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A Survey of Tasks and Techniques
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Abstract
In this article, we survey machine learning and predictive analytics methods for medical in-
formatics. We begin by surveying the current state of practice, key task definitions, and open
research problems related to predictive modeling in diagnostic medicine. This follows the
traditional supervised, unsupervised, and reinforcement learning taxonomy. Next, we review
current research on semi-supervised, active, and transfer learning, and on differentiable
computing methods such as deep learning. The focus of this section is on deep neural net-
works with common use cases in computational medicine, including self-supervised learning
scenarios: these include convolutional neural networks for image analysis, recurrent neural
networks for time series, and generative adversarial models for correction of class imbalance
in differential diagnosis and anomaly detection. We then continue by assessing salient con-
nections between the current state of machine learning research and data-centric healthcare
analytics, focusing specifically on diagnostic imaging and multisensor integration as crucial
research topics within predictive analytics. This section includes synthesis experiments on
analytics and multisensor data fusion within a diagnostic test bed. Finally, we conclude by re-
lating open problems of machine learning for prediction-based medical informatics surveyed
in this article to the impact of big data and its associated challenges, trends, and limitations
of current work, including privacy and security of sensitive patient data.

Keywords: Predictive Analytics, Machine Learning, Deep Learning, Medical Informatics,
Health Informatics, Prognosis, Diagnosis, Health Recommender Systems, Integrative medicine

Chapter points
• The chapter provides an introduction to predictive analytics in medical informatics.
• This is followed by a brief background on relevant literature in the field.
• The chapter also presents a practical demonstration of using Deep Learning on a

publicly available image data set for classification.

© Elsevier Ltd.
All rights reserved. 1
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1. Introduction: Predictive Analytics for Medical Informatics

Medical informatics is a broad domain at the intersection of technology and health
care which aims to (1) make medical data of patients available to them and to health
care providers, thus enabling them to make timely medical decisions; and (2) man-
age this data for educational and research purposes. According to Morris Collen, the
first articles on medical informatics appeared in the 1950s [1]. However, it was first
identified as a new specialty in the 1970s.[2]

This section surveys goals, the state of practice, and specific task definitions for
machine learning in medical fields and the practice of health care. These sectors pro-
duce an enormous amount of data which is highly complex and comes from heteroge-
neous sources: electronic health records (EHRs) [3], medical equipment and devices,
wearable technologies, handwritten notes, lab results, prescriptions, and clinical in-
formation. The application of predictive analytics to this data offers potential benefits
such as improved standards of care for patients, lower medical costs, and higher resul-
tant patient satisfaction with health care providers.

1.1. Overview: Goals of Machine Learning
Predictive analytics is a branch of data science that applies various techniques includ-
ing statistical inference, machine learning, data mining, and information visualization
towards the ultimate goal of forecasting, modeling, and understanding the future be-
havior of a system based on historical and/or real-time data. This chapter focuses on
machine learning [4][5] algorithms for building predictive models. In addition, we
will survey applications of machine learning to automation and computer vision, es-
pecially image classification, which in some medical domains has achieved accuracy
comparable to that of a human expert [6]. Sidey-Gibbons and Sidey-Gibbons (2019)
[7] provide an introduction to machine learning using a publicly available data set for
cancer diagnosis. In recent years, deep learning [8][9] has attained technical success
and scientific attention in application domains including medicine [10] and health care
[11]. Deep neural networks such as convolutional neural nets (ConvNets or CNNs)
have become the predominant state-of-the-art method for analysis of images such as
MRI scans, to predict diseases such as Alzheimer’s dementia [12].

Deep learning models face several challenges in medical domains which hinder
their acceptability to the medical community - temporality of data, domain complex-
ity, and lack of interpretability [10]. According to Miotto et al. (2018) [10], the
most used deep architectures in the health domain, briefly discussed in Section 3, in-
clude recurrent neural networks [13], ConvNets [14], restricted Boltzmann machines
[15][16], autoencoders [17][18], and variations thereof. This chapter focuses on five
tasks of medical informatics: differential diagnosis [19], prediction [20], therapy rec-
ommendation [21], automation of treatment [22], and analytics in integrative medicine
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[23].

1.2. Current State of Practice
A trend forecast study [24] published by the Society of Actuaries indicates a growing
usage of predictive analytics for healthcare. In 2019, 60% of healthcare organizations
were already using predictive analytics, and 20% indicated that they would be using
the same in the following year. Among those that currently use predictive analytics,
39% reported a decrease in healthcare costs and 42% improvement in patient satis-
faction. These statistics demonstrate the interest of organizations in using predictive
analytics in medical domain for improving their services.

1.3. Key Task Definitions
This section provides an overview of machine learning goals in health informatics.
The goals of prediction are introduced above in Section 1.1.

1.3.1. Diagnosis
Differential diagnosis is defined as the process of differentiating between probability
of one disease versus that of other diseases with similar symptoms that could pos-
sibly account for illness in a patient. A technical series published by World Health
Organization in 2016 states that the most important task performed by primary care
providers is diagnosis [25]. Machine learning tools have been used primarily for dis-
ease diagnosis throughout the history of medical informatics. Graber, Franklin, and
Gordon (2005) [26] conducted a study to determine the causes of diagnostic errors and
to develop a comprehensive taxonomy for the classification of these errors.

Miller (1994) [27] provides a representative bibliography of the state of the art
and history of medical diagnostic decision support systems (MDDSS) at the time.
These systems can be divided into several subcategories, among which expert sys-
tems have been used most often [28]. Many of the earliest rule-based expert systems
[29] were developed for medical diagnosis. Shortliffe (1986) [30] gives insights into
the design of expert systems for diagnostic medicine developed during the 1970s and
1980s, including: (1) MYCIN [31] [32], which focused on infectious diseases; (2)
INTERNIST-1 [33]; (3) QMR [34][35]; (4) DXplain[36][37] [38], a diagnostic deci-
sion support system developed continuously between 1986 and the early 2000s.

The most prominent limitation of expert systems was the acquisition of knowledge
[39] or building a knowledge base, which is both, time-consuming and a complex
process that requires access to expert domain knowledge. Additionally, updating the
knowledge base requires significant human effort. These systems were usually de-
signed to support users with an expert level of medical knowledge. A more recent
review of expert systems is presented by Abu-Nasser (2017) [40]. Expert systems are
still around but their limitations led to advances in rule learning and classification for
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differential diagnosis. Salman and Abu-Naser (2020) [41] developed a diagnostic sys-
tem for COVID-19 using medical websites for the knowledge base. COVID-19 is a
novel viral disease that has affected millions of people around the world. The system
was tested by a group of doctors and they were satisfied with its performance and ease
of use. Another expert system for COVID-19 was built by Almadhoun and Abu-Naser
(2020) [42] for helping patients determine if they have been infected with COVID-19.
The system gives instructions to the user based on the symptoms. The knowledge base
was compiled using medical sites such as NHS Trust.

Kononenko (2001) [43] provides an historical overview of ML methods used in
medical domain and a discussion about state-of-the art algorithms: Assistant-R and
Assistant-I [44], lookahead feature construction (LFC) [45], naı̈ve Bayesian classi-
fier [46], semi-naı̈ve Bayesian classifier [47], k-NN [48], and back propagation with
weight elimination [49]. The paper’s experimental findings show that most classifiers
have a comparable performance which makes model explainability a deciding factor
behind the choice of classifier.

1.3.2. Predictive Analytics
Prognosis is defined as a forecast of the probable course and/or outcome of a disease.
It is an important task in clinical patient management. Cruz and Wishart (2006) [50]
outline the focal predictive tasks of prognosis/predictions for cancer. Based on these
predictive tasks, the general definition of the prognosis task comprises these variants:
(1) prediction of disease susceptibility (or likelihood of developing any disease prior to
the actual occurrence of the disease); (2) prediction of disease recurrence (or predicting
the likelihood of redeveloping the disease after its resolution), and (3) prediction of
survivability (or predicting an outcome after the diagnosis of the disease in terms of
life expectancy, survivability, disease progression, etc).

