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ABSTRACT 
 
This chapter presents applications of machine learning to predicting protein-protein interactions (PPI) 
in Saccharomyces cerevisiae.  Several supervised inductive learning methods have been developed that 
treat this task as a classification problem over candidate links in a PPI network – a graph whose nodes 
represent proteins and whose arcs represent interactions.  Most such methods use feature extraction 
from protein sequences (e.g., amino acid composition) or associated with protein sequences directly 
(e.g., GO annotation). Others use relational and structural features extracted from the PPI network, 
along with the features related to the protein sequence.  Topological features of nodes and node pairs 
can be extracted directly from the underlying graph.  This chapter presents two approaches from the 
literature (Qi et al., 2006; Licamele & Getoor, 2006) that construct features on the basis of background 
knowledge, an approach that extracts purely topological graph features (Paradesi et al., 2007), and one 
that combines knowledge-based and topological features (Paradesi, 2008).  Specific graph features that 
help in predicting protein interactions are reviewed.  This study uses two previously published datasets 
(Chen & Liu, 2005; Qi et al., 2006) and a third dataset (Paradesi, 2008) that was created by combining 
and augmenting three existing PPI databases.   The chapter includes a comparative study of the impact 
of each type of feature (topological, protein sequence-based, etc.) on the sensitivity and specificity of 
classifiers trained using specific types of features.   The results indicate gains in the area under the 
sensitivity-specificity curve for certain algorithms when topological graph features are combined with 
other biological features such as protein sequence-based features. 
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1. Introduction:  

1.1 Protein-protein interaction prediction problem:  

The term protein-protein interaction (PPI) refers to associations between proteins as manifested 

through biochemical processes such as formation of structures, signal transduction, transport, and 

phosphorylation. PPI plays an important role in the study of biological processes. Many PPIs have been 

discovered over the years and several databases have been created to store the information about these 

interactions such as BIND (Bader et al., 2003), DIP (Salwinski et al., 2004), MIPS (Mewes et al., 

2002), IntAct (Kerrien et al., 2007) and MINT (Chatr-aryamontri et al., 2007). In particular, more than 

80,000 interactions between yeast proteins are available from various high-throughput interaction 

detection methods (von Mering et al., 2002). These methods can detect if the interaction is either a 

physical binding between proteins or a functional association between proteins. Often, the functional 

association between two proteins leads to physical binding among them. Determining PPI using high-

throughput methods is expensive and time-consuming. Furthermore, a high number of false positives 

and false negatives can be generated. Therefore, there is a need for computational approaches that can 

help in the process of identifying real protein-protein interactions.  



Several methods have been designed to address the task of predicting protein-protein 

interactions using machine learning. Most of them use features from protein sequences (e.g., amino 

acids composition) or associated with protein sequences directly (e.g., GO annotation). However, the 

PPI network can be used to design node and topological features from the associated graph. Several 

methods use such relational and structural features extracted from the PPI network, along with the 

features related to the protein sequence. This chapter provides an overview of several machine learning 

methods for predicting PPI using the graph information extracted from a PPI network along with other 

available biological features of the proteins and their interactions, and shows the importance of the 

graph features for accurate predictions.  

1.2 Overview of PPI databases: 

Several PPI databases have been used to extract examples of PPIs for machine learning algorithms. We 

review the main PPI databases in what follows. 

1.2.1 The Biomolecular Interaction Network Database (BIND): 

BIND (Bader et al., 2003) stores information about interactions, complexes and pathways. It also 

contains a number of large scale interaction and complex mapping experiments using yeast two-hybrid, 

mass spectrometry, genetic interactions and phage display. The group that maintains BIND has also 

developed a graphical analysis tool that provides users an understanding of functional domains in 

protein interactions. They have also developed a clustering tool that allows users to divide the protein 

interaction network into specific regions of interest. BIND assumes that interactions can occur between 

two biological ‘objects’, which could be proteins, RNA or DNA sequences, genes, molecular 

complexes, small molecules, or photons (light).  

1.2.2 The Database of Interacting Proteins (DIP): 

DIP (Salwinski et al., 2004) is a database containing 18,343 interactions between 4,923 proteins 

validated from 23,366 experiments of the Saccharomyces cerevisiae organism. A few of the 

experiments from which they validate protein interactions are co-immunoprecipitation, yeast two-

hybrid and in vitro binding assays. The group that maintains DIP has developed several quality 

assessment methods and uses them to identify the most reliable subset of the interactions that are 

inferred from high-throughput experiments. They also provide an online implementation of their 

evaluation methods that can be used to evaluate the reliability of new experimental and predicted 

interactions.  

1.2.3 IntAct: 

IntAct (Kerrien et al., 2007) contains data such as experimental methods, conditions and interacting 

domains that is extracted entirely from publications and is manually annotated by curators. It also 



formalizes the data by using a comprehensive set of controlled vocabularies in order to ensure data 

integrity. It is thus far the only published database that contains negative examples of protein 

interactions, i.e. explicitly identifies pairs of proteins that do not interact. The database contains 

169,792 interactions between 63,427 proteins. These interactions were obtained from 8,477 

experiments that were performed on several organisms. The web site provides tools allowing users to 

search, visualize and download data from the repository. 

