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Abstract 

In this article we survey the general problem of analyzing a social network in order to make predictions 

about its behavior, content, or the systems and phenomena that generated it. First, we begin by 

defining five basic tasks that can be performed using social networks: (1) link prediction; (2) pathway 

and community formation; (3) recommendation and decision support; (4) risk analysis, and (5) planning, 

especially intervention planning based on causal analysis.  Next, we discuss frameworks for using 

predictive analytics, availability of annotation, text associated with (or produced within) a social 

network, information propagation history (e.g., upvotes and shares), trust and reputation data.  

Meanwhile, we also review challenges such as imbalanced and partial data, concept drift especially as it 

manifests within social media, and the need for active learning, online learning, and transfer learning. 

We then discuss general methodologies for predictive analytics, involving network topology and 

dynamics, heterogeneous information network analysis, stochastic simulation, and topic modeling using 

the abovementioned text corpora.  We continue by describing applications such as predicting “who will 

follow whom?” in a social network, making entity-to-entity recommendations (person-to-person, 

business-to-business aka B2B, consumer-to-business aka C2B, or business-to-consumer aka B2C), and 

analyzing big data (especially transactional data) for customer relationship management (CRM) 

applications.  Finally, we examine a few specific recommender systems and systems for interaction 

discovery, as part of brief case studies. 

 

  



1. Introduction: Prediction in Social Networks 
 

Social networks provide a way to anticipate, build, and make use of links, by representating relationships 

and propagation of phenomena between pairs of entities that can be extended to large-scale dynamical 

systems.  In its most general form, a social network can capture individuals, communities or other 

organizations, and propagation of everything from information (documents, memes, and rumors) to 

infectious pathogens.  This representation facilitates the study of patterns in the formation, persistence, 

evolution, and decay of relationships, which in itself forms a type of dynamical system, and also 

supports modeling of temporal dynamics for events that propagate across a network. 

In this first section, we survey goals of predictive analytics using a social network, outline the specific 

tasks that motivate the use of graph-based models of social networks, and discuss the general state-of-

the-field in data science as applied to prediction.   

1.1 Overview: Goals of Prediction 
 

In general, time series prediction aims to generate estimates for variables of interest that are associated 

with future states of some domain. These variables frequently represent a continuation of the input 

data, modeled under some assumptions about how the future data are distributed as a function of the 

history of past input, plus exogenous factors such as noise.  The term forecasting refers to this specific 

type of predictive task. (Gershenfeld & Weigend, 1994)  Acquiring the information to support this 

operation is known as modeling and frequently involves the application of machine learning and 

statistical inference.  A further goal of the analytical process that informs this model is understanding 

the way in which a generative process changes over time; in some scenarios, this means estimating high 

level parameters or especially structural elements of the time series model. 

Getoor (2003) introduces the term link mining to describe a specialized form of data mining: analyzing a 

network structure to discover novel, useful, and comprehensible relationships that are often latent, i.e., 

not explicitly described.  Prototypical link mining tasks, as typified by the three domains that Getoor 

surveys, include modeling collections of web pages, bibliographies, and the spread of diseases.  Each 

member of such a collection represents one entity.  In the case of web page networks, links can be 

outlinks directed from a member page to another page, inlinks directed from another page to a member 

page, or co-citation links indicating that some page contains outlinks to both endpoints of a link.  

Bibliography or citation networks model paper-to-paper citations, co-author sets, author-to-institution 

links, and paper-to-publication relationships.   Epidemiological domains are often represented using 

contact networks, which represent individual organisms (especially humans or other animals) using 

nodes and habitual or incidental contact using links.  Spread models extend this graphical representation 

by adding information about incubation and other rates and time-dependent events. 

Getoor and Diehl (2005) further survey the task of link mining, taxonomizing tasks into abstract 

categories such as object-based, link-based, and graph-based.  Object-based tasks, used often in 



information retrieval and visualization, include ranking, classification, group detection (one instance of 

which is community detection), and identification (including disambiguation and deduplication).  Link-

based tasks, which we discuss in depth in this article, include the modeling task of link prediction – 

deducing or calculating the likelihood of a future link between two candidate entities, based on their 

individual attributes and mutual associations. Graph-based tasks include modeling tasks such as 

discovering subgraphs, as well as characterization or understanding tasks such as classifying an entire 

graph as a small-world network or being governed by a random generative model – e.g., some type of 

Erdős–Rényi graph (Erdős & Rényi, 1960). 

Social media have proliferated and gained in user population, bandwidth consumed, and volume of 

content produced since the early 2000s.  A brief history and broad survey of social network sites is given 

by boyd and Ellison (2007), documenting different mechanisms by which online social identity is 

maintained and computer-mediated communication practiced.  This article also introduces 

contemporary work on characterization and visualization of network structure, modeling offline and 

online social networks using a combined model, and preservation of privacy on social network sites 

(SNSs).  Many of the modeling tools referenced in this survey paper admit direct application or 

extension to predictive analytics tasks for SNSs. (Yu, Han, & Faloutsos, 2010) 

1.2 Tasks 
 

Predictive analytics refers to the application of statistical and other computational tools to historical 

data, towards achieving goals of prediction listed in Section 1.1, with the purpose of identifying 

actionable patterns.  These may be positive patterns that the end user wishes to promote and leverage, 

such as frequent web browsing sequences or social communities, or negative patterns representing 

phenomena to be counteracted, such as incipient epidemics and criminal networks. Link mining and 

prediction in social media exist as outgrowths and extensions of predictive analytics in general, but the 

applications thereof are formulated in service to specific goals.  This section gives an overview of these 

goals and their supporting technical objectives.  These are expressed in terms of task definitions: 

performance elements such as decision support, recommender systems, and risk management, to which 

the methodology of predictive analytics is applicable.  In decision support systems, the goal is to provide 

assistive technology for generating and explaining a recommended course of action to a human user or 

users. We will see how decision support tasks for social networks can be understood in terms of link, 

pathway, and community prediction, giving rise to more specialized tasks such as the detection of at-risk 

groups and modeling the dynamics of information propagation to recognize and act on patterns in social 

networks. 

1.2.1 Link Prediction 

 



Liben-Nowell and Kleinberg (2007) formalize the link prediction problem as that of answering the 

question: 

 

They relate this task to the atemporal problem of inferring missing links from a partially observed 

network and characterize solution approaches as being based upon node neighborhoods, existing paths 

in the known network, and “meta-approaches” that are compatible with node and path-based methods.  