Ohno-Machado (2001) [51] define prognosis as “an estimate of cure, complica-
tion, recurrence of disease, level of function, length of stay in health care facilities,
or survival for a patient.” The author focuses on techniques that are used to model
prognosis - especially the survival analysis methods. A detailed discussion of survival
analysis methods is beyond the scope of this article. We refer the interested readers
to the book [52] and a review of survival analysis techniques [53]. Prognostic tasks
are categorized as (1) prediction for a single point in time, and (2) time-related pre-
dictions. Methods used to build prognostic models include Cox proportional hazards
[54], logistic regression [55], neural networks [56].

Mendez-Tellez and Dorman (2005) [57], published an article that states that ICUs
have increased the critical care being provided to injured or critically ill patients. How-
ever, the costs for the ICU treatments are very high, which has given rise to prediction
models, which are classified as disease-specific or generic models. These systems
work by employing a scoring system that assigns points according to illness severity
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and then generate a probability estimate as an outcome of the model. We do not dis-
cuss scoring systems in this article. We refer the interested reader to a compendium of
scoring systems for outcome distributions [58]. A few of the outcome prediction mod-
els used for intensive care predictions include: Mortality Probability Model II [59],
Simplified Acute Physiology Score (SAPS) II [60], Acute Physiology and Chronic
Health Evaluation (APACHE) II [61] and APACHE III [62]. These systems build lo-
gistic regression models to predict hospital mortality by using a set of clinical and
physiology variables.

Another important application of learning is cancer prognosis and prediction. Early
diagnosis and prognosis of any life-threatening disease, especially cancer, presents
crucial real-time requirements and poses research challenges. Machine learning is be-
ing used to build classification models for categorization of cases by risk level. This is
essential for clinical management of cancer patients. Kourou et al. (2015) [63] review
methods that have been used to model the progression of cancer. The methods used
for this task include artificial neural networks (ANNs) [56] and decision trees [64],
which have been used for three decades for cancer detection. The authors also noticed
a growing trend of using methods like support vector machines (SVM) [65][66] and
Bayesian networks (BN) [67] for cancer prediction and prognosis.

1.3.3. Therapy Recommendation
A classic example of a machine learning application is a recommender system [68][69].
Recommender systems are widely used to recommend items, services, merchandise
and users to each other based on similarity. However, the use of recommender sys-
tems in health and medical domain has not been widespread. The earliest article on
recommender system in health is from the year 2007 and by 2016 only seventeen arti-
cles were found for the query “recommender system health” in web of science [70].

Valdez et al. (2016) [70] argue that the lack of popularity of recommender systems
in the medical domain is due to several reasons: (1) the benchmarking criteria in medi-
cal scenarios; (2) domain complexity; (3) the different end-user groups. The end-users
or target users for recommender systems can be patients, medical professionals, or
people who are healthy. Recommender systems can be designed to recommend ther-
apies, sports or physical activities, medication, diagnosis or even food or other nutri-
tional information. This article also outlines major challenges faced by recommender
systems in the medical domain. Challenges include a lack of clear task definition for
recommender systems in the health domain. The definition depends on the target user
and the item being recommended.

Wiesner and Pfeifer (2014) [71] propose a health recommender system (HRS) that
recommends relevant medical information to the patient by using the graphical user
interface of the personal health record (PHR) [72]. The HRS uses the PHR to build a
user-profile and the authors argue that collaborative filtering is an appropriate approach
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for building such a system.
Gräßer et al. (2017) [21] propose two methods for recommending therapies for

patients suffering from psoriasis: a Collaborative Recommender and a hybrid Demo-
graphic-Recommender. The two are compared and combined to form an ensemble of
recommender systems in order to combat drawbacks of the individual systems. The
data for the experiments was acquired from University Hospital Dresden. Collabora-
tive filtering [73][74] is applied, where therapies are items and therapy responses are
treated as user preferences.

Stark et al.(2019) [75] present a systematic literature review on recommender sys-
tems in medicine that covers existing systems and compares them on the basis of
various features. Some interesting finds from the review include the following obser-
vations: (1) Most studies attempt to develop a general purpose recommender systems,
i.e., one system for all diseases; (2) Disease specific systems focus on drug recom-
mendation for diabetes. The review, points to several future research directions which
include building a recommender system for recommending dosage of medicine and
finding highly scalable solutions. Recommender systems can be used to suggest drugs
for treatment. A popular commercial solution is IBM’s AI machine Watson Health
[76] which is used by healthcare providers and researchers to make suitable decisions
about providing treatment to patients based on insights from the system.

1.3.4. Automation of Treatment
In surgical area, research focus has been on automating tasks like surgical suturing, im-
plantation, and biopsy procedures. Taylor et al. (2013) [77] present a broad overview
of medical robot systems within the context of computer integrated surgery (CIS).
This article also provides a high level-classification of such systems: (1) surgical
CAD/CAM systems and (2) surgical assistants. The former refers to the process of
pre-operative planning involving the analysis of medical images and other patient in-
formation to produce a model of the patient. This article presents examples of both
kinds of robotic systems.

Mayer et al. (2008) [78] developed an experimental system for automating re-
curring tasks in minimal invasive surgery by extending the learning by demonstra-
tion paradigm [79] [80] [81]. The system consists of four robotic arms which can
be equipped with minimally invasive instruments or a camera. The benchmark task
selected for this work is minimally invasive knot-tying.

Moustris et al. (2011) [82] present a literature review of commercial medical sys-
tems and surgical procedures. This work solely focuses on systems that have been
experimentally implemented on real robots. Automation has also been used for sim-
ulating treatment plans on virtual surrogates of patients called phantoms [83]. The
phantoms represent the anatomy of a patient but they are too generic and hence can-
not accurately represent individuals. These phantoms are especially used in pediatric
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oncology to study the effects of radiation treatment and late adverse effects. Virgolin
et al. (2020) [84] propose an approach to build automatic phantoms by combining
machine learning with imaging data. The problem of structuring a pediatric phantom
is divided into three prediction tasks: (1) prediction of a representative body segmen-
tation, (2) prediction of center of mass of the organ at risk and (3) prediction of rep-
resentative segmentation. Machine learning algorithms used for all three prediction
tasks are least angle regression [85], least absolute shrinkage and selection operator
[86], random forests (RF) [87], traditional genetic programming (GP-Trad)[88], and
genetic programming - gene pool optimal mixing evolutionary algorithm [89].

1.3.5. Other Tasks in Integrative Medicine
The Consortium of Academic Health Centers for Integrative Medicine [90] defines the
term integrative medicine as “an approach to the practice of medicine that makes use
of the best-available evidence taking into account the whole person (body, mind, and
spirit), including all aspects of lifestyle.” There are many definitions for integrative
medicine in the literature, but all share the commonalities that reaffirm the impor-
tance of focusing on the whole person and lifestyle rather than just physical healing.
According to Maizes, Rakel, and Niemiec (2009) [91], integrative medicine gained
recognition due to the realization that people spend only a fraction of time on pre-
vention of disease and maintaining good health. The authors present a data-driven
example to promote the importance of integrative medicine - walking everyday for
two hours for adults afflicted with diabetes reduces mortality by 39%. It is important
to note that integrative medicine is not synonymous with complementary and alter-
native medicine (CAM) [92]. We refer interested readers to Baer (2004) [93] which
chronicles the evolution of conventional and integrative medicine in the United States.

Complementary and alternative medicine (CAM) refers to medical products and
practices that are not part of standard medical care. Ernst (2000) [94] presents exam-
ples of techniques used in complementary and alternative medicine which include, but
are not limited to the following: acupuncture, aromatherapy, chiropractic, herbalism,
homeopathy, massage, spiritual healing and traditional Chinese medicine.