1.2.4 A Molecular INTeraction database (MINT): 

MINT (Chatr-aryamontri et al., 2007) stores molecular interaction data extracted from several 

publications. Most of its curation work is focused on physical interactions, direct interactions and 

colocalizations between proteins. Genetic or computationally inferred interactions are not included in 

the database. It contains 42,044 interactions between 5,256 proteins of the Saccharomyces cerevisiae 

organism. An online graph visualization and editing tool called “MINT Viewer” is available that allows 

users to view the interaction network and delete edges that are not of interest to the user.  

1.2.5 The Munich Information Center for Protein Sequences (MIPS): 

MIPS (Mewes et al., 2002) provides information on Open Reading Frames (ORFs), RNA genes and 

other genetic elements. The research group that maintains MIPS has also applied techniques such as 

gene disruption in conjunction with powerful expression analysis and two-hybrid techniques as part of 

a systematic functional genome analysis. These methods generate information on how proteins 

cooperate in complexes, pathways and cellular networks. In addition, detailed information on 

transcription factors and their binding sites, transport proteins and metabolic pathways are being 

included or interlinked to the core data. The database also provides information on the molecular 

structure and the functional network of the yeast genome. 

1.3 Introduction to Machine Learning: 

Machine learning algorithms (Mitchell, 1997) offer some of the most cost-effective approaches to 

automated knowledge discovery and data mining (discovery of features, correlations, and other 

complex relationships and hypotheses that describe potentially interesting regularities) from large data 

sets. In particular, machine learning algorithms have proven to be very successful for many 

bioinformatics problems, including protein-protein interaction prediction.  

In this chapter, we formulate the problem of PPI prediction as a classification task, i.e. a task 

where the learning algorithm is provided with experience in the form of labeled examples (a.k.a., 

training data set or data source) and is asked to classify new unlabeled examples in one of several 

possible classes. In our case, the training examples consist of existing information about protein 

interactions extracted from PPI databases.  Each example is encoded using a set of variables called 



attributes or features. A special attribute, called the class label, is used to represent the class to which 

that particular example belongs. The class label in a protein interaction prediction problem indicates 

whether the proteins in a candidate pair interact with each other (i.e., it takes two values: yes and no).   

The output of a learning algorithm for a classification task is called a classifier.  Several strategies can 

be used to estimate the true error of a classifier. The simplest one is to divide the labeled data into a 

training set and a test set. The classifier is learned from the training set and its error is estimated using 

the test set. More commonly, the error is estimated by using a method called k-fold cross-validation. To 

use this method, the labeled data is divided into k folds. A classifier is learned from a training set 

consisting of k - 1 folds and tested on the remaining kth fold. The estimate for the true error is obtained 

by taking the average of the error of the k possible classifiers learned by leaving out one fold at a time.  

We will review several learning algorithms that have been used to predict PPI interactions in the 

next few paragraphs. 

1.3.1 Decision trees: 

Decision tree algorithms (Quinlan, 1986; Breiman et al., 1984) are among some of the most widely 

used machine learning algorithms for building pattern classifiers from data. Their popularity is due in 

part to their ability to: select from all attributes used to describe the data, a subset of attributes that are 

relevant for classification; identify complex predictive relations among attributes; and produce 

classifiers that are easy to comprehend for humans. The ID3 (Iterative Dichotomizer 3) algorithm 

proposed by Quinlan (1986) and its more recent variants such as C4.5 (Quinlan, 1993) are 

representative for a widely used family of decision tree learning algorithms. The ID3 algorithm 

searches in a greedy fashion, for attributes that yield the maximum amount of information for 

determining the class membership of instances in a training set D of labeled instances. The result is a 

decision tree that correctly assigns each instance in D to its respective class. The construction of the 

decision tree is accomplished by recursively partitioning D into subsets based on values of the chosen 

attribute until each resulting subset has instances that belong to exactly one of the m classes. The 

selection of an attribute at each stage of construction of the decision tree maximizes the estimated 

expected information gained from knowing the value of the attribute in question. C4.5 (Quinlan, 1993) 

is the most popular variant of the ID3 algorithm that has been implemented as the J48 classifier in 

WEKA, the Waikato Environment for Knowledge Analysis (Witten & Frank, 2005), a popular machine 

learning toolkit. Some of the improvements that C4.5 has made over ID3 algorithm are: dealing with 

missing data, pruning the tree after creation and dealing with attributes of different costs.  

1.3.2 Random Forests 

Random Forest classifiers are seen to produce highly accurate results for many supervised 



classification problems (Breiman, 2001).  This algorithm involves the construction of multiple trees 

from the data. Each tree votes for the class of a new instance and the class with the maximum number 

of votes is chosen. The method of constructing each tree is described by Breiman (2001) in the 

following steps:  

1. If there are N examples in the training set, the tree will be built by sampling N examples at 

random with replacement,  

2. If there are M input variables, a small subset of these examples m is chosen at each node to find 

the best split of the data at that node, and  

3. There is no pruning of the trees that are constructed at each stage. 

1.3.3 Naïve Bayes: 

Naïve Bayes is a highly practical learning algorithm (Mitchell, 1997), comparable to more powerful 

algorithms such as decision trees or neural networks in terms of performance in some domains. In the 

Naïve Bayes framework, each example x is described by a conjunction of attribute values, i.e. x = < a1, 

a2, …, an >. The class label of an example can take any value from a finite set C = {c1, c2, …, cm}. The 

attribute values are assumed to be conditionally independent given the class label. A training set of 

labeled examples, D = {< x1 , y1 >, < x2 , y2 >, … , < xt , yt >}, is presented to the algorithm. During the 

learning phase, a hypothesis h consisting of conditional and prior probabilities is learned from the 

training set. During the evaluation phase, the trained Naïve Bayes classifier predicts the class label of 

new instances x as follows:    