Node-based scores that are positively correlated with the existence of a link (𝑢, 𝑣) between nodes 𝑢 and 

𝑣 include: the count of their common neighbors in an undirected graph model; multiplicative or other 

nonlinear functions of their respective graph degrees, such as preferential attachment; and similarity 

measures used in information retrieval such as inverse log frequency of feature co-occurrence.  Path-

based scores are often based on the count or a parametrically weighted sum of alternative path lengths 

between 𝑢 and 𝑣.  Stochastic sampling-based variants of this type of score include the expected time for 

a random walk originating from 𝑢 to reach 𝑣 (the hitting time). Liben-Nowell and Kleinberg discuss 

Markov chain Monte Carlo approaches, including random walk with restart (Al Hasan, Ahmed, & Neville, 

2013), towards estimation of path-based scores for the link prediction task.  They also discuss how 

meta-level approximation methods, such as those resembling latent semantic analysis (Deerwester, 

Dumais, Furnas, Landauer, & Harshman, 1990), can be used to estimate the score for a candidate link 

(𝑢, 𝑣). 

Link prediction tasks may apply to graphs that are treated as unchanging over time (static) or 

dynamic. (Salem, 2009) In the case of static graphs, the task is to discover possibly hidden links from 

partial information.  In the case of dynamic graphs, social network data is treated as a historical 

snapshot (Barabási, et al., 2002) and the task is to predict a continuation of the data, as in traditional 

time series.  Recovering these missing links in the graph may be viewed as a reconstruction task for 

a hierarchical structure (Clauset, Moore, & Newman, 2008). This can be done by analyzing local 

structure or through transformations of the spectral density of edges across the graph (Kunegis & 

Lommatzsch, 2009).  The local structure itself can represent general relationships in an entity-

relational data model (Taskar, Wong, Abbeel, & Koller, 2004) or friendship and trust in social media 

(Hsu, Lancaster, Paradesi, & Weninger, 2007). 

The existence of a relationship existing between two users in a social network can be identified by 

an inference process or by simple classification.  Although the inference steps may be probabilistic, 

logical, or both, the links themselves tend to be categorical.  They can be dependent purely on single 

nodes, local topology, or exogenous information. (Hsu, Lancaster, Paradesi, & Weninger, 2007)  In 

addition to using the structure of the known graph, common features of candidates for link 

existence (friendship, trust, or mutual community membership) include text-based similarity 

measures such as the number of common interests or some semantically-weighted sum thereof.  

(Caragea, Bahirwani, Aljandal, & Hsu, 2009)  Al Hasan and Zaki (2011) provide a broad survey of 

Given a snapshot of a social network, can we infer which new interactions among its members are 

likely to occur in the near future? 



extant link prediction techniques, emphasizing the feature types surveyed earlier by Liben-Nowell 

and Kleinberg (2007).  Recent work has focused on topic modelling approaches to the existence of 

friendship links in social networks (Parimi & Caragea, 2011) and to the development and use of 

spatial features in location-based social media (Scellato, Noulas, & Mascolo, 2011).  Though these 

networks can theoretically contain hundreds of millions to billions of vertices, most empirical 

scientific studies to date have focused on data sets containing thousands to tens of millions of 

vertices. (Caragea, Bahirwani, Aljandal, & Hsu, 2009) 

1.2.2 Degrees of Separation: Pathway and Community Formation 

 

The task of link prediction can be extended to the general problem of finding paths and subgraphs 

(communities), a general class of problems which may involve the systematic application of local 

analytical techniques (USA Patent No. US 7069308, 2003; Backstrom, Huttenlocher, Kleinberg, & Lan, 

2006) or holistic analysis of the entire social network.  Nonlocal analysis is often based on having a 

global topic model that is used as a similarity measure between users to detect community structure, 

(Qian, Zhang, & Yang, 2006) This is a case of the general observed phenomenon and theory of 

homophily, the tendency of similar individuals to associate with one another. (McPherson, Smith-Lovin, 

& Cook, 2001) The purpose and typical performance elements of such a system are to understand the 

likely participation profiles of users: how long, how often, and with what frequency and volume of 

information propagation they are likely to participate.  (Nov, Naaman, & Ye, 2009)  Recent studies on 

computer-mediated communication have indicated that both internal observable factors such as a 

user’s tenure (longevity of membership and role), and external ones such as a user’s motivation for 

using a photo-sharing site, are relevant to these usage statistics.  (Nov, Naaman, & Ye, 2010) 

Meanwhile, techniques for predicting the formation of links such as follower linkage in social media are 

largely based on graph structure, i.e., topology. (Romero & Kleinberg, 2010)  Other features that are not 

purely topological may be overlaid on or otherwise combined with an existing social network.  (Brown, 

Nicosia, Scellato, Noulas, & Mascolo, 2012)  In addition, the basic tonal quality of posts by social network 

users, particularly sentiments expressed about topics of mutual interest, are a commonly-used basis for 

community formation. (Nguyen, Phung, Adams, & Venkatesh, 2012) 

1.2.3 Prediction with Recommendation 

 

One important function of a social network that is of particular importance to third-party providers of 

information and services is recommendation, the identification to users of information, services, and 

merchandise which they may be interested in.  Recommender systems in social media are most often 

based on a model of intrinsic and tacit trust among users associated with the recipient of 

recommendations. Insofar as association is an indication of similarity of interests and preferences, this 

leads to a natural mechanism for collaborative filtering and ranking of recommendations.  (O'Donovan & 

Smyth, 2005) This idea has subsequently been extended to systematic analyses of sparse user-item 

ratings matrices, weighted by similarity measures between users that are computed using these 



matrices, in order to make use of this normalization mechanism, a type of social regularization. (Ma, 

Zhou, Liu, Lyu, & King, 2011)  This can also be used to recommend explicit association between users, 

especially a recommendation to follow another user’s postings. (Ma, Yang, Wang, & Yuan, 2014) 

In this article, we will introduce predictive methods based solely on this type of behavior within a social 

network and those that are based on, or augmented using, user profile information. 