Zhao et al. (2015) [95] present an overview of machine learning approaches used
in traditional Chinese medicine (TCM). TCM specialists have established four diag-
nostic methods for TCM: observation, auscultation and olfaction, interrogation, and
palpation. This article explains each of the four diagnostic methods and provides a list
of machine learning methods used for each task. The most common methods are k-
nearest neighbors (kNN) and support vector machines (SVM). Other methods include
decision trees, Naı̈ve Bayes (NB), and artificial neural networks (ANNs).
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1.4. Open Research Problems
A recently published editorial by Suzanne Bakken [96] highlights five clinical infor-
matics articles that reflect a consequentialist perspective. One of the articles that we
discuss here focuses on a methodological concern, i.e., predictive model calibration
[97]. Predictive models are an important research topic as discussed in Section 1.3.2.,
but many studies continue to focus on model discrimination rather than calibration.
Ghassemi et al. (2020) [98] outline several promising research directions, specifically
highlighting issues of data temporality, model interpretability, and learning appropriate
representations. Machine learning models in most of the existing literature have been
trained on large amount of historical data and fail to account for temporality of data in
the medical domain, where patient symptoms and or treatment procedures change with
time. The authors cite Google Flu Trends as an example of the need to update machine
learning models to account for this data temporality, as it persistently overestimated
flu [99]. Another promising research area is model interpretability [100] [101]. The
authors suggest many directions towards the achievement of this goal: (1) model jus-
tification to justify the predictive path rather than just explaining a specific prediction;
(2) building collaborative systems, where humans and machines work together. A final
research topic is representation learning, which can improve predictive performance
and account for conditional relationships of interest in the medical domain.

1.4.1. Learning for Classification and Regression
Classification is the identification of one or more categories or sub-populations to
which a new observation belongs, on the basis of a training data set containing obser-
vations, or instances. In the data sciences of statistics and machine learning, classifi-
cation may be supervised (where class labels are known) [102], unsupervised (where
they are not and assignment is based on cohesion and similarity among instances)
[103], or semi-supervised. Dreiseitl and Ohno-Machado (2002) [104] survey early
work using logistic regression (LR, particularly the binomial logit model) and arti-
ficial neural networks (particularly multilayer perceptrons or MLP) for dichotomous
classification, also known as binary classification or concept learning, on diagnostic
and prognostic tasks from 72 papers in the existing literature. In parallel with this
broad study of discriminative approaches to diagnosis and prognosis, Dybowski and
Roberts (2005) [105] compiled a comprehensive anthology of probabilistic models
primarily for generative classification.

In contrast with these broad surveys, which are included for completeness and his-
torical breadth, application papers tend to focus on specific use cases for classification,
such as prediction of mortality. Eftekhar et al. (2005) [106] is one such paper which
addresses the task of predicting head trauma mortality rate based on initial clinical
data, and focuses methodologically on logistic regression (LR) and multilayer percep-
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trons (MLP), as do Dreiseitl and Ohno-Machado (2002) [104].
Regression is the problem of mapping an input instance to a real-valued scalar or

tuple, which in data science is defined as an estimation task. In medical informatics,
many predictive applications can be formulated as risk analysis tasks i.e. tasks requir-
ing estimation of syndrome probability, given data from electronic medical records
(EMR). Typical examples include estimating risk of a particular form of cancer, such
as in a study by Ayer et al. (2010) [107], where they use LR and MLP to estimate risk
of breast cancer. In some additional use cases, the predictive task requires estimation
of a continuous value such as the size (widest diameter) of a cancer mass, rather than
a probability of occurrence. Royston and Sauerbrei (2008) [108] is a methodological
introduction to numerical estimation methods for such tasks.

1.4.2. Learning to Act: Control and Planning
Another general category of tasks falls under the rubric of learning to act, or intel-
ligent control and planning in engineering terminology. This includes the applica-
tion of machine learning to the overlapping subarea of optimal control, the branch of
mathematical optimization that deals with maximizing an objective function such as
cost-weighted proximity to a target.

One example of an optimal control task, which was investigated by Vogelzang,
Zijlstra, and Nijsten (2005) [109] is maintaining a patient’s blood glucose level via
automatic control of an insulin pump. The functional requirement of the system is
to regulate the change in pump rate as a function of past pump rate, target glucose
level, and past blood glucose measurements. The Glucose Regulation in Intensive
care Patients (GRIP) system developed by Vogelzang et al. used a fixed weighted
optimal control function based on previous clinical studies [109]. Other optimal con-
trol tasks include prolonging the onset of drug resistance in treatment applications
such as chemotherapy, a task studied by Ledzewicz and Schättler (2006) [110], who
formulated a dynamical system for the development of drug resistance over time and
applied ordinary differential equation (ODE) solvers to the task. Such numerical mod-
els can also be developed for therapeutic objectives such as minimizing tumor volume
as a function of angiogenic inhibitors administered over time, an optimal control task
studied by Ledzewicz et al. (2008) [111].

By formulating parametric models for problems such as maintaining a patient’s
health care characteristics (e.g., blood glucose level, tumor size) within desired ranges
while minimizing the total cost of doing so, optimization methods from industrial
engineering and operations research, such as control charts, can be used. For example,
Dobi and Zempléni (2019) apply Markov chain models and a variety of control charts
to this cost-optimal control task [112].

Yet another family of intelligent control approaches originates from classical plan-
ning, particularly the inverse problem of plan recognition (mapping from observed
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action sequences to individual plan steps, preconditions, and desired postconditions)
and the problem of plan revision, which entails modifying a plan (such as a course
of drug therapy) due to an identified complication (such as a toxic episode or other
adverse reaction or interaction). Such systems are discussed by Shahar and Musen
(1995) [113]. Plan revision may be necessitated as a consequence of historical obser-
vation (case studies), predictive simulation, or inference using a domain theory.

Finally, enterprise resource planning (ERP) is an integrative planning task of man-
aging business processes (in healthcare, these include: sales and marketing, patient
services, provider human resources, specialist referrals, procurement of equipment
and materials, treatment, billing and insurance). Van Merode, Groothuis, and Hasman
(2004) [114] survey ERP requirements and systems for hospitals.

1.4.3. Towards Greater Autonomy: Active Learning & Self-Supervision
Machine learning depends on availability of a training experience, but this experience
need not come in the form of labeled data, which is expensive to acquire even with
copious available resources such as expertise and non-expert annotator time, whose
cost may be reduced by gamification or other means of crowd-sourcing to volunteers.
In this section, we survey three species of learning without full supervision that help
to free machine learning users from some aspects of these data requirements and other
experiential requirements. These are:
1. active learning [115], the problem of developing a learning system that can seek

out its own experiences
2. transfer learning[116], training on a set of experiences for one or more tasks or

domains and using the resulting representations to facilitate learning, reasoning,
and problem solving in new tasks and domains

3. self-supervised learning [117], the generalized task of learning with unlabeled data
and inducing intrinsic labels by discovering relationships between sub-components
of the training input (such as views or parts of an object in computer vision tasks)
Active learning in medical informatics spans a gamut of experiential domains from

text to case studies, to controllers and policies. An example of active learning in text
is the work of Druck, Settles, and McCallum (2009) [118], who apply categorical fea-
ture labels to words. This is a typical methodology in biomedical texts, where domain
lexicons are organized into syndromic, pharmaceutical, and anatomical hierarchies,
among others. Chen, Mani, and Xu (2012) [119] use active learning with labels on
two text categorization tasks. The first of these is at the sentence level, on the ASSER-
TION data set, a clinical health care text corpus for the 2010 i2b2/VA natural language
processing (NLP) challenge. The second is at the whole-document level, on the NOVA
data set, an e-mail corpus with labels corresponding to a generic “religion vs. politics”
topic classification task. In subsequent work, Chen et al. (2017) [120] applied a con-
ditional random field (CRF)-based active learning system to the corpus of the 2010
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i2b2/VA NLP challenge to show how annotation time could be reduced: by using
latent Dirichlet allocation (LDA) for sentential topic modeling (sentence-level cluster-
ing) and by bootstrapping the process of set expansion for the named entity recogni-
tion (NER) task using active learning. Dligach, Miller, and Savova (2013) [121] also
developed an active learning system for the i2b2 task, but focus on document-level
phenotyping (pre-filtering of ICD-9 codes, CPT codes, laboratory results, medication
orders, etc. followed by category labeling). In their work, a document consists of
Electronic Health Records (EHR) and all associated data for a given patient, which
may be generated at multiple stages of an admission and treatment workflow.