 

1.3.4 Support Vector Machine: 

The Support Vector Machine (SVM) algorithm (Vapnik, 1998; Cortes & Vapnik, 1995; Scholkopf et 

al., 1997; Cristianini & Shawe-Taylor, 2000) is a binary classification algorithm. If the data are linearly 

separable, it outputs a separating hyperplane, which maximizes the “margin” between classes. If data 

are not linearly separable, the algorithm works by implicitly mapping the data to a higher dimensional 

space, where the data become separable. A maximum margin separating hyperplane is found in this 

space. This hyperplane in the high dimensional space corresponds to a nonlinear surface in the original 

space. SVM classifiers are sometimes called “large margin classifiers” because they find a maximum 

margin separation. Large margin classifiers are very popular due to theoretical results that show that a 

large margin ensures a small generalization error bound (Vapnik, 1998) and also because they proved to 

be very effective in practice.   

1.3.5 K-Nearest Neighbors: 



The K-Nearest Neighbors classifier (Cover & Hart, 1967; Mitchell, 1997) is a simple example of 

instance-based learning, also known as lazy learning. In the K-Nearest Neighbors algorithm, the nearest 

neighbors are defined in terms of a metric (e.g., Euclidean distance) D between instances. The class 

label for a new instance x is given by the most common class label among the k training examples 

nearest to x (according to the distance D). 

1.3.6 Bagging: 

Bootstrap aggregating or bagging (Breiman, 1996) is an algorithm that helps improve the accuracy of a 

classifier. Bagging works by sampling examples from the training dataset D with replacement to create 

subsets of the training data, which are called bootstrap samples. Classifiers are learned from the 

different bootstrap samples. To predict the class label of a new example, the outputs of the resulting 

classifiers are averaged or the classifiers are allowed to vote for the class of this new example. Bagging 

has been shown to avoid overfitting and to reduce the variance of learning algorithms in several 

domains (Breiman, 1996). 

1.3.7 REPTree: 

REPTree is a supervised inductive learning algorithm implemented in WEKA (Witten & Frank, 2005) 

that builds a decision/regression tree using information gain/variance reduction (Quinlan, 1986) as the 

splitting criterion. It then prunes the tree using reduced-error pruning with backfitting (Quinlan, 1993; 

Mitchell, 1997). Missing values are dealt with by using fractional instances as in C4.5 (Quinlan, 1993).   

 

2. Background and significance:   

 Several graph-based approaches have been used to address the problem of predicting PPIs. 

These approaches represent the PPI network as a graph and extract relational and structural features 

from it. The training dataset provided to the learning algorithms consists of examples represented by 

such graph-based features, sometimes together with other features (e.g., amino acid composition, GO 

functions) associated with the protein pairs. The test dataset presented to the classifier produced by the 

learning algorithm contains protein pairs that are not present in the training dataset. Statistical measures 

such as accuracy, sensitivity, specificity and AUC score can be calculated to evaluate the performance 

of the learning algorithms. Several approaches to PPI prediction, including approaches based on graph-

based features, are described and compared below.  

2.1 Qi, Bar-Joseph & Klein-Seetharaman (2006): 

Qi et al. (2006) divide the protein interaction prediction task into three sub-tasks: (1) prediction of 

physical (or actual) interaction among proteins, (2) prediction of proteins belonging to the same 

complex and (3) prediction of proteins belonging to the same pathway. They use different data sources 



for different subtasks: data from the MIPS database (Mewes et al., 2002) for the first subtask, data from 

the DIP database (Salwinski et al., 2004) for the second subtask and data from the KEGG database 

(Kanehisa & Goto, 2000) for the third subtask. One hundred sixty two features were constructed, 

grouped into seventeen distinct categories and studied to understand their effect on the protein 

interaction prediction subtasks. The categories that the 162 features were grouped into are: 

• Gene expression: This category includes 20 features (each being a Pearson’s correlation 

coefficient) calculated on 20 gene expression datasets that were recorded under more than 500 

conditions (Bar-Joseph et al., 2003). 

• Gene Ontology (Molecular Function, Biological Process & Cellular Component): These three 

categories contain information on how many times a pair of proteins occurs in the trees 

(Ashburner et al., 2000; Christie et al., 2004). 

• Protein Expression: Features in this category capture the difference in the expression levels for 

the candidate pair of proteins (Ghaemmaghami et al., 2003). 

• Essentiality:  An essential protein is a protein for which deletion of the encoding gene results in 

a lethal phenotype, which is usually measured under laboratory conditions.  The singleton 

feature in this category records whether the members of a pair of proteins are essential. 

• High-throughput PPI datasets (HMS_PCI, TAP & Y2H): These three categories contain 

information extracted from several high-throughput protein interaction methods (Bader et al., 

2003; Gavin et al., 2002; Ho et al., 2002; Ito et al., 2001; Uetz et al., 2000). 

• Synthetic Lethal: Synthetic interactions are identified if mutations in two separate genes 

produce a different phenotype from either gene alone, and indicate a functional association 

between the two genes. Two genes have a synthetic lethal relationship if mutants in either gene 

are viable but the double mutation is lethal.  The single feature in this category was extracted by 

taking the union of lethality indicators from Tong et al. (2001) and MIPS (Mewes et al., 2002). 