1.2.4 Risk Prediction and Identifying Risk Groups 

 

Another important function of link prediction in social networks is the systematic identification of at-risk 

groups based on exposures that can be inferred from social contacts and known features.  This often 

takes the form of contagious disease exposure, a topic that is heavily studied in the literature and which 

we will examine in this article; however, graph structure can reveal other information such as the 

support structure available to aged persons and their level of isolation.  (Wenger, 1997) 

This type of information can further be used to understand the intrinsic properties and identifying 

characteristics of risk groups.  Furthermore, it can in some cases, such as in Wenger’s study, provide 

some basic quantitative measures of risk levels and early-warning criteria for emergent problems, such 

as in elder care and community health. 

1.2.5 Planning and Intervention 

 

Once a mechanism exists for identifying groups that exhibit or admit elevated risk, it may be possible to 

use social network structure and content in order to plan for, and act during, emergencies.   This 

includes disaster preparedness and intervention planning (National Research Council (S. L. Magsino, 

Rapporteur), 2009), as well as social mobilization for “time-critical feats, ranging from mapping crises in 

real time, to organizing mass rallies, to conducting search- and-rescue operations over large 

geographies”. (Rutherford, et al., 2013) The limiting factor here is proximity, which differentiates most 

interventional models for social crisis management from flash mobs, which in turn constrains the 

recruitment potential and response time. 

Predictive analytics also provides a data-driven basis for optimization of coordination strategies, such as 

assignment and scheduling of rescue units in a natural disaster scenario such as a flood or landslide.  The 

prediction targets include early crisis warning metrics for such specific risks, extracted from social text 

and message propagation.  (Wex, 2013)  The emerging field of computational disaster management 

includes time-critical aspects of preparation, response, rescue, relief, and repair or cleanup effort in the 

aftermath of a disaster.  Optimization and intelligent systems tasks exist at all stages of this process.  

(Van Hentenryck, 2013) 

1.3 Approaches: Prediction in Data Science 
 



Because of the large scale of social networks, the largest of which currently number in the hundreds of 

millions to low billions of users, each with as many as several thousand relationships, the general 

problem area of prediction in social media falls under the rubric of “analytics using big data”.  Users of 

predictive analytics technology are often interested in decision support approaches that beyond the 

crisis intervention, risk management, and recommendation systems listed above. This presents new 

challenges to developers of analytics systems.  (LaValle, Lesser, Shockley, Hopkins, & Kruschwitz, 2011)  

In this article, we will delve into the data sciences and specific methodologies (Davenport & Patil, 2012) 

behind presently used and emerging systems for prediction in social media.   The methodologies for big 

data tend to be more enterprise-wide than limited to analytics or information technology units of the 

client organization.  (Davenport, Barth, & Bean, 2012)  Additionally, scalable data integration from 

heterogeneous sources, such as are prevalent in big data, presents more data management issues than 

traditional analytics – particularly with respect to data definitions (metadata and ontologies).  (Chen, 

Chiang, & Storey, 2012; Davenport, Barth, & Bean, 2012) 

2. Background 

2.1 Predictive Analytics in Social Networks 
 

The term predictive analytics generally refers to the development and federated display of models for 

the future state of a system based on observed data.  As Wex (2013) notes, digital media outlets such as 

online news provide knowledge sources and a mechanism by which historical data (and text corpora) 

can help improve understanding on the emergence of crises: 

 

 

With a main focus on online news and a ubiquitous information overload, crisis 

managers are constantly confronted to masses of publicly available, yet unstructured 

data sources. Online news cannot be clearly characterized as being “real-time” unlike 

e.g. ad-hoc messages, thus making it difficult to explain the latency between the 

occurrence of an event and its proclamation. Yet, news stories often possess meta-data 

such as geographical tagging, an accumulation of similar reports, keywords, or 

subjective author belief which calls for the application of superior analytical methods, i.e. 

text mining, to investigate hidden statistical relationships between the gradual 

emergence of a crisis and its medial proclamation. However, expertise and knowledge of 

how to transform this data into machine-readable information and how to engage in 

prediction methods is frequently non-existent.  

   



The challenges of predictive analytics applied to social media include data integration, cleaning, and 

visualization. (Thomas & Kielman, 2009)  Thomas and Kielman identify the following ten needs of visual 

analytics technologies and systems: 

1. Whole-part relationships: the ability to represent hierarchies in a scale-independent way 

2. Relationship discovery: the capability to discover interrelationships among people, places, 

times, and other attributes and features, using techniques from information retrieval (indexing 

for phrase-based search), relational databases (query by example), and data mining (clustering 

and classification) 

3. Combined exploratory and confirmatory interaction: a cognitive model for interactive 

hypothesis testing 

4. Multiple data types: adaptive hypermedia and multimedia, task-adaptive views and 

representations, and a content repurposing capability 

5. Temporal views and interactions: the ability to represent temporal dynamics of processes, 

including (causal) flows, timelines, and event and milestone visualizations 

6. Groupings and outlier identification: labeling and annotation of clusters, and the application of 

clustering to outlier detection 

7. Multiple linked views: materialized views supporting the application of data transformation 

actions committed on one view to data displayed using other views 

8. Labeling: user-controllable, contextualized views for dynamic visualization and data modeling 

9. Reporting: the ability to save and reproduce analytical operations and results for publication 

10. Interdisciplinary science: accessibility by users and subject matter experts with different 

expertise and background 

Predictive analytics applications that deal with social media are numerous, especially in business, and 

tend to focus around assistive technologies for customers as users, or decision support systems for 

customer relationship management and business intelligence. (Taylor, 2011) 

2.1.1 Foundational Graph Theory and Link Analytics 

 

Much of the methodology that supports link mining is based on analytical graph algorithms as the basis 

of predicting the existence or behavior of a link.  (Washio & Motoda, 2003)  The function of algorithms 

includes compilation of frequent pattern bases, in a manner similar to frequent itemset mining; gSpan 

(Yan & Han, 2002) is one of the earliest such algorithms and CloseGraph (Yan & Han, 2003) is its closed 

subgraph analogue.  Some relational data mining systems use only such graph-based algorithms, while 

some also use logical constraints and properties as expressed using inductive logic programming. 

(Ketkar, Holder, & Cook, 2005)  Ketkar et al. report results of experimental evaluation that illustrates 

tradeoffs: these results indicate that graph-based multirelational data mining algorithms perform better 

that logic-based ones on structurally complex networks, while the logic-based is best for semantically 

complex content, and the accuracy of relationship prediction is comparable for generic, semantically 

shallow, medium-sized networks. 