Transfer learning is typically defined as task-to-task or domain-to-domain but what
constitutes a domain in medical informatics can vary. Wiens, Guttag, and Horvitz
(2014) [122] investigate inter-hospital transfer learning by training on subsets of 132853
admissions at three different hospitals among which 1348 positive cases of Clostrid-
ium difficile infection were diagnosed, to boost hospital-specific precision and recall as
measured holistically using the area under the receiver operating characteristic curve
(AUROC). As with active learning, transfer learning can be based on natural language
features, typically at the word, sentence, or document level for medical informatics.
For example, Lee, Dernoncourt, and Szolovits (2017) [123] outlined a neural net-
work approach to de-identification in patient notes, which is an instance of NER and
crucial for compliance with patient confidentiality laws such as the Health Insurance
Portability and Accountability Act (HIPAA) in the United States of America. They
applied a long short-term memory (LSTM), a type of deep learning neural network
for sequence modeling, to classify named entities that represented protected health in-
formation (PHI). The transfer learning task, training on a large labeled data set to a
smaller one with fewer labels, is another case of inter-domain transfer. Yet another
NER transfer learning problem for EHRs is defined and studied by Wang et al. (2018)
[124], who apply a Bidirectional LSTM (Bi-LSTM) on a shared training corpus to
create a shared representation (specifically, a word embedding) for text classification
that is then fine-tuned for source and target domains by training a CRF model with
labeled training data as available, to achieve label-aware NER. The experimental cor-
pus, in this case, is a Chinese-language medical NER corpus (CM-NER) consisting
of 1600 anonymized EHRs across four departments: Cardiology (500), Respiratory
(500), Neurology (300) and Gastroenterology (300). Wang et al. demonstrate ef-
fective inter-departmental NER (domain-to-domain) transfer through experiments on
CM-NER. [124] Similar deep learning approaches for natural language processing
(NLP) are applied by Du et al. (2018) [125], who demonstrate transfer using recurrent
neural networks (RNNs) from clinical notes on psychological stressors to tweets on
Twitter, to detect posts by users at risk of suicide. New architectures for implement-
ing transfer are demonstrated by Peng, Yan, and Lu (2019) [126], who use the deep
bidirectional transformers BERT and ELMo to achieve cross-domain transfer among
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ten benchmarking data sets from the Biomedical Language Understanding Evaluation
(BLUE) compendium.

Self-supervised learning consists of generating labels by means of (1) comparing
objects (e.g., clustering), (2) extracting relationships, or (3) designing experiments
(especially model selection). The first approach applies similarity or distance metrics
over entire instances (unlabeled examples) and has traditionally been similar to unsu-
pervised learning for classification tasks in general, while the second involves using
relational patterns and/or probabilistic inference over structured data models to cap-
ture new relationships, and the third involves generating multiple candidate models
(by random sampling or parameter optimization methods such as identifying support
vectors for large margin discriminative classifiers), and then applying model selection.

Hoffmann, Zhang, and Weld (2010) [127] take the second approach, introducing
LUCHS, a self-supervised, relation-specific system for information extraction (IE)
from text. Roller and Stevenson (2014) [128] also use a relation-specific, ontology-
aware approach to relation extraction; rather than being based on lexicon expansion,
however, it uses the curated Unified Medical Language System (UMLS), a biomedical
knowledge base.

Stewart and Nejdl (2011) [129] present an application of the third approach to the
task of event detection in the domain of social media-based epidemic intelligence,
where self-supervised learning consists of tokenizing text corpora, namely ProMED-
Mail and World Health Organization (WHO) outbreak reports, to obtain bag of words
(BOW or word vector space) embeddings. A support vector machine (SVM) classifier
is then trained, to which the authors apply model selection, testing the result against
an avian flu text corpus.

As Blendowski, Nickisich, and Heinrich (2019) [130] note, self-supervision in
medical imaging applications is a necessity because of the comparatively high cost of
supervision for medical images and video versus general computer vision and video.
In medical domains, annotation may require specialization in radiology and other med-
ical sub-disciplines, whereas generic images and videos may be annotated via micro
work systems such as Amazon Mechanical Turk, or even via volunteer crowdsourcing.
Blendowski et al. present a modern, deep learning-based approach to self-supervision,
applying convolutional neural networks (CNNs) to capture 3-D context features.

2. Background
2.1. Diagnosis
2.1.1. Diagnostic Classification and Regression Tasks
Nadeem et al. (2020) [131] present a very comprehensive survey on classification of
brain tumor. Jha et al. (2019) [132] evaluated 32 supervised learning methods across
17 classification data sets (in domains that include cancer, tumors, heart and liver
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diseases) to determine that decision tree-based methods perform better than others on
these data sets. Mostafa et al. (2018) [133] use three classification methods (decision
trees, ANNs and Naı̈ve Bayes) to determine the presence of Parkinson’s disease by
using features extracted from human voice recordings, reaching a similar conclusion
that decision trees performed best on this data set.

Polat and Güneş (2007) [134] present a binary classification task for categorizing
breast cancer as malignant or benign. The authors use Least Square Support Vector
Machine (LS-SVM) [65] for classification.

Another machine learning task used for diagnosis is regression. Kayaer and Yildirim
(2003) [135] use general regression neural network (GRNN) [136] for diagnosing di-
abetes using the Pima Indian diabetes data set [137]. The results show that it performs
better than standard multi-layer perceptron (MLP) and radial basis function (RBF)
feedforward neural networks [138] that have been used by other studies using the same
data set. Hannan, Manza, and Ramteke (2010) [139] have also used GRNN and RBF
for heart disease diagnosis. Jeyaraj and Nadar (2019) [140] propose a regression based
partitioned deep CNN for the classification of oral cancer as malignant or benign. The
network obtains accuracy comparable to that of a human expert oncologist.

2.1.2. Diagnostic Policy-Learning Tasks
Yu, Liu, and Nemati (2019) [141] present the first comprehensive survey of reinforce-
ment learning (RL) applications in healthcare. The aim of the survey is to provide
the research community with an understanding of the foundations, methodologies, ex-
isting challenges, and recent applications of RL in healthcare domain. The range of
applications vary from Dynamic Treatment Regimes (DTRs) in chronic diseases and
critical care, automated clinical diagnosis, to other tasks like clinical resource alloca-
tion and scheduling.

Early RL systems for medical informatics were predominantly designed for med-
ical image processing and analysis (as a specialized application of computer vision).
Sabha, Tizhoosh, and Salama (2006) [142] developed such a system, based on Q-
learning, for ultrasound image analysis, focusing on tasks such as local threshold-
ing, feature extraction, and segmentation of organs (in this case, the prostate gland).
In subsequent work, Sabha, Tizhoosh, and Salama (2007) [143] extended this Q-
learning system for organ segmentation to an adversarial framework that they termed
“Opposition-Based Learning”. This framework allowed for more flexible formulation
of utility gradients for RL problems such as balancing exploration vs. exploitation.

Peng et al. (2018) [144] introduce REFUEL, a deep Q-network (DQN)-based sys-
tem for reward shaping and feature construction (“rebuilding”) in differential diagnosis
of diseases. Such systems are examples of reinforcement-based meta-learning and can
potentially incorporate aspects of both self-supervision and active learning of repre-
sentation. DQN has also been used by researchers such as Al and Yun (2019) [145]
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to learn policies for recognizing anatomical landmarks in X-ray-based computerized
tomography (CT) and magnetic resonance imaging (MRI) images. In addition, DQN
has recently been applied to learn control policies for clinical decision support tasks
such as guiding a healthcare professional or first responder, especially an emergency
medical technician (EMT), in obtaining ultrasound images as a remote sensing step
before administering treatment. Milletari, Birodkar, and Sofka (2019) present a novel
application of this method to Point of Care Ultrasound (POCUS) for scanning the left
ventricle of the heart. [146]

Utility functions for deep RL in medical informatics may be tied to anatomical
mapping and other automation tasks of internal medicine. Examples of such mapping
include the context maps of Tu and Bai (2009) [147], which are based on learning,
i.e., parameter estimation, in Markov random fields (MRFs) and conditional random
fields (CRFs). In this work, the authors train and apply inference using these models
to solve high-level vision tasks such as image segmentation, configuration estimation
(orientation), and region labeling of 3-D brain images.