• Gene neighborhood/Gene Fusion/Gene Co-occurrence: The single feature in this category is 

the disjunction of indicators from the three datasets described by von Mering et al. (2002). 

• Sequence Similarity: The single feature in this category is a BLAST hit indicator for the query 

protein on the Saccharomyces Genome Database or SGD (Christie et al., 2004). 

• Homology-based PPI: Sequence similarity information is used to identify homology pairs. 

These pairs are then “BLASTed” against NCBI’s non-redundant protein database and the count 

of their interactions extracted, resulting in four features in this category. 

• Domain-Domain Interaction: Deng et al. (2002) identify domain interactions based on sequence 

analysis. The value of the single feature in this category is the probability of interaction of a 



candidate protein pair. 

• Protein-DNA Transcription Factor (TF) group binding: Qi et al. (2006) group the TFs based on 

the MIPS protein class catalog into 16 TF groups. For each TF group, the number of TFs that 

bind to both genes is found and used as one of the 16 attributes in this category. 

• MIPS features (Protein Class and Mutant Phenotype): These 2 categories contain features that 

identify if the protein pair belongs to the same protein class (among 25) and mutant phenotype 

(among 11). 

The inductive learning algorithms used in (Qi et al., 2006) are: Random Forests (RF), RF similarity-

based k-Nearest-Neighbor, Naive Bayes, Decision Trees (J48), Logistic Regression, and Support Vector 

Machines (SVM). R50, a partial AUC score, was used to evaluate the performance of the resulting 

classifiers.  R50 is defined as the area under the ROC curve with up to 50 negative predictions. In 

addition to R50 being a commonly used metric in the machine learning literature, the justification 

provided by the authors for using this score is based on the fact that the observed frequency of 

interacting proteins is 1:600, resulting in an estimate of 50 protein interactions among the 30,000 

selected pairs. When comparing the classifiers learned from the data using the algorithms listed above, 

the best relative AUC scores were obtained using RandomForest (RF) and RandomForest similarity-

based k-Nearest-Neighbor (kRF) for all tasks.  The maximum R50 AUC scores were 0.67 for the DIP-

based direct PPI task, 0.25 for the MIPS-based co-complex PPI task, and 0.25 for the KEGG-based co-

pathway PPI task.  The study by Qi et al. also showed that the feature with the highest coverage for all 

three PPI subtasks was the gene coexpression, followed by the process, component, and function 

categories extracted from the Gene Ontology (Ashburner et al., 2000). 

2.2 Licamele & Getoor (2006): 

Licamele and Getoor (2006) combine the link structure of the PPI graph with the information about 

proteins in order to predict the interactions in a yeast dataset. More specifically, they look at the shared 

neighborhood among proteins and calculate the clustering coefficient among the neighborhoods for the 

first-order and second-order protein relations. The Gene Ontology distance between proteins is also 

considered. However, no distinction is made between direct (physical interaction) and indirect (proteins 

belonging to the same complex) interactions in the Licamele & Getoor (2006) study. The training set is 

assembled from multiple data sources such as MIPS (Mewes et al., 1999), BIND (Bader et al., 2001), 

DIP (Xenarios et al., 2002), yeast two-hybrid (Ito et al., 2001; Uetz et al., 2000) and In vivo pull-down 

(Gavin et al., 2002; Ho et al., 2002). Classifiers such as Naive Bayes, kNN, Logistic Regression, C4.5, 

SVM, JRIP and Bagging with REPTrees were used on the resulting dataset. Licamele and Getoor 

report that the highest accuracy (81.7%) among the classifiers learned was achieved using Bagged 



REPTrees and that the corresponding AUC score was 0.8967, when predicting new links from noisy 

high throughput data. 
2.3 Paradesi, Caragea & Hsu (2007): 

The approaches by Qi et al. (2006)  and by Licamele and Getoor (2006)  use relational data of the PPI 

network along with other biologically relevant information (such as, sequence, gene expression data, 

GO terms, etc.) to predict the protein interactions. Paradesi et al. (2007) address the problem of 

predicting protein-protein interactions based solely on the graph features of the PPI network. They 

identify nine structural features for the Saccharomyces cerevisiae protein interaction network. These 

features include indegree, outdegree, number of mutual proteins and backward distance between 

proteins, among others.  

Two datasets were used in the Paradesi et al. study: the DIP dataset (Salwinski et al., 2004) and 

also the dataset generated by Qi et al. (2006). Similar to the other two approaches described above, 

Paradesi et al. (2007) learn several classifiers, such as Bagged Random Forest, Bagged REPTree, 

Random Tree, J48 and Classification via Regression from the training data. The results show that the 

method developed by Paradesi et al. (2007) compares well with the methods by Qi et al. and Licamele 

and Getoor, although no sequence information is used (as in the other two approaches), but only the 

relational features of the network data.  

However, please note that the comparison between the approach by Paradesi et al. (2007) and 

the one by Licamele and Getoor (2006) was done using different datasets, for which the final results 

obtained with each method (reported in published work) were compared. Also, the method that we used 

for generating negative examples from the dataset provided by Qi et al. (2006) does not produce the 

same negative examples as those used in the study by Qi et al. (2006). Thus, the comparisons reported 

suffer from some data bias. Nevertheless, the complete comparisons based on previously published 

results are shown below: 



 

Figure 2-1 Comparison of results by Licamele and Getoor (2006) and Paradesi et al. (2007) 

 

Figure 2-2 Comparison of the results by Qi et al. (2006) and those by Paradesi et al. (2007). The first 

dataset is DIP (Salwinski et al., 2006), while the second dataset is generated by Qi et al. (2006). 