Getoor (2003) introduced a catalog of link mining applications in the earliest survey of extant machine 

learning and data mining research applied to graph structure.  Methodological advances since then have 

included both visual analytics and statistical analytics, and have focused on generalizing over both 

structure and content to recover network structure.  (Shen, Ma, & Eliassi-Rad, 2006)  Some of this early 

work on heterogeneous information network structure focuses semantic graphs with different entity 

types – hence the term “heterogeneous” – and the need to account for these semantics through some 

type of quantitative or formal ontology in estimating link strength. 

Link analytics is an informal term that refers to the systematic analysis of graph topology and statistics in 

order to build a holistic predictive model. Algorithmic subtasks of link analytics include enumeration 

maximal cliques, a parallelizable task (Du, Wu, Xu, Wang, & Pei, 2006) and using large matrix 

factorization (Acar, Dunlavy, & Kolda, 2009).  More recently Olsman, Roxendal, and Åkerblom (2013) 

have adapted network models of organizational theory to capture the behavior of organizational social 

networks. 

2.1.2 Time Series Analysis: Forecasting, Modeling, and Understanding 

 

Section 1 introduced the notions of forecasting, modeling, and understanding – terms from the 

literature of the time series analysis community, subareas such as signal identification, and related areas 

such as signal processing.  We refer the interested reader to seminal references on the topic, especialy: 

Box, Jenkins, and Reinsel (2008), Chatfield (2004), and the introduction to time series modeling by 

Gershenfeld and Weigend (1994) in the anthology of time series analytics papers based on the Santa Fe 

Time Series Competition. 

2.1.3 Statistical Modeling of Network Dynamics 

 

Besides network topology, the task of predicting the behavior and output of a social network may 

involve network dynamics and thus fall under the purview of dynamical systems modeling.  The 

mathematical foundations for this modeling include chaos theory (Gregersen & Sailer, 1993) and both 

statistical and graph-theoretic analysis of network topology as a determinant of dynamics (Borgatti, 

Mehra, Brass, & Labianca, 2009). 

 

2.2 Using Network-Associated Content 
 

Much of the early domain literature in content-based social network modeling and prediction originates 

from collaboration graphs and in particular citation graphs, where nodes represent papers and 

sometimes authors, and links represent citations.  The CiteSeer system is one of the first of these (Giles, 

Bollacker, & Lawrence, 1998).  The original system included an autonomous web agent that crawled and 

digested publication pages of academic authors in computer science (Bollacker, Lawrence, & Giles, 



1998), extracting the local web of citations for all papers and linked preprints or reprints it identified.  

This autonomous citation indexing mechanism (Lawrence, Giles, & Bollacker, 1999) represents a broader 

class of document-based information federation (aka data integration or information integration) and 

information extraction systems based on web crawling and scraping.  The resultant network modeling 

algorithms that emerged from this work support collaborative filtering of search results based on 

personality diagnosis of search engine users using memory-based and model-based inductive learning 

systems (Pennock, Horvitz, Lawrence, & Giles, 2000), and were later shown to be compatible with 

content-based filtering in data-sparse environments (Popescul, Ungar, Pennock, & Lawrence, 2001).  

Achieving high-recall link mining systems was shown to require more than simply maximizing scores in a 

system where publications competed for citations or other links (Pennock, Flake, Lawrence, Glover, & 

Giles, 2002). 

More recently, the method of combining both content-based and collaborative filtering approaches has 

been applied to document categorization in scientific domains (Cao & Gao, 2005) and to online text in 

general (Angelova & Weikum, 2006).  A profile of relevant work to date appears in a survey on web data 

mining research by Singh and Singh (2010). 

2.2.1 User Profile Data 

 

Web mining systems, going beyond simple link mining, often use user profile data (Cooley, Mobasher, & 

Srivastava, 1997).  One application of this approach is towards user modeling, personalization, and 

adaptive synthesis of hypermedia (Mobasher, Cooley, & Srivastava, 2000); another is to use node-

specific data (i.e., single user data) in the link existence prediction task (Hsu, King, Paradesi, Pydimarri, & 

Weninger, 2006) and in understanding characteristic content-based features of their own accord, and in 

relation to subgraph patterns in social networks (Thelwall, 2008).  This approach has been used to 

develop and refine data models for crawled social network data (Catanese, De Meo, Ferrara, Fiumara, & 

Provetti, 2011), to annotate user features with social relationships (Sun, Lin, Chen, & Liu, 2013), and to 

capture user self-description in microblogging sites such as Twitter (Semertzidis, Pitoura, & Tsaparas, 

2013). 

2.2.2 Temporal Event Data 

 

Besides graph structure and content related to users or other individual nodes, we may consider 

identifiable events associated with originating nodes, which may propagate through the network 

structure.  These events, which are often spatiotemporal in nature or can be associated with location 

and time, can in turn yield detected social network structure (Lauw, Lim, Pang, & Tan, 2011), and can be 

used to predict subsequent events and rank predictions (O'Madadhain, Hutchins, & Smyth, 2005).  We 

refer the reader to Aggarwal (2011) for a general introduction to this type of data analytics. 

2.2.3 Free Text Corpora 

 



The idea of a semantic network dates back to work by Woods (1975), who considered the heterogeneity 

of nodes and links, and discussed ways in which link structure can be inferred from data and 

observations.  Later researchers explored the use of free text corpora – i.e., collections of documents for 

natural language text in unrestricted form – in this task (Mladenic, 1999).  Blog and forum posts are 

often published online but are sometimes available only to registered users, limiting their general use as 

test beds.  By the middle of the 2000s, a surge in formation of social network sites (SNSs) led to 

increased interest in e-mail corpora (Culotta, Bekkerman, & McCallum, 2004), especially author-

recipient-topic models that could be built from public corpora such as the Enron e-mail corpus 

(McCallum, Corrada-Emmanuel, & Wang, 2005).  The problem of discovering the roles of author and 

recipient in a behavioral rubric or schema then gained interest (McCallum, Wang, & Corrada-Emmanuel, 

2007), both as a means of extracting social computing models from free text corpora but as a way to 

augment topic modeling (Chang, Boyd-Graber, & Blei, 2009).  By 2010, the use of social media as a test 

bed for political sentiment analysis had become a popular topic of experimental and applied research 

(Tumasjan, Sprenger, Sandner, & Welpe, 2010).   

Meanwhile, the named entities and relationships in free text corpora facilitated the development of 

document-topic hierarchies that used the organizational structure of the document collection itself. 