A key family of RL applications is that of control policies for medical treatment.
Weng et al. (2017) [148] describe a deep RL method using a sparse autoencoder
for glycemic control in septic patients. While experimental validation of this system
was performed using historical data, the RL framework presented can include medical
devices and mixed-initiative systems.

Finally, RL can also be applied to interactive differential diagnosis using natural
language, i.e., dialogue. Liu et al. (2018) [149] describe a dialogue-based system for
disease phenotype identification (eliciting observable characteristics or traits of dis-
eases, such as the presentation and development of symptoms, morphology, biochem-
ical or physiological properties, or patient behavior). The dialogue policy formulated
here is a Markov decision process (MDP). The RL problem is that of detecting symp-
toms of any or all four known pediatric diseases by simulating query-based dialogue
using an annotated corpus. The authors show that DQN for dialogue outperforms
SVM for supervised classification learning, random dialogue generation, and a rule-
based dialogue agent.

2.1.3. Active, Transfer, and Self-Supervised Learning
Sánchez (2010) [150] proposes a Computer Aided Diagnosis (CAD) [151] system for
Diabetic Retinopathy screening using active learning approaches. There are four com-
ponents that constitute the DR screening process: quality verification, normal anatomy
detection, bright lesion detection and red lesion detection [152]. The findings from
these four components need to be fused in order to generate an outcome for a patient.
The outcome is in the form of a likelihood that the patient will be referred to an oph-
thalmologist. The output from the four components of the DR screening are used to
extract some features which are further used to train a kNN classifier. Active learning
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is applied in the training phase to select an unlabeled sample from the pool of samples
and pose a query to the expert in order to acquire a label for the sample. This is an it-
erative process which only stops when a stopping criteria has been reached. This work
used two different query functions: uncertainty sampling [153] and query-by-bagging
(QBB) sampling [154].

Apostolopoulos and Mpesiana (2020) [155] use a transfer learning approach for
the classification of medical images to diagnose COVID-19. This study uses publicly
available thoracic X-rays of healthy people as well as patients suffering from COVID-
19 to build an automatic diagnostic system. The aim of their work is to evaluate the
effectiveness of state-of-the-art pre-trained convolutional neural networks models for
the diagnosis of COVID-19. The CNN used for this study include: VGG19 [156],
MobileNetv2 [157], Inception [158], Xception [159], InceptionResNet v2 [160]. The
study formulates the task as a multi-class classification problem with three classes:
normal people, pneumonia patients, and COVID-19 patients. The study does accom-
plish its goals of establishing the benefits of transfer learning by using state-of-the-art
CNN models.

Bai et al. (2019) [161] use a semi-supervised approach for learning features from
unlabeled data for the task of cardiac MR image segmentation. This segmentation is
important for characterising the function of the heart. The authors discuss the different
angulated planes at which the MR images are acquired. For brevity, we refer the
readers to [161]. Specific views of the scans and their labels have been traditionally
used to train a network from scratch. The authors use a standard U-net architecture
[162] with three variations to it. The results of their work show that by using self-
supervised learning even a small data set is able to outperform a standard U-net that
has been trained from scratch.

2.2. Predictive Analytics
2.2.1. Prediction by Classification and Regression
We start by discussing prediction of disease susceptibility: Kim and Kim (2018) [163]
try to predict an individual’s susceptibility to cancer by using genomic data. The
authors use kNN for building a multi-class classification model.

Next we move on to prediction of survivability: Choi, Han, and Park (2009) [164]
propose a hybrid ANN and Bayesian network model to predict five year survival rates
for breast cancer patients. The model combines the best of both worlds using black
box ANN for their higher accuracy and Bayesian networks for their explainability.

The survivability of a cancer patient depends on the stage of cancer which is based
on tumor size, location, spread and other factors. Machine learning models that predict
survivability in breast cancer research usually use breast cancer stage as a feature for
training the model. Kate and Nadig (2017) [165] refer to such a model as a joint
model. Their work uses the SEER data set [166], which classifies cancer into four
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stages: in-situ, localized, regional, and distant.
Mobadersany et al. (2018) [167] propose an approach called Survival Convolutional

Neural Network (SCNN), which uses a CNN integrated with cox survival analysis
technique for the task of survivability prediction for patients with brain tumors. The
CNN includes a Cox proportional hazards layer that models overall survival. The
proposed approach surpasses the prognostic accuracy of human experts.

The final task that we discuss is prediction of recurrence: The task involves cor-
rectly predicting the recurrence of disease with a binary outcome. Abreu et al. (2016)
[168] present a literature review to evaluate the performance of machine learning meth-
ods for the task of predicting breast cancer recurrence. The review covers literature
during the years 2007 - 2014 and find that the key algorithms used for the task in-
clude: decision trees, logistic regression, ANN, NB, K-Means, Random Forests, and
k-nearest neighbor. These algorithms are discussed in section 3. The authors outline
a few challenges based on their review that make this task less popular: (1) Lack of
publicly available data of reasonable size - Most of the studies have used local data
sets usually with a small number of patients. (2) Data imbalance is not handled in
most cases; (3) Feature selection was performed manually in most studies with the
help of domain experts. There is no agreement on variables that are important for
the study of breast cancer recurrence; (4) Accuracy as evaluation metric for classifi-
cation performance which is not appropriate for imbalanced data sets, and (5) Lack of
model interpretability of machine learning models. These challenges provide a scope
for future research in the area. A more recent review was published by Zhu et al.
(2020) [169] that covers the usage of deep learning for the task of cancer prognosis.
The study also presents similar challenges encountered by deep learning models in the
domain as were pointed by Abreu et al. (2016) [168]. Some of the challenges listed
include: (1) availability of small data sets; (2) handling data imbalance; (3) handling
sparse and missing data; (4) handling high dimensional sequencing data; and (5) need
of researchers with expertise in both, machine learning and biomedical domain.

2.2.2. Learning to Predict from Reinforcements and by Supervision
The advent of institution-wide terascale to petascale data mining, considered “big
data” as of 2020, has brought machine learning for predictive analytics to the fore
in many clinical domains. Shah, Steyerberg, and Kent (2018) [170] is a commen-
tary piece on the state of the field in data mining for predictive analytics in medical
informatics. It cites the CHA2DS 2 − VAS c score as an example of a predictive rule
regarding the doubling of thromboembolic risk in atrial fibrillation as a function of
congestive heart failure, hypertension, age, diabetes, and previous stroke or transient
ischemic attack, citing it as a use case of predictive models with consequence for
finely balanced treatment decisions, which the authors note are commonplace. Rajko-
mar, Dean, and Kohane (2019) [171] review a broader set of diagnostic and prognostic
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applications, along with best practices for using machine learning as an augmentative
technology for clinicians. Shameer et al. (2019) [172] survey the field of artificial
intelligence (AI) in medicine even more broadly, discussing the species of machine
learning surveyed in this chapter and the actionable products thereof, from classifica-
tion rules and regression formulas to annotated images and policies from RL.

Many predictive analytics applications involve estimating risk of adverse effects,
or detecting imminent adverse outcomes in time for preventative or anticipatory mea-
sures. For example, Kendale et al. (2018) [173] develop a logistic regression-based
system for predicting hypotension in patients after surgical anesthesia.

Just as supervised learning finds precedent in rule-based expert systems for differ-
ential diagnosis, reinforcement learning finds precedent in both educational technol-
ogy and early automation for the practice of internal medicine and general surgery.
Examples are surveyed below in Section 4. One general use case of RL for predictive
analytics is given by Khurana, Samulowitz, and Turaga (2018) [174], who cast feature
engineering for predictive applications as an RL task where the policy is defined in
terms of data transformations.

Taking such diverse use cases as a whole, a major consideration in medical predic-
tive analytics, which overlaps with artificial intelligence, ethics, and society (AIES),
as well as with AI safety and security, is how to determine appropriate regulatory
standards of clinical benefit. Parikh, Overmeyer, and Navathe (2019) [175] discuss
meaningful minimum standards of functionality and interoperability, in the context of
endpoints (clinical outcomes), appropriate benchmarks, and the importance of associ-
ating predictive systems with interventions.