2.4 Chen & Liu (2005): 

Protein interaction sites refer to the locations on the protein structures where one protein physically 



interacts with another protein. A protein domain is a functionally defined protein region. Chen & Liu 

(2005) predict PPI using protein domain information. Many domain-based models for protein 

interaction prediction have been developed, and preliminary results have demonstrated their feasibility 

(Chen & Liu, 2005). Most of the existing domain-based methods, however, consider only single-

domain pairs (one domain from one protein) and assume independence between domain–domain 

interactions. Chen & Liu (2005) introduced a new framework based on random forest for PPI 

prediction, which explores the contributions of all the possible domain combinations to predicting 

protein interactions. Furthermore, their model does not assume that domain pairs are independent of 

each other. They obtained the PPI data from DIP (Salwinski et al., 2004; Deng et al., 2002; 

Schwikowski et al., 2000; Xenarios et al., 2001). Chen & Liu (2005) extract the domain information 

for each protein and build a vector of the domain list of each candidate protein pair. The values in the 

vector are given by the number of occurrences of the domain in both proteins. They obtain a sensitivity 

of 79.78% and specificity of 64.38%, a better result than that achieved using the MLE method of Deng 

et al. (2002), which yields a sensitivity of 78.30% and a specificity of 37.53%.  

 

2.5 Paradesi (2008): 

Paradesi (2008) attempts to perform a fair comparison between methods that use only biological 

information and methods that use both graph features and biological information. Thus, two new sets of 

experiments are performed on the datasets provided by Chen and Liu (2005) and by Qi et al. (2006), 

respectively. Various features, including those originally used by Chen and Liu and by Qi et al.,  but 

also the graph features used in Paradesi et al. (2007), are studied to indentify their importance for the 

accuracy of prediction. The results are presented in Tables 2-1 and 2-2, respectively, show that the 

graph features alone can result in very good predictive results, while the sequence features by 

themselves are less predictive.   

Table 2-1 Results obtained from experiments using Chen & Liu (2005) dataset (5-fold cross-validation) 

 J48 NB CVR SVM 
 Se % Sp % Se % Sp % Se % Sp % Se % Sp % 
Domain 73.3 62.1 73.44 63.08 55.1 0 74.3 73.56 
Degree 86.62 85.74 89.78 60.66 85.78 86.98 87.2 76.02 
MutualProtein 96.68 59.3 97.5 57.72 55.1 0 98.96 55.94 
BackwardDistance 99.52 65.8 99.52 65.8 99.52 65.8 99.52 65.8 
Domain + Degree 86.3 86.08 88.94 62.52 85.92 86.7 80.7 77.76 
Domain + MutualProtein 85.14 68.4 95.64 59.08 55.1 0 78.62 75.26 
Domain + BackwardDistance 91.14 72.46 83.16 71.82 99.52 65.8 86.06 82.68 
Degree + MutualProtein 87.6 86.56 93.96 65.24 86.72 87.14 89.26 77.44 



Degree + BackwardDistance 92.56 91.54 93.1 71.88 92.02 92.14 93.3 83.54 
MutualProtein + 
BackwardDistance 

97.86 80.04 98.18 74.42 99.54 70.88 99.26 76.16 

Domain + Degree + 
MutualProtein 

87.8 85.88 93.16 65.94 86.86 86.84 83.18 78.76 

Domain + MutualProtein + 
BackwardDistance 

96.94 81.5 97.82 76.42 99.54 70.88 90.7 85 

Domain + Degree + 
BackwardDistance 

91.86 91.96 92.3 73.06 91.96 92.24 
 

88.7 85.58 

Degree + MutualProtein + 
BackwardDistance 

93.04 93.1 94.68 69.4 92.94 93.14 95.74 85.68 

Domain + Degree + 
MutualProtein + 
BackwardDistance 

93.6 92.4 94.28 70.54 92.76 93.2 91.14 87.4 

 

Table 4-2 Results obtained from experiments using Qi et al. (2006) dataset (5-fold cross-validation) 

 J48 RF NB CVR SVM 
Feature 0.504 0.7052 0.7244 0.7466 0.504 
Degree 0.5 0.7394 0.9442 0.9798 0.5 
MutualProtein 0.61 0.806 0.826 0.5 0.622 
BackwardDistance 0.79 0.79 0.79 0.5 0.73 
Feature + Degree 0.57 0.7276 0.7378 0.9526 0.506 
Feature + MutualProtein 0.5944 0.8172 0.737 0.8347 0.626 
Feature + BackwardDistance 0.796 0.8438 0.7374 0.8634 0.736 
Degree + MutualProtein 0.7052 0.8604 0.9632 0.9828 0.624 
Degree + BackwardDistance 0.79 0.833 0.9646 0.9896 0.73 
MutualProtein + BackwardDistance 0.79 0.94 0.948 0.5 0.758 
Feature + Degree + MutualProtein 0.5784 0.8358 0.7428 0.9496 0.626 
Feature + MutualProtein + BackwardDistance 0.796 0.9408 0.7438 0.9052 0.758 
Feature + Degree + BackwardDistance 0.796 0.8678 0.7428 0.9768 0.736 
Degree + MutualProtein + BackwardDistance 0.79 0.944 0.9774 0.9926 0.758 
Feature + Degree + MutualProtein + 
BackwardDistance 

0.796 0.927 0.7468 0.98 0.756 

 

3. Issues and Problems: 

 There are many methods of inferring protein interactions, some of them described above. The 

goal of this chapter was to show that methods that use graph-based features from the PPI network, 

sometimes along with the biological features of the interacting proteins, can produce results better than 

those using the biological features alone. However, the task of predicting protein interactions using 

machine learning approaches is far from being solved completely. The machine learning algorithms are 

obviously not 100% accurate. In particular, the graph-based approaches advocated in the chapter are 

faced with several problems and issues discussed in this section.  