(Weninger, Bisk, & Han, 2012)  This augmented the methodology of identifying and tracking actors to 

form a timeline of relationships using social networks and text (Danowski & Cepela, 2010) and the “news 

feed” approach of selecting items of relevance to a user (Berkovsky, Freyne, Kimani, & Smith, 2011). 

The current state of the field in free text-augmented predictive analytics using social networks makes 

use of self-description (Semertzidis, Pitoura, & Tsaparas, 2013) and integrates sentiment, which may be 

dynamic, with detected topics (He, Lin, Gao, & Wong, 2013). 

2.2.4 Decision History: Selections and Ratings 

 

One key application of analytics using social data is helping users track their communications and history 

of relationships.  Recently this has taken the form of a decision history, which users occasionally search 

through, but often review only for recent or significant events.  The technique of personality diagnosis 

has been used to provide a topical filter for recommendation of such items (Pennock, Horvitz, Lawrence, 

& Giles, 2000).  For more information, we refer the reader to a survey by Cacheda, Carneiro, Fernández, 

and Formoso (2011) on collaborative filtering systems. 

 

2.2.5 Trust and Reputation 

 

Trust and reputation systems can be based on ties indicated by social networks (Levin & Cross, 2004) 

and other forms of computer-mediated communication (CMC).  A KDD 2006 panel (Piatetsky-Shapiro, et 

al., 2006) indicated that link mining applications such as trust networks represented one of the grand 

challenge problems in knowledge discovery in databases.   More recent work has yielded approaches 



based on mutual influence within communities (Matsuo & Yamamoto, 2009).  King, Li, and Chan (2009) 

survey these techniques in relation to data mining problems in social computing. 

Some research on collaborative recommendation has looked at adversarial and remedial aspects 

(Mobasher, Burke, Bhaumik, & Sandvig, 2007).  The evolution of trust networks is an important recent 

topic of interest to which supervised machine learning techniques have been applied (Zolfaghar & 

Aghaie, 2011). 

2.3 Challenges 
 

Link mining, especially social network mining, has frequently come up in the past decade as a major 

challenge in data mining research.  (Yang & Wu, 2006) Challenging aspects of prediction in social 

networks include their large scale, the existence of partial data (especially due to having incomplete 

graphs at the time of application), hidden user information, heterogeneous structure and semantics, 

and multiple types and provenance of data such as free text that are associated with the network. (Gao, 

2012) 

2.3.1 Imbalanced Data 

 

An additional challenge is that social networks can be sparse, which means that a candidate link may be 

unlikely to exist, and presenting imbalanced class labels in prediction data.  Differences in link 

distribution have been observed in real-world applications (Al Hasan, Chaoji, Salem, & Zaki, 2006), 

including large-scale networks (Wakita & Tsurumi, 2007) and time series compiled by periodically 

crawling social network sites (Hsu, Weninger, & Paradesi, 2008).  This property is particularly challenging 

in scale-free networks and in some multirelational, large-scale global networks (Szell, Lambiotte, & 

Thurner, 2010). 

2.3.2 Partial Data 

 

Partial data is also particularly challenging due to nuanced properties of social structure in some 

application domains such as prisons and other closed societies.  (Zheng, Salganik, & Gelman, 2006)  This 

is borne out in looking at the topology of huge SNSs (Ahn, Han, Kwak, Moon, & Jeong, 2007) and those 

that emerge episodically based on both online and in-person friend recommendations (Caragea, 

Bahirwani, Aljandal, & Hsu, 2009). 

Links can also propagate gradually in a social network that publishes upvotes and likes. Modeling this in 

phenomenon in a fast and scalable way can be highly challenging.  (Kashima, Kato, Yamanishi, Sugiyama, 

& Tsuda, 2009; Raymond & Kashima, 2010) 

2.3.3  Social Concept Drift 

 



In addition to partial observability, social networks are subject to other changes, such as gradual or 

sudden episodic changes in organizational structure.  This can be thought of as a graph-based variation 

of concept drift.  The problem of community detection is made more challenging by this temporal 

aspect. (Zhou, Councill, Zha, & Giles, 2007); recent work on time-aware link prediction has focused on 

this problem (Tylenda, Angelova, & Bedathur, 2009).   The general problem of learning under concept 

drift is surveyed by Žliobaitė (2009). 

2.3.4 Active Learning 

 

Link prediction may be seen as a passive or active machine learning and classification task.  The active 

variant may involve querying a source of information such as eliciting user annotation; this is 

appropriate for some tasks, such as deduplication, that are already intrinsically interactive.  (Sarawagi & 

Bhamidipaty, 2002) Active learning can help to focus and speed up search over candidate network 

structures when the hypothesis space is very complex (Newman, 2003) and especially when a statistical 

risk minimization criterion is available (Macskassy, 2009).  Recent applications of active learning to 

networked data include some clustering algorithms in both unsupervised and semi-supervised learning 

scenarios (Bilgic, Mihalkova, & Getoor, 2010). 

Active learning in structured domains is an active research topic (Dietterich, Domingos, Getoor, 

Muggleton, & Tadepalli, 2008). One application of particular interest is interactivity in community 

formation, where users can provide individual feedback on the fly.  (Amershi, Fogarty, & Weld, 2012) 

2.3.5 Online Learning and Incrementality 

 

Online learning is that which occurs during the application of the performance element of learning, such 

as recommendation or classification.  The requirement that this be achieved without significant 

retraining is called incremental learning.  Apart from potentially having an interactive setting, online 

learning can make use of conversations in progress (Glance, et al., 2005), search  (Davitz, Yu, Basu, 

Gutelius, & Harris, 2007), semantic social media such as status updates and tweets (Barbieri, et al., 

2010), and events between which some measure of similarity exists (Becker, Naaman, & Gravano, 2010). 