2.2.3. Transfer Learning in Prediction
Gliomas are a type of tumors that are found in the brain. They are of different types
and are usually graded from I to IV with grade IV being the most aggressive type. MRI
images are used for grading gliomas into two categories: lower grade glioma (LGG),
which is grade II and III and higher grade glioma, which is a grade IV. Cabezas et
al. (2018) [176] propose a model using CNN for classifying LGG and HGG by ana-
lyzing MRI images. Two CNN architectures were explored for this purpose, namely:
AlexNet and GoogLeNet. These two architecture are discussed in section 3.3.2 of
this article. The results indicate that with transfer learning and fine-tuning the perfor-
mance improved for both deep learning architectures. Yang et al. (2018) [177] present
a transfer learning approach to segment the gliomas and its sub-regions and use the re-
sults along along with other clinical features to predict patient survival. The approach
is divided into two main tasks, where the first task focuses on segmentation of glioma
using a 3-D U-net[162]. The second task segments the tumor sub-regions using a
small ensemble net [178]. Their work uses a VGG-16 network, which is discussed in
section 3.3.2 of this article.
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2.3. Therapy Recommendation
2.3.1. Supervised Therapy Recommender Systems
Therapy recommendation remains a common use case of supervised learning, beyond
diagnosis. General-purpose models for classification such as nearest-neighbor and
rule-based classification are often effective, particularly when explainability is desired.
Zhang, Cao, Gross, and Zaiane (2013) [179] discuss supervised learning for therapy
recommendation in the domain of physical therapy, where class imbalance is a fre-
quent issue, and derive both a modified rule-learning algorithm (ARIPPER) and an
application of the selective minority oversampling technique (SMOTE) for this task.

Mental health and well being are major health issues in the world. There is a
growing research effort to alleviate the symptoms of depression. Rohani et al. (2020)
[180] build a recommender system for the mental health domain. The authors cite
the motivation behind such systems stemming from research that suggests that when
participants regularly participate in a pleasant activity then it has a beneficial impact on
the mental health of the individual [181] [182]. An effective treatment for depression
has been the pleasant event scheduling (PES) system [183] that has been shown to be
an effective treatment for depression. Wahle et al. (2016) [184] describe multi-user and
personalized variants of an affective recommender system developed using data from
two mobile health applications for both clinically depressed users and non-clinical
users. Mood ratings for activities are predicted using trained Naı̈ve Bayes (NB) and
support vector machine (SVM) models. These classification-based predictions enable
personalized treatment recommendations using a mobile app.

2.4. Automation of Treatment
2.4.1. Classification and Regression-Based Tasks
Learning in the presence of hybrid training data (consisting of continuous and discrete
or nominal variables) is a frequent and typical necessity in medical AI applications.
Schilling et al. [185] describe the use of Classification and Regression Trees (CART)
to identify thresholds for cardiovascular disease. Such hybrid tasks can also be ad-
dressed using binary response models such as probit models, but as the authors note,
three distinct strengths of CART are that: (1) its hierarchical structure makes it more
human comprehensible than linear or logistic regression models; (2) it can capture
non-linearity in response and some multivariate interactions; (3) it has more expres-
siveness than regression models.

For some predictive applications, accuracy, precision, and recall are of highest
significance, and may be considered more important than explainability by diagnos-
ticians. Taylor, Moore, Cheung, and Brandt (2018) [186] present a task where re-
gression methods, gradient boosting improvements, and committee machines such as
bagged random forests and Adaboost are highly effective. In some cases, association
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rule mining and basic NLP methods suffice: De Silva et al. (2018) [187] describe a
social media mining task, analytics of online social groups for cancer patients, where
the technical objective is to extract information about user demographics in relation to
terms indicating patient age, cancer stage, side effects reported, and sentiments.

2.4.2. RL for Automation
An essential task in automation of surgical tasks is optimal path planning to avoid col-
lisions between tool and surrounding tissue before resection automation. Baek et al.
(2018) [188] aim to create a global path to cut a tissue during surgery without colliding
with the surrounding tissue. The generated path was simulated on APOLLON, which
is a Single Incision Laparoscopic Surgery system developed by KAIST Telerobotics
and Control Lab [189]. Their work uses a popular path planning method called prob-
abilistic roadmap (RPM) [190], which creates a path from a static environment to a
desired point and Q-learning [191], a RL technique.

2.4.3. Active Learning in Automation
In a hospital setting, hand hygiene is one of the most important factors for the pre-
vention of infectious diseases. Monitoring hand hygiene could be vital in reducing
any outbreak within an operating room (OR). Kim, Choi, and Kim (2020) [192] pro-
pose a fully augmented automatic hand hygiene monitoring tool for monitoring the
anesthesiologists on operating room video. The aim is to identify the alcohol based
hand rubbing actions of anesthesiologists in the OR pre-and post-surgery. The pro-
posed approach uses a 3-D convolutional neural network for classification task with
two classes: rubbing hands and other actions. The data was collected from a hospital
over a span of four months from a single OR. Additional data was generated by simu-
lating a situation in OR for synthetic data. The proposed approach uses I3D model, an
Inception v1 architecture that inflates 2D convolutions into 3-D convolutions to train
3 models: I3D networks for RGB, I3D networks for optical flow inputs, and a joint
model. Transfer learning approach is employed by pre-training the CNN on Kinetics-
400 [193] data set. The I3D for RGB outperforms the other two models.

2.5. Integrating Medical Informatics and Health Informatics
This section surveys machine learning at the interface of medical informatics and
health informatics, particularly clinical health and medical informatics (HMI).

2.5.1. Classification and Regression Tasks in HMI
Ralston et al. (2007) [194] discuss patient web services in integrated delivery sys-
tem (IDS) portals, which provide access to EHRs as well as financing and delivery of
other healthcare products such physician consultation, medical devices, prescription
medicines. These comprise point of care (POC) and post-POC services, which serve
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as both information retrieval and EHR compilation mechanisms that can produce data
for subsequent machine learning and data science. Data integration is a key require-
ment of such systems [194]. As underscored by the work of Oztekin, Delen, and
Kong (2009) [195] on predicting heart-lung transplant survival using a combination
of case data, elicited subject matter expertise, and commonsense reasoning from a ba-
sic domain theory, the most effective learning strategy is sometimes to incorporate all
available data sources and then use algorithms for feature selection and construction
on these. Furthermore, Holzinger and Jurisca (2014) [196] advocate for an integra-
tive and interactive approach to knowledge discovery and data mining in biomedical
informatics (BMI) - specifically, one that is informed by objectives of both human-
computer interaction (HCI) and knowledge discovery in databases (KDD).

2.5.2. Reinforcement Learning for HMI
Medical informatics is a field where medical practitioners have traditionally used
mixed-initiative AI, especially human-in-the-loop systems. In such systems, perfor-
mance elements of machine learning are used for recommendation and decision sup-
port rather than for full automation at the point of care (POC). Holzinger and Jurisca
(2016) [197] discuss this general practice and its rationale in modern interactive POC
systems, specifically when humans in the loop are beneficial. They note that there
are specific usage contexts where humans are good at spotting irrelevant features, as-
sessing novelty and anomaly in annotation, and behavioral modeling of adversaries in
security and safety contexts (such as anonymity and privacy of patient data in HMI
systems). This is an important consideration for mixed-initiative HMI because the
interactive machine learning (iML) framework they advocate is rooted in RL.

RL is not limited to Q-learning and its dynamic programming relatives, the tem-
poral differences and SARSA family of algorithms, but can include complex adaptive
systems such as multi-armed bandits and contextual bandits. Yom-Tov et al. (2017)
[198] explore the problem of generating physical activity reminders to diabetes pa-
tients using RL in a contextual bandit. They show a slightly positive slope in reduc-
tion of hemoglobin A1c (HbA1c) for experimental users of this system over a 6-month
period, compared to a slightly negative slope for a control group.