3.1 Combining data from multiple databases: 

 There are many databases that provide information about protein interactions. However, 

different databases store protein interactions from different high-throughput interaction detection 

methods. This results in very few protein interactions that are contained in several databases. Qi et al. 

(2006) states that there are only 293 protein interactions present in all DIP (Salwinski et al., 2004), 

MIPS (Mewes et al., 2002) and KEGG (Kanehisa & Goto, 2000) databases. Moreover, different 

databases store different attributes for protein interactions. Let us consider the data available in all 

databases as published by their respective research groups. The BIND (Bader et al., 2003) database 

stores information about interactions, complexes and pathways. BIND (Bader et al., 2003) contains a 

number of large-scale interactions and complex mapping experiments using yeast two-hybrid, mass 

spectrometry, genetic interactions and phage display. DIP (Salwinski et al., 2004) develops methods of 

quality assessment and uses them to identify the most reliable subset of the interactions that are inferred 

from high-throughput experiments. MIPS (Mewes et al., 2002) provides information on Open Reading 

Frames (ORFs), RNA genes and other genetic elements. It also contains information on how proteins 

cooperate in complexes, pathways and cellular networks. In addition, detailed information on 

transcription factors and their binding sites, transport proteins and metabolic pathways are being 

included or interlinked to the core data. IntAct (Kerrien et al., 2007) manually annotates published 

manuscripts reporting molecular interaction data and formalizing it by using a comprehensive set of 

controlled vocabularies in order to ensure data integrity. IntAct (Kerrien et al., 2007) is probably the 

only database that contains negative examples of protein interactions. MINT (Chatr-aryamontri et al., 

2007) focuses on the curation work on physical interactions between proteins. Genetic or 

computationally inferred interactions are not included in the database. However, von Mering  et 

al.(2002) states that there are very few protein interactions that are supported by one of the high-

throughput methods. Given the diversity of the protein interactions in different databases and also the 

diversity of the features, it is very difficult to assemble a comprehensive training dataset that contains 

all the known protein interactions, as well as all the biological and structural features that can be 

defined for a pair of interactions, thus making it difficult to use all the existing information to learn 

more accurate prediction models.  

3.2 Negative protein interactions: 

One of the most common problems that researchers face while predicting protein interactions 

using computational methods is to deal with the large number of negative examples. Let us assume that 

there are around 6,000 proteins in a database and around 80,000 interactions between them are known. 

This means that there are still 60002 – 80,000 = 35,920,000 interactions that are yet to be classified as 



true positive or true negative. If we provide these 80,000 positive examples and 35,920,000 negative 

examples to a random algorithm that predicts that any two given proteins do not interact, we will still 

obtain an accuracy of 99.78%. Although, this is a good result, it is important that a machine learning 

algorithm must predict the true positives accurately. We are more interested in the problem of 

predicting which proteins interact than in that of predicting which proteins do not interact. In order to 

solve our desired problem, we must find ways of reducing the number of negative examples that will be 

provided to the algorithms. Qi et al. (2006) randomly select protein pairs that do not interact as 

negative examples. Licamele and Getoor (2006) randomly sample negative protein pairs without 

replacement. They choose an equal number of positive protein pairs and negative protein pairs. Chen & 

Liu (2005) also sample negative protein pairs that are roughly equal to the number of positive protein 

pairs. Paradesi et al. (2007) perform a depth-limited Breadth First Search (with depth 2) from each 

protein and generate protein pairs. By using this technique, they obtain all positive interactions and 

several negative interactions. All of the above-mentioned techniques of generating negative examples 

are not accurate because they assume that any protein pair that is not present in the positive interaction 

list constitutes a negative example. A protein pair must be labeled as a negative interaction if and only 

if it is experimentally determined that those two proteins do not interact in any high-throughput 

methods.  

3.3 False positives in high-throughput methods: 

 There are several high-throughput methods for detecting protein-protein interactions, including 

yeast two-hybrid method (Ito et al., 2001; Uetz et al., 2000), analysis of protein complexes using mass 

spectrometry (Gavin et al., 2002; Ho et al., 2002), co-immunoprecipitation (Sambrook et al., 2006), 

etc. Some of the interactions that are identified from different high-throughput methods may be false 

positives. Many researchers have tried to assess the quality of the high-throughput data (von Mering et 

al., 2002; Mrowka et al., 2001; Deane et al., 2002). However, they claim that sometimes a subset of 

interactions that were identified by using one method could not be identified by another method. These 

interactions are called false positives because they might not have been interactions but were wrongly 

labeled as interactions by the high-throughput method (Salwinski et al., 2003).  