2.3.6 Transfer Learning 

 

Transfer learning allows learned models, produced using training data from one domain, to be applied 

to another domain that is either sufficiently similar or admits some analogical transformation or 

derivation.  Pan and Yang (2010) provide a general survey of the task.  In social networks, collective link 

prediction can be a very data-intensive problem, and so the application of multiple heterogeneous 

domains is one way to bootstrap the data mining task, when feasible. (Cao, Liu, & Yang, 2010)  Some 

text-based approaches to transfer learning look at inferring implicit opinion from linguistic biases 

(Guerra, Veloso, Meira Jr., & Almeida, 2011).  Finally, some social network mining systems attempt to 

infer social ties across heterogeneous networks. (Tang, Lou, & Kleinberg, 2012) 



3. Techniques 

3.1 Topological Analysis 
 

As outlined in Section 1.2.1 and 2.1.1, the most basic and general link prediction algorithms are based 

purely on graph structure. (Huang, 2006)  This has given rise to models of hierarchical structure (Clauset, 

Moore, & Newman, 2008), collective classification (Sen, et al., 2008), clique structure in social networks 

(Caragea, Bahirwani, Aljandal, & Hsu, 2009), and parameter estimation tasks that depend on the 

underlying graph structure, such as: learning influence probabilities between nodes (Goyal, Bonchi, & 

Lakshmanan, 2010); predicting positive and negative links (Leskovec, Huttenlocher, & Kleinberg, 2010); 

using supervised random walks over the network to predict and recommend links (Backstrom & 

Leskovec, 2011); performing feature construction using low-level topological features to predict links 

(Fire, et al., 2011); and performing structural role extraction and mining in large graphs (Henderson, et 

al., 2012). 

3.2 Network Dynamics 
 

Beyond topological structure lie statistics on the dynamics of networks: frequencies of link formation, 

deletion, and transformation, plus information propagation events. The latent structure of a social 

network can be learned in part using data about this dynamic behavior.  (Myers & Leskovec, 2010)  

Some models are based on analysis of the network formation process according to a predictive process, 

such a power law process. (Clauset, Shalizi, & Newman, 2009) 

3.3 Information Propagation in Heterogeneous Information Network 
 

A central approach to social network mining is to examine the way that information propagates through 

events.  In SNSs, these include sharing events such as posts, comments, shares (and retweets), likes 

(upvotes), and dislikes (downvotes).    

Some organizational social networks, especially multiunit organizations, admit a hybrid cooperation and 

competition model of knowledge sharing. (Tsai, 2002)  Some knowledge propagates purely by the 

sharing of links (Han, 2009).  In networks where link evolution leads to a fixed structure such as a star 

schema, ranking information can be captured using graph clustering algorithms (Sun, Yu, & Han, 2009)  

More generally, heterogeneous information networks can be used to perform collective classification by 

graph-based transduction. (Ji, Sun, Danilevsky, Han, & Gao, 2010)   

This general approach of tracking information propagation can be implemented using simple author-

recipient tagging, even on public social media such as Twitter (Wu, Hofman, Mason, & Watts, 2011). The 

result of this type of addressing, as well as that of social tagging, can be applied to detect communities 

(Murata, 2011).  By a similar token, observed sharing events can be used to infer topological features 

(Ohara, Saito, Kimura, & Motoda, 2011) and predict catastrophic propagation events in the case of an 



epidemiological spread model for a contact network (Boman, 2011).  When teams in an organizational 

network are large and decentralized, heterogeneous information network analysis provides a means of 

performing efficient sharing and resolution of conflicting opinions (Pryymak, Rogers, & Jennings, 2011), 

biased propagation (Deng, Han, Zhao, Yu, & Lin, 2011) and ranking-based collective classification (Ji, 

Han, & Danilevsky, 2011), and top-k similarity search (Sun, Han, Yan, Yu, & Wu, 2011).  

Network-wide dynamic properties can be estimated from similar observation data (Sycara, 2012), as can 

clustering of nodes based on relation strength (Sun, Aggarwal, & Han, 2012), and time-localized 

prediction of relationship links (Sun, Han, Aggarwal, & Chawla, 2012).  This approach to clustering also 

supports path selection, i.e., selection of entity type sequences in a directed graph, with user guidance 

(Gupta, Gao, Sun, & Han, 2012), giving rise to a general mechanism for using structural analysis to mine 

heterogeneous information networks (Sun & Han, 2012). 

Specific applications of topological and statistical analysis of heterogeneous graphs include identification 

of important individuals (Schulte, Riahi, & Li, 2013), weighted collaborative filtering based on entity 

similarity (Yu, Ren, Gu, Sun, & Han, 2013), development of topic modeling similarity measures for 

collaborative classification and filtering (Hsu, Koduru, & Zhai, 2013), and identifying individuals in a 

cybercriminal network by probable role (Lau, 2013).  The applicable clustering mechanisms include large 

matrix factorization (Liu & Han, 2013) and statistical relational learning (Schulte & Qian, 2013).   

In addition, pairwise co-occurrence relationships such as label and instance correlations can add 

additional information for collective classification (Wang & Sukthankar, 2013), as can meta-path 

selection, e.g., sequences such as Author1-Paper1-Conference-Paper2-Author2, when combined with the 

abovementioned user guidance (Sun, et al., 2013). 

3.4 Predicting Events: Stochastic Processes and other Time Series Models 
 

Berendt et al. (2003) give a roadmap to web mining methods that were extant or under development at 

the time when the Semantic Web was first emerging.  Since then, developments have been published 

that focus specifically on prediction of events.  These include prediction and ranking algorithms 

(O'Madadhain, Hutchins, & Smyth, 2005), learning similarity metrics (Becker, Naaman, & Gravano, 

2010), monitoring sharing events and user tags (Mathioudakis & Koudas, 2010), relating social media 

events to physical-world behavior (Abbasi, Chai, Liu, & Sagoo, 2012), analyzing responses to microblog 

posts (Artzi, Pantel, & Gamon, 2012), and performing aggregate sentiment analysis of Twitter (Hu, 

Wang, & Kambhampati, 2013). 

3.5 Topic Modeling and Text Analytics 
 

Text analytics adds a further dimension of complexity and richness to prediction in social networks.  The 

literature is sparser on topic modeling as related to prediction in social networks than text mining from 

social network posts.  A general survey is provided by Hu and Liu (2012), the first author of whom has 

published recent work on topic modeling to align events with Twitter feedback (Hu, John, Wang, & 



Kambhampati, 2012) and perform aggregate sentiment analysis over tweets from multiple users (Hu, 

Wang, & Kambhampati, 2013). 

4. Applications 
 

This section surveys selected popular applications of predictive analytics in social network domains.  

These are: predicting which users will follow whom; making entity-to-entity recommendations (product-

to-user, business-to-business, etc.); managing risk; analyzing big data in a scientific or engineering 

setting; and performing information management. 