Deep RL (DRL) systems for HMI often frame treatment tasks as optimal control
problems as outlined in Section 1.4.2. Raghu et al. (2017) [199] give one example
of such a DRL application: the administration of intravenous fluids and vasopressors
in septic patients. Their DQN-based approach calculates discounted return from off-
policy (historical) data rather than by directly controllable reinforcements. Liu et al.
(2017) [200] apply DQN to a high-dimension space of (about 270) actions correspond-
ing to medicines given to Acute Myeloid Leukemia (AML) patients who received
hematopoietic cell transplantation (HCT), with the goal of preventing acute Graft Ver-
sus Host Disease (GVHD). The training data set consists of historical medical registry
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data for 6021 AML patients who underwent HCT between 1995 and 2007; this data
is sequential but asynchronous (with standard follow-up forms collected at 100 days,
6 months, 12 months, 2 years, and 4 years). The authors demonstrate value enhance-
ment of up to 21.4% using DQN and note that a larger training data set compiled by
the Center for International Blood and Marrow Transplant Research (CIBMTR) can
potentially be used for DRL.

Inverse Reinforcement Learning (IRL) is the problem of inferring the reward func-
tion of an observed agent, given its behavior as reflecting a policy. Yu, Liu, and Zhao
(2019) [201] address the IRL task of capturing the reward functions for mechanical
ventilation and sedative dosing in intensive care units (ICUs) from the Medical In-
formation Mart for Intensive Care (MIMIC III), an open data set containing records
of demographics, vital signs, laboratory tests, diagnoses, and medications for nearly
40000 adult and 8000 neonatal ICU patients. The authors demonstrated that IRL from
this critical care data is feasible using a Bayesian inverse Q-learning algorithm (fitted
Q-iteration) applied to a Markov Decision Process (MDP) representation.

An MDP is also used by Yu et al. (2019) [202] in a direct RL application. Here,
they incorporate causal factors between options of anti-HIV drugs and observed effects
into a model-free policy gradient RL learning algorithm, to learn DTRs for human im-
munodeficiency virus (HIV). This approach is shown to facilitate direct learning of
causal policy gradient (CPG) parameters without requiring a model-based intermedi-
ary, a finding which has potential relevance to DRL and IRL as well.

2.5.3. Self-Supervised, Transfer, and Active Learning in HMI
Qiu and Sun (2019) [203] apply this paradigm to RL in vision, for iterative refinement
of tomographic images and in order to improve diagnostic image classification. The
specific type of imaging is called optical coherence tomography (OCT).

Self-supervision is also used in other deep learning representations. Among the
earliest of these to be developed were convolutional neural networks, which in HMI
are designed to perform visual phenotyping. Gildenblat and Klaiman (2019) [204] de-
veloped a siamese network for segmentation of pathological images (e.g., into regions
corresponding to stromata, tumors infiltrating lymphocytes, blood vessels, fat, healthy
tissue, necrosis, etc). Sarkar and Etemad (2020) [205] use a CNN to learn relevant
patterns from electrocardiograms (ECG) for emotion recognition.

Another self-supervised learning representation is found in word embedding mod-
els in natural language processing (NLP). Meng et al. (2020) [206] use BERT to
classify radiology reports by urgency, learning a contextual representation rather than
using more traditional sentiment analysis or other methods requiring word-level grad-
ing or subjective annotation of the training corpus.

Yet another self-supervised learning architecture is the generative adversarial net-
work (GAN), which has been applied to create artificial images (deepfakes) and achieve
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style transfer from drawings and paintings to photographic images. Tachibana et al.
(2020) [207] use a GAN to improve the electronic cleansing process to remove fecal
artifacts in computerized tomography (CT) colonoscopy images.

3. Techniques for Machine Learning
3.1. Supervised, Unsupervised, and Semi-Supervised Learning
We provide a very brief description of each of the machine learning methods that have
been used in the medical informatics literature.

3.1.1. Shallow
A decision tree [64] is a directed tree model that is used as a rule-induction system
where each node represents a feature (uni-variate decision-tree) and following a path
of features (represented as nodes in the tree) leads to a specific classification.

Naı̈ve Bayes [46] is a probabilistic classifier used for binary or multi-class clas-
sification problems. It is based on the poor assumption of conditional independence
among the features and uses Bayes’ theorem.

Artificial Neural Networks (ANNs) [56] are inspired by biological neural network
and the brain’s ability to process massive amount of information in parallel that allows
it to recognize and classify the world around it. Researchers introduced artificial neural
network that can be created using a weighted directed graph to process information in
parallel where nodes of the graph are connected together in a similar way the neurons
in the brain are connected.

Support Vector Machines (SVMs) [65] use a mathematical function called kernel
that transforms linearly inseparable data to linearly separable by finding the hyper-
plane (decision boundary) that maximizes distance from data points on either side of
the plane.

Random Forests [87] are initially a group of decision-trees where each tree ran-
domly selects a sample from the data set. Once the trees (forest) have been built, each
tree produces a class prediction, which is used in the vote for the most popular class.
The majority vote is used as the final classification of an input example.

k Nearest Neighbor (kNN) [48] is a supervised, non-parametric and lazy learning
algorithm that is used for classification and regression problems. A kNN implementa-
tion has 3 important components - training and test data set; an integer value K; and a
distance metric such as Euclidean, Manhattan or Hamming.

3.1.2. Deep
Convolutional Neural Networks: Tajbakhsh et al. (2016) [208] explain CNNs as a
special class of ANNs where each neuron from one layer does not fully-connect to all
neurons in the next layer. CNNs work by using convolutional layers that are mainly for
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detecting certain local features in all locations of their input images. A set of convo-
lutional kernels is responsible for learning a set of local features within input images
which results in a feature mapping. Anwar et al. (2018) [209] shows that CNNs
are wildly used in medical imaging which help to achieve the following tasks: Seg-
mentation, Detection and Classification of Abnormality, Computer Aided Detection
or Diagnosis, and Medical Image Retrieval.

A U-Net [162] is a CNN network that consists of a contracting path to capture
context, and a symmetric expanding path that enables precise localization (class label
is supposed to be assigned to each pixel). The architecture of the network resembles a
U-shaped network of CNNs where the left-side of the U-shape consists of a contracting
path and the right-side consists of an expansive path.

Stacked Denoising Auto Encoders (SDAE) [210] are multi-layered denoising auto-
encoders that are stacked together for training purposes. These networks are trained
by adding noise to the raw input, which is then fed to the first denoising auto-encoder
in the stack. After minimizing the loss (convergence), the information in the hidden
layer (latent features) is obtained and again noise is added, and the resulting features
are fed to the next denoising auto-encoder in the stack. This process continues for all
denoising auto-encoders in the stack.

Generative Adversarial Networks (GANs) [211] consist of two models - a genera-
tive model and a discriminative model, that are simultaneously trained. The generative
model captures the data distribution by producing fake data, and the discriminative
model determines if a sample comes from the real training data or from the generative
model (fake data). The training goal is to maximize the probability of the discrimina-
tive model making a mistake.

Recurrent Neural Networks (RNNs) [212] are a special type of neural network
where the output from previous step is fed as input to the current step. The most
important feature of RNN is their internal states which allow the network to have the
ability of remembering information about a sequence of inputs. This is especially use-
ful when trying any kind of prediction that relies on information that can be viewed as
a sequence, such as an EEG signal.

3.2. Reinforcement Learning
3.2.1. Traditional
Q-learning [191] is a simple reinforcement learning algorithm that given the current
state, seeks to find the best action to take in that state. It is an off-policy algorithm
because it learns from actions that are random, i.e., outside the policy. The algorithm
works in three basic steps: (1) The agent starts in a state and takes an action and
receives a reward; (2) For the next action, the agent has two choice - either reference
the Q table and select an action with the highest value or take a random action; (3)
Agent updates the Q values, i.e. Q[State, Action]. A Q-table is a reference table for
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the agent to select the best action based on the Q-value.

3.2.2. Deep RL
The Deep Q-Network (DQN) model by Sorokin et al. [213] combine Q-learning (dis-
cussed above) with a deep CNN. The goal of this model is to train a network to ap-
proximate the value of the Q function which maps state-action pairs to their expected
discounted return. The inputs to the neural network are the state variables and the
outputs are the Q values.

3.3. Self-Supervised, Transfer, and Active Learning
3.3.1. Traditional
Although the term “self-supervised” dates back to learning systems that used shal-
low representations rather than deep neural networks and similar representations [127]
[129] [128], we can see from the distinct purpose and methodology used to achieve
self-supervision that deep learning has emerged as a paradigm that facilitates new
forms of self-supervised learning. Transfer learning has similarly been studied exten-
sively since the advent of deep learning, but compared to self-supervision, is better
understood as an independent task. A broad and comprehensive overview of the prob-
lem is provided by Torrey and Shavlik (2010) [214].