3.4 Representation of data: 

There is a need to handle appropriately data from different interaction-detection methods. For 

example, the yeast two-hybrid screening method, which is one of the most popular methods of 

detecting protein interactions, uses a bait-and-prey approach to find interactions in yeast (Young, 

1998). Furthermore, several databases provide the protein interaction data in the form of different 

interacting “bait” proteins and “prey” proteins. However, some researchers still treat the protein 



interaction network from the yeast two-hybrid screening method as an undirected network. In general, 

different high-throughput techniques have different interacting relationships (either directed or 

undirected) between interacting protein pairs. 

3.5 Validity of predicted protein interaction: 

 It might be easier and faster to predict or identify new protein interactions using the graph-based 

features of the PPI network. However, the newly discovered protein interaction is accurate only from a 

relational learning (or graph-mining) perspective. There is no guarantee that the new interacting protein 

pair is biologically valid.  The new protein interaction could either be a true positive interaction or a 

false positive interaction. Moreover, there are protein pairs that are identified as interacting pairs 

because of the graph-based prediction and a single high-throughput method. These protein pairs are 

most likely false positive protein interactions because they have been identified only through a single 

high-throughput protein interaction detection method. Therefore, there is a need to verify the validity of 

the interactions discovered through the graph-based prediction approach. 

3.6 Identification of useful graph-based features: 

 There are many features that can be extracted from a PPI network as explained by the previous 

approaches of predicting protein interactions. However, not all features are useful in the prediction task. 

In fact, some features may actually hurt the learning process of the classifier and thereby lower the 

accuracy of the results. Qi et al. (2006) have discovered that features that might be useful for solving an 

interaction subtask may not be useful for solving another interaction subtask. The authors have also 

observed that different combinations of various features affect the performance of the learning 

algorithms.  

 

4. Suggestions and Recommendations: 

In this section, we provide possible solutions and recommendations to the problems and issues 

presented above. 

4.1 Combining data from multiple databases: 

 Gathering more data and features can provide a more tractable representation of the training 

data, increasing the achievable accuracy, sensitivity, and specificity of the learning system. Given the 

nature of the data in the PPI databases, there are two different methods we could use to combine data 

from multiple sources. The first method is to take the intersection across all databases. This would 

result in a small number of protein interactions but many features about those interactions. The second 

method is to take the union across all databases. This would result in a dataset with many protein 

interactions but also many missing attributes. Thus, there is a tradeoff between data with a small 



number of protein interactions but good quality information about these interactions and data with a 

large number of protein interactions but a lot of missing information about the interactions. This 

tradeoff suggests that there is a need to efficiently unify information across all databases by the 

research groups that maintain these databases. To address this need, the research groups that maintain 

BIND (Bader et al., 2003), MINT (Chatr-aryamontri et al., 2007), DIP (Salwinski et al., 2004), MPact 

(Güldener et al., 2006) and IntAct (Kerrien et al., 2007) have formed the IMEx consortium to build a 

large, consistent and non-redundant repository of protein interactions and information about the 

interactions. According to the IMEx consortium, the data gathered by them will be broader in scope and 

deeper in information than any individual effort (Kerrien et al., 2007). By integrating multiple data 

sources, the PPI network will be more complete than before and will enable researchers to achieve 

better quality graph-based feature extraction. 

4.2 Negative protein interactions: 

 A better method of selecting non-interacting protein pairs (i.e., negative examples) needs to be 

developed. One possible method for generating negative protein pairs would be to mark protein pairs 

that do not belong to the same complex or the same pathway as negative, if there is no known 

interaction between them. Another method for generating negative examples is similar to the previous 

method, but could be achieved by extracting information from a PPI network. If the proteins in a pair 

belong to different cliques that are apart by a very large distance in the network and they do not have 

any known interaction between them, they could be considered to form a negative protein pair. Also, if 

we cluster the proteins in a network based on complexes and choose a protein pair from different 

clusters, that pair could be considered to be a negative example. It would help to use the above-

mentioned techniques on protein interaction visualization tools such as ProViz (Iragne et al., 2005), 

iPfam (Finn et al., 2005), VisANT (Hu et al., 2007), etc. and querying tools such as PathBLAST 

(Kelley et al., 2004), APID (Prieto & De Las Rivas, 2006), etc. to detect negative protein interactions. 

4.3 False positives in high-throughput methods: 

 DIP provides several tests, such as Expression Profile Reliability Index (EPR Index) (Deane et 

al., 2002), Paralogous Verification (PVM) (Deane et al., 2002) and Domain Pair Verification (DPV) 

(Deng et al., 2002) as online services, to ensure that the number of false positives is reduced in any 

given dataset. A graph-based approach to reduce the number of false positives obtained from 

computational techniques would be to build separate graphs for each of the high-throughput methods. 

By taking the intersection of all the graphs we could obtain the true positive protein interactions in the 

simplest case. In a more complex case, we could use protein visualization tools such as ProViz (Iragne 

et al., 2005), iPfam (Finn et al., 2005), VisANT (Hu et al., 2007), etc. to identify proteins that 



frequently occur in most of the graphs and infer actual protein interactions among them.  