4.1 Follow Prediction 
 

The problem of predicting and recommending followers can be addressed using scoring functions and 

latent factor analysis (Zhao, 2012), and may further involve the semantics of links and nodes by 

capturing which users are paying attention to what information from others (Rowe, Stankovic, & Alani, 

2012). Factor models over social graphs may be asymmetric. (Ma, Yang, Wang, & Yuan, 2014) 

4.2 Recommender Systems 
 

Entity-to-entity recommendation in social media is based on a tacit model of trust between associated 

users, representing the idea that if another user or company is directly connected to the user or the 

user’s company, then its recommendations should carry some positive weight.   In social networks 

where trust and reputation (which puts a nonlocal bias on trust) is not only fluid but can affect whether 

links persist or are removed, the dynamics of trust in the network itself are important.  Aula (2010) 

examines mechanisms of reputation risk and publicity management for users making recommendations.  

In trust networks, quantitative indicators of trust can be transmitted, by word of mouth or the 

equivalent in CMC.  Studies of trust propagation have shown that it can be modeled predictively from 

observations just as recommendations themselves are: using large matrix factorization.  (Jamali & Ester, 

2010) 

As discussed in Section 1.2.3, social networks can provide a regularization mechanism for 

recommendations that reweights them based on connectivity.  (Ma, Zhou, Liu, Lyu, & King, 2011) A 

similar mechanism can be used to generate news article or topic recommendations based on retweets 

(Abel, Gao, Houben, & Tao, 2013) or other reshares.  Analogous mechanisms extend this property to the 

general domain of social recommendation.  (Sun, Lin, Chen, & Liu, 2013) 

4.2.1 Collaborative Filtering and Collaborative Recommendation 

 



Konstas, Stathopoulos, and Jose (2009) review the state of the field in collaborative recommendation 

using social networks.  Some of the more recent work focuses on temporal dynamics as mentioned in 

Sections 2.2.2 and 3.2 (Koren, 2009); other approaches incorporate content-based personalization 

(Berkovsky, Freyne, & Smith, 2012) and attentional factors (Rowe, Stankovic, & Alani, 2012). 

4.2.2 Coping with and Using Time 

 

Fluctuations and the frequency and amplitude of concept drift are critical factors in predictive systems. 

In some intelligent systems, such as recommender systems, variation is deliberately induced to keep 

material fresh; some recommender systems are specifically designed to avoid redundant or stale (over-

similar) recommendations within a set period of time. (Lathia, Hailes, Capra, & Amatriain, 2010)  Many 

such systems (Koenigstein, Dror, & Koren, 2011) use an explicit “avoid this item for a while” or “avoid 

this category for a while” control; others (Baltrunas & Amatriain, 2009) use implicit feedback and 

perform time-dependent recommendation.  Time-awareness is also important in link prediction. 

(Tylenda, Angelova, & Bedathur, 2009) 

4.2.3 Using Location in Spatiotemporal Prediction 

 

Some SNSs use geolocation as a feature for predicting user behavior such as visiting physical locales or 

frequenting local establishments.  (Scellato, Noulas, & Mascolo, 2011; Brown, Nicosia, Scellato, Noulas, 

& Mascolo, 2012)  Other social network-based user modeling systems maintain actual proximity 

networks to predict interactions between users.  (Do & Gatica-Perez, 2013) 

4.3 Risk Management and Assistive Technologies 
 

Risk management is a key application of social networks, and includes concrete applications ranging 

from large scale disaster management (Wex, 2013; Van Hentenryck, 2013) to predicting runaways and 

isolated seniors at greater risk in case of medical emergencies. 

4.3.1 Identifying At-Risk Groups in Epidemology and Health Care 

 

Social networks for epidemiology date back to long before the current generation of contact network 

models. Berkman and Syme (1978) conducted a nine-year study of host resistance and mortality among 

Alameda County residents.  Since then, graphical models of disease spread, including causal 

interventional models, have been used to predict the propagation of foot-and-mouth disease (Ferguson, 

Donnelly, & Anderson, 2001), tuberculosis (Getoor, Rhee, Koller, & Small, 2004), SARS (Meyers, 

Pourbohloul, Newman, Skowronski, & Brunham, 2005), and more generally individuals at higher risk of 

infection of communicable diseases, especially airborne diseases, due to social interactions (Christley, et 

al., 2005). 



Risk management modeling using social networks is not limited to epidemiology; interaction networks 

have been used in applications such as antiterrorism and intelligence analytics (McCue, 2005), or 

combating obesity (Arteaga, Kudeki, & Woodworth, 2009).  Also, not all epidemiological models built 

using social media are based on contact networks; some are based on geotagged mentions (e.g., of 

influenza) in social media (Corley, Cook, Mikler, & Singh, 2009) and hybrid mining of free text and 

network structure for the same (Corley, Cook, Mikler, & Singh, 2010).  Some epidemiological models 

admit mitigation strategies (Hsu, Roy Chowdhury, & Scoglio, 2011), while others are purely predictive 

and provide decision support or visual analytics capabilities. 

The state of the field in predictive analytics for consumer health focuses on usability and accessibility of 

social media (Goldberg, et al., 2011), the mining of electronic health records (Silow-Carroll, Edwards, & 

Rodin, 2012), accounting for seasonal trends in abnormal event detection (Chae, et al., 2012), and 

spatiotemporal anomaly detection (Thom, Bosch, Koch, Worner, & Ertl, 2012). 

4.3.2 Fraud Detection, Anomaly Detection, and Prediction of Risks 

 

Anomaly detection is another major risk management area where social networks and prediction can 

often be of use.  High-visibility applications include fraud detection, especially in internet banking 

(Aggelis, 2006), econometrics and market analytics (May, Levin, & Sugihara, 2008), supply chain 

integration (Cruz, Nagurney, & Wakolbinger, 2006), predictive analytics for marketing (Hair Jr, , 2007), 

decision management (Taylor, 2011), and automated power systems or “smart grid” systems (Li, Fang, 

Mahatma, & Hampapur, 2011). 

4.4 Big Data Analytics 
 

The term big data analytics currently refers to terascale to petascale computation applied to generate 

novel, valid, useful (actionable), and human-comprehensible models from data.  As of 2014, “big data” 

usually connotes datasets that are multiple terabytes to petabytes in size or of a commensurately high 

complexity in terms of the complexity of analysis.  Many issues facing analysts who work with big data, 

such as distributed backup, high bandwidth consumption for data federation and warehousing, and 

reliability (Russom, 2011) are beyond the scope of this article.  Russom refers to the size as volume and 

bandwidth as velocity in reference to the “three Vs: volume, velocity, and variety”.    The issues of 

variety (semantic heterogeneity, especially a mixture of unstructured and structured data), on the other 

hand, have been highly relevant to this article, and figure prominently in the list of new challenges 

presented by terascale to petascale data sets, new metadata standards, and heterogeneous data 

sources. (Davenport, Barth, & Bean, 2012) 

4.4.1 Business Intelligence (BI) and Decision Support 

 

Business intelligence (BI), the application of data sciences to decision making, planning, and automation 

in domains such as management, marketing, and e-commerce, is another critical and very commonly-



encountered application of predictive analytics, especially in organizational management (Horn, 2005).  