3.3.2. Deep
AlexNet [215] is an 8-layered CNN network of 5 convolutional layers followed by 3
fully-connected layers with 60 million parameters and 650,000 neurons. The authors
trained this network using a subset of the popular ImageNet image corpus.

VGG [156] is a very deep CNN for large-scale image recognition developed as part
of the Large-Scale Visual Recognition Challenge (ILSVRC).

ResNets [216], or residual neural networks, are a type of deep neural net architec-
ture modeled on pyramidal cells (high-connectivity cortical neurons). To alleviate the
difficulty of training deeper neural networks, ResNets contain shortcut (skip) connec-
tions that propagate activations forward by one or more layers; these activation blocks
are referred to as residual blocks and this structure reformulates a baseline plain net-
work into its counterpart residual version. ResNets have a typical depth of 50 to over
150 layers (ResNet-152), which is very big compared to VGG.

SqueezeNet [217] is another CNN architecture which was mainly developed to
achieve a similar accuracy to AlexNet, but with far less number of parameters and
size. It maintains an accuracy on ImageNet data set that is comparable to that of
AlexNet.

DenseNet [218] was developed based on the observation that CNNs can be deeper,
more accurate, and very efficient to train if they contain shorter connections between
layers close to the input and those close to the output. DenseNet consists of dense
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blocks where each block connects each layer to every subsequent layer in that block.
The advantages of DenseNet include avoiding the vanishing-gradient problem, strengthen
feature propagation, feature reuse, and reduce the number of training parameters.

4. Applications

We now survey selected popular test beds for medical predictive analytics.

4.1. Test Beds for Diagnosis and Prognosis
The most used data set for breast cancer diagnosis is the Breast Cancer Wisconsin (Di-
agnostic) Data Set 2.1.1[137]. This data set is publicly available from the University
of California Irvine (UCI) Machine Learning Repository.

Data sets used for the task of predicting breast cancer recurrence [168] include: (1)
The Wisconsin prognostic breast cancer (WPBC) data set from the UCI ML repository
[137]; (2) the data set from the SEER database [166] [164].

A RNA-seq data set for cancer prediction [219], which is freely available from
the The Cancer Genome Atlas (TCGA) program database [220]. TCGA is a cancer
genomics program which has generated over 2.5 petabytes of genomic, epigenomic,
transcriptomic, and proteomic data. This data has been used to facilitate improvements
in the diagnosis, treatment, and prevention of cancer.

4.1.1. New Test Beds
We refer the interested reader to work by Deserno, Welter, and Horsch (2012) [221],
Murphy et al. (2015) [222], Svensson-Ranallo, Adam, and Sainfort (2011) [223], and
the guidelines of the National Heart, Lung, and Blood Institute (NHLBI) for prepara-
tion of clinical study data [224].

4.2. Test Beds for Therapy Recommendation and Automation
We refer the interested reader to relevant work by Calero Valdez et al. (2016) [70],
Son and Thong (2015) [225], and Thong and Son (2015) [226].

4.2.1. Prescriptions
We refer the interested reader to work by Galeano and Paccanaro (2018) [227], Kush-
waha et al. (2014) [228], Zhang et al. (2015) [229], Bao and Jiang (2016) [230], Bhat
and Aishwarya (2013) [231], and Guo et al. (2016) [232].

4.2.2. Surgery
We refer the interested reader to relevant work by Ciecierski, Raś, and Przybyszewski
(2012) [233], Petscharnig and Schöffmann (2017) [234], Wang and Fey (2018) [235],
Shvets et al. (2018) [236].
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Table 1.1 Classification of Skin Cancer: accuracy, precision, recall, and F1 score for deep
learning neural networks

Network Acc Precision Precision Recall Recall F1 F1
wtd. benign malignant benign malignant benign malignant

AlexNet 0.87 0.91 0.85 0.87 0.89 0.89 0.87
VGG11 bn 0.85 0.91 0.81 0.82 0.9 0.86 0.85
Resnet18 0.83 0.92 0.77 0.78 0.91 0.84 0.84

SqueezeNet 0.85 0.92 0.8 0.81 0.92 0.86 0.85
DenseNet 0.84 0.9 0.8 0.81 0.89 0.85 0.84

5. Experimental Results
5.1. Test Bed
As an experimental example, we include a test bed introduced by Fanconi (2019)
[237] in this chapter. This consists of a subset of 3600 pictures extracted from the
data set in the international skin imaging collaboration archive (ISIC), which contains
more than 23,000 mole pictures. The test bed contains balanced cases of malignant
(1) and benign (0) skin moles. Here we present a simple performance comparison
between different pre-trained deep learning architectures (DLAs) in the task of binary
classifying a skin mole as being a malignant or a benign mole.

This data set has been used by several recent publications[238] [239] [240] [241].

5.2. Results & Discussion
We use weighted accuracy, precision, recall, and F1-score to test the performance
of the DLAs. Table 1.1 shows the performance of the different DLAs used in this
comparison. In terms of weighted accuracy, AlexNet have achieved the best accu-
racy. SqueezeNet and Resnet-18 achieved the best precision score when classifying a
mole as benign, but the worst precision score when classifying a mole as malignant.
AlexNet has the best precision score when classifying a mole as malignant and the best
F1-score as well. We can also see that the difference in the performance of the DLAs is
only marginal and we believe that different data set would yield different performance
between the tested DLAs.

6. Conclusion: Machine Learning for Computational Medicine

This chapter has introduced machine learning tasks for diagnostic medicine and au-
tomation of treatment, comprising supervised, self-supervised, and reinforcement learn-
ing. After surveying task definitions, we outlined existing methods for diagnosis, pre-
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dictive analytics, therapy recommendation, automation of treatment, and integrative
health and medical informatics (HMI). We now look forward to current and continu-
ing work in applied machine learning for medical applications.

6.1. Frontiers: Pre-Clinical, Translational, and Clinical
Machine learning has developed into a cross-cutting technology across areas of med-
ical informatics, from theory, education, and training (pre-clinical) aspects to the ob-
servation and treatment of patients (clinical computational medicine), to translational
medicine, which aims towards bridging experimental tools and treatments to deployed
ones used in clinical practice. For pre-clinical surveys, we refer the interested reader
to the following: Prashanth et al. (2016), who discuss experimental Parkinson’s treat-
ments [242]; Kolachalama and Garg (2018) survey machine learning as a subarea
of artificial intelligence (AI), particularly in medical education [243]; and Bannach-
Brown et al. (2018) [244] review natural language learning and text mining in medical
informatics. Ravi et al. (2016) [245] survey deep learning in translational health in-
formatics; Weintraub and Rumsfeld (2018) [246] review translational text analytics;
and Shah et al. (2019) [247] broadly examine machine learning and AI in translational
medicine, from sensors and medical devices to drug discovery. Finally, Savage (2012)
[248] provides an early survey of big data for improving clinical medicine, while Char,
Shah, and Magnus (2018) [249] address ethical considerations.

6.2. Towards the Future: Learning and Medical Automation
As of this writing in 2020, the coronavirus disease SARS-Cov-2 is of pervasive interest
as a highly time-critical use case of intelligent systems for improved diagnosis and
epidemiological modeling, as discussed by Randhawa et al. (2020) [250], and for
understanding etiology towards vaccine discovery, as discussed by Alimadadi et al.
(2020) [251]. The Stanford HAI conference organized by Altman (2020) [252] surveys
broad methods for combatting Covid-19 and future pandemics. More generally, the
fields of diagnostic medicine and predictive analytics have grown significantly since
the early work of Kononenko (2001) [43] and the health informatics applications of
Pakhomov, Buntrock, and Chute (2006) [253], but there are deep technical gaps and
significant challenges remaining before the “eDoctor” envisioned by Handelman et
al. (2018) [254] becomes a reality. Meanwhile, AI safety concerns, as mapped out
by Yampolskiy (2016) [255] in both historical and anticipatory contexts of risks and
remedies, loom large.
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