rather than about: 

a) Methodology 

b) Graphic design 

c) Technology of graphic production 

d) Something else 

3. Avoid distorting what the data have to say 

4. Present many numbers in a small space 

5. Make large data sets coherent 

6. Encourage the eye to compare different pieces of data 

7. Reveal the data at different levels of detail, broad to fine 

8. Serve a clear purpose: description, evaluation, tabulation, decoration 

9. Be closely integrated with statistical and verbal descriptions of data 

In this section, we review some realizations of this high-level vision in the specific domains of 

information graphics for big data analytics and spatiotemporal applications. 

5.1 Information Graphic Design: Enhancing Learning and Analysis 
 

Matlow (2000), a practitioner, instructor, and educational administrator in graphic design, describes the 

challenges of introducing computation into a graphic design curriculum at Harrow College, which 

merged in 1990 with the Polytechnic of Central London.   These include the paradigm shift “from `page’ 



to `screen’” and the evolution of curricula.  The article gives a critical analysis of contextual studies, a 

comparative ethnographic and cultural approach that was applied to digital media with poor initial 

results. It discusses how a critical theory module was successfully added to this curriculum, focusing on 

enabling technologies for social action and cognitive aspects of computer-mediated communication.  

This module went beyond incorporating technical aspects of digital arts to explore the role of language 

in structuring and creating meaning in cultural adaptation to technology.  In particular, key topics 

regarding human-computer interaction and human factors, technical claims and open questions 

concerning computational intelligence and philosophy of mind, including the possibility of strong AI, 

were raised.  Matlow concludes by pointing out that this kind of integrative curriculum holds positive 

potential for enhancing the education of digital arts practitioners, but also offers a timely warning for 

present-day designers of massively online open course (MOOC) material about the disparity between 

ease of delivery and the difficulty of ensuring the quality of content. 

 

5.2 Tufte’s Principles Applied to Spatiotemporal Big Data 

 

Tufte’s principles have been extensively applied to the visual display of quantitative information (Tufte, 

2001), object visualization and thematic maps (Tufte, 1990), visualization of processes and storylines 

(Tufte, 1997), the improvement of presentation graphics (Tufte, 2003), and the critical exploration of 

evidence, especially for decision-making (Tufte, 2006).  Of the four primary books on information 

graphics by Tufte (1990, 1997, 2001, 2006), Envisioning Information (Tufte, 1990) in particular 

emphasizes spatiotemporal aspects, though the other three also cover specific aspects of map 

visualizations and geospatial data to a degree.  

Gahegan et al. (2001) describe the establishment of a Commission on Visualization by the International 

Cartographic Association, reporting on “the use of visualization within exploratory analysis, data mining 

and geocomputation, with the overall focus directed to the task of knowledge construction”.  This paper 

depicts a waterfall model of knowledge discovery (here referred to as the “knowledge construction 

process”) proceeding from more data-driven and pattern-driven to more model-based and process-

driven.  In an extensive survey of exploratory visual analysis and exploratory data analysis, the 

Commission’s report also characterizes stages of reasoning, from more abductive in emphasis to more 

inductive and finally more deductive (analytical) and theory-guided.  Aside from being very similar to the 

waterfall model of development in software engineering and knowledge engineering, this cascade 

process follows some computational models of cognitive processes, particularly machine learning and 

inference. 
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