Recent work on monetizing BI has focused on using visual analytics and web analytics in an enterprise-

wide context (Chen, Chiang, & Storey, 2012), on leveraging the results of data mining, and on decision 

support (Zaraté, 2012). 

4.4.2 Customer Relationship Management (CRM) 

 

Customer relationship management (CRM) refers to the use of technology to manage and support a 

company’s interaction with its current and potential customers.   It is facilitated directly by means of 

customer analytics (Stodder, 2012).  In particular, recruitment, retention, and recommendation are 

supported by social media analytics, especially predictive analytics applied to customer feedback (USA 

Patent No. US 20130282430, 2013) and collective sentiment analysis (Hu, Wang, & Kambhampati, 2013). 

4.4.3 Scientific Applications 

 

While social networks are used in sociological and anthropological domains to model human behavior – 

a very narrow and mostly commercial aspect of which is discussed in this article – there are numerous 

applications of quasi-social networks to scientific domains.  These include general analysis of covariance 

over events using autocorrelation matrices (Krackhardt, 1988), text mining of scientific literature 

(Bollacker, Lawrence, & Giles, 2000), and annotation of learning conversations using argumentation 

theory, discourse analytics based on text and social graphs (De Liddo, Shum, Quinto, Bachler, & 

Cannavacciuolo, 2011). 

4.5 Computational Information and Knowledge Management (CIKM) 
 

Computational information and knowledge management (CIKM) refers to data sciences applied to the 

development, collection, maintenance, annotation, and distribution of information resources such as 

document collections, data sets, audiovisual recordings, multimedia, and their associated metadata.  

One way in which CIKM is augmented by the use of predictive analytics is through user analytics for 

personalized and user-centered resource management, such as in the domains of education (Zhang, et 

al., 2010), public health and security informatics (Boulos, Sanfilippo, Corley, & Wheeler, 2010), 

information systems research (Shmueli & Koppius, 2011), and to categorize and present human resource 

(HR) data such as performance assessment data (USA Patent No. US 20130246339, 2012). 

5. Systems 
 

Fielded systems for social network-augmented decision support technology, including recommender 

systems and analytics systems for policymakers, are beginning to make increasing use of prediction 

techniques.  This section surveys current and future research, fielded applications, and systems 



engineering competitions for three main purposes: for discovery informatics, for item-to-person and 

B2C (business-to-consumer aka targeted marketing) recommendation, and for citation and follow 

prediction, which is also a form of person-to-person (P2P) recommendation. 

5.1 Interaction Discovery 
 

Interaction discovery is a form of discovery informatics – that is, analyzing observed data to discover 

patterns and relationships that are interesting according to some specifiable criterion.  It is frequently 

equated with discovery of interpersonal relationships in social networks, but is not limited to domains of 

human interaction. 

For example, protein-protein interaction (PPI) is an important modeling problem in bioinformatics, 

specifically, proteomics (Rual, et al., 2005).  PPI networks are quasi-social in the sense of Section 4.4.3, 

and as such have been represented using graphical models of probability such as Bayesian networks 

(Jansen, et al., 2003).   More generally, some subfields of systems biology are centered around 

interacting members of some family of large molecules or molecular sequences (nucleotide sequences 

in the case of genomics, proteins in the case of proteomics, cellular lipids in the case of lipidomics, 

metabolic products and enzymes in the case of metabolomics); sets of mutually interacting molecules 

across one of these categories, and especially across multiple categories, are referred to as interactomes 

and present a general quasi-social network modeling and prediction problem.  (Soler-López, Zanzoni, 

Lluís, Stelzl, & Aloy, 2011)  Domains to which this type of predictive analytics is applicable include drug 

discovery. (Pujol, Mosca, Farrés, & Aloy, 2010) 

Outside of systems biology but within the realm of computational sociology, classification of human 

interactions based on smartphone proximity data (Do & Gatica-Perez, 2011), localized prediction of 

human mobile phone-based interactions (Do & Gatica-Perez, 2013), and classifying social relationships 

by applicable life-facet based on smartphone data (Min, Wiese, Hong, & Zimmerman, 2013) also 

constitute interaction discovery applications.   

5.2 Entity-to-Entity Recommendation 
 

Entity-to-entity recommendation generally falls under the rubric of item-to-person, or business-to-

consumer (B2C), or person-to-person (P2P).  Most recommender systems that are reported as being for 

e-commerce (Driskill & Riedl, 1999) fall under the rubric of item-to-person or B2C.  As such, they are 

subject to criteria such as trust and reputation that are commonly ascribed to vendor brands or the 

companies they represent, or less frequently to marketing agencies. Wang and Vassileva (2007) survey 

trust and reputation systems such as Epinions, eBay, Amazon, and Google for XML-based web services in 

a service-oriented architecture (SOA). 

P2P recommendations include social network follow recommendation and friendship and dating sites 

(Pizzato, et al., 2013).  In the next section, we focus on follow prediction and recommendation (a 

frequent side effect) as a special case of P2P prediction. 



5.3 KDD Cup Competitions 

5.3.1 KDD Cup 2003: Citation Prediction in arXiv 

 

Section 2.2 introduces the concept of link mining using citation graphs and indexing data, an approach 

first popularized by systems such as CiteSeer (Giles, Bollacker, & Lawrence, 1998).  Since the debut of 

the “web of citation” and the advent of methods for constructing and analyzing it, data mining 

competitions have been created to encourage the advancement of these methods and evaluate their 

effectiveness.  One of the most prominent of these was the KDD Cup 2003 competition (Gehrke, 

Ginsparg, & Kleinberg, 2003), which challenged competitors to predict citations between articles in the 

reprint repository arXiv. 

One of the top-ranked systems (Manjunatha, Sivaramakrishnan, Pandey, & Murthy, 2003)  processed 

the timestamped citation data to form a time series and used k-nearest neighbor regression-based 

classification to predict the