4.4 Representation of data: 

 The protein interaction network must be treated as a directed network especially when using 

yeast two-hybrid screening data in order to enable the classification algorithm to learn using bait and 

prey proteins. More importantly, there needs to be a way of dealing with representation of data 

collected from several high-throughput methods. In other words, if the experiment proves that the 

interaction occurs in one way from one protein to another, the interaction must be treated as a directed 

edge; otherwise, the interaction must be treated as an undirected edge. In a few cases, there might be 

protein interactions that require the above-mentioned data representation. In order to solve a protein 

interaction prediction problem that involves data with different representations, the problems must be 

divided into minimal sub-problems that can be solved using the desired representation and learning 

algorithm. The results from the sub-problems must be combined using either a weighting system or a 

voting technique, and the protein pair must be classified as interacting or not. 

4.5 Validity of predicted protein interaction: 

 We could label each positive interacting protein pair identified by the graph-based interaction 

prediction method as a true positive example. However, most probably the results from the machine 

learning graph-based approach are not 100% accurate when the learned classifier is used to classify 

new data in the test dataset. One of the techniques of validating newly discovered protein interactions is 

to perform a high-throughput protein interaction detection method to experimentally validate if the 

protein pair interacts or not. If a protein pair has been identified as an interacting pair by only one high-

throughput method, then the result of the graph-based prediction can help confirm the protein pair as a 

true positive interaction. In other words, the results of graph-based PPI prediction algorithms can be 

used along with the high-throughput interaction detection methods to identify true positive interactions. 

Therefore, graph-based interaction prediction methods can serve a two-fold purpose – to identify new 

interactions and to strengthen our confidence in the results of existing high-throughput methods. 

4.6 Identification of useful graph-based features: 

 It is important to use only features that help in the learning process. One method by which this 

can be achieved is by running classification algorithms on each feature individually and selecting only 

those features that provide higher accuracy.  Another method of identifying important features is by 

applying dection on the input data. There are several statistical measures to identify the importance of 

features such as Entropy, Gini index, etc. It is also important to identify the right combination of 

features to better predict protein interactions. This can be achieved by performing several experiments 

with various combinations of features. It is often computationally difficult to perform many 



experiments with thousands of features to detect the right combinations of features. A better solution 

would be to first calculate the most useful features, thereby reducing the size of the feature list, and 

then perform experiments by varying the combinations of the selected features. It has been observed by 

the authors that by choosing the important features and reducing the size of the feature list, one may not 

achieve the highest accuracy possible. In other words, a comprehensive examination of all features will 

provide the highest accuracy for some combination of features, while an examination of a reduced set 

of features will be computationally less-intensive. Thus, there is a trade-off between the number of 

features chosen and the desired accuracy. 

 

5. Future trends: 

 The future trends in the field of predicting protein interactions using graph-based features look 

very promising due to the following changes in this area:  

5.1 Increase in quality and quantity of data: 

 There is a rapid increase in the discovery of new proteins and interactions based on high-

throughput methods. There is also a growth in techniques to identify actual protein interactions and 

eliminate false positive interactions. The IMEx consortium, as mentioned previously in this chapter, is 

allowing individual researchers and research groups to submit protein interaction information. This 

newly submitted data is run through several tests and manually curated to ensure that the interaction is 

a true positive interaction. As the quality and quantity of data increases, the PPI network becomes more 

complete, thereby allowing more complete features to be extracted from the network. There is scope 

for researchers to work on increasing the quality and quantity of protein interactions by developing new 

computational techniques. 

5.2 Improvement in classification algorithms: 

 There are also rapid advances in the machine learning and data mining algorithms. Most of the 

supervised and unsupervised learning algorithms used in the prediction of protein interactions were 

developed for tasks other than that. Although it has been observed that these algorithms have worked 

well for the protein interaction prediction task, there is a need for developing custom algorithms that 

can handle protein interaction data even better.  

5.3 Use of protein interaction network analysis tools: 

 There are many protein interaction visualization tools such as ProViz (Iragne et al., 2005), 

iPfam (Finn et al., 2005), VisANT (Hu et al., 2007), etc. and querying tools such as PathBLAST 

(Kelley et al., 2004), APID (Prieto & De Las Rivas, 2006), etc. available. These tools allow users to 

view and search for proteins in any PPI network. They can be exploited to gather several graph-based 



features from the PPI network. The visualization and querying tools can also be used to split the PPI 

network into several overlapping sub-graphs. Interactions can be predicted at the sub-graph level and 

these predictions can be combined to identify protein interactions at the original graph level. A protein 

pair can be labeled as interacting if it is observed that the interaction between the protein pair appears 

in more than one sub-graph. 

5.4 Development of different approaches: 

Although there is an increase in data and improvement of algorithms and tools, attention must 

be paid to improve the approaches of solving the protein interactions prediction problem. There is no 

one-solution-solves-all-problems approach anymore. Instead, there is a need for developing approaches 

that solve the problem by applying an ensemble of various machine learning algorithms for different 

subgraphs of the PPI network. In other words, one could extract different graph-based features from 

different subsets of the PPI network and run different machine learning algorithms on the features, 

depending on the data. The different machine learning classifiers could “vote” on the class, and the 

weighted average of the output could be assigned as the actual class. 

 

6. Conclusion: 

In this chapter, we provide an overview of several methods for predicting protein interactions using 

biological and graph features extracted from a PPI network. Thus, machine learning algorithms that can 

be used to predict protein interactions based on biological and graph-based features are described, 

along with some specific methods that make use of such algorithms and features. Furthermore, several 

issues and open problems in the PPI prediction area are presented together with suggestions and 

recommendations for how to deal with them. At last, important future trends are highlighted.  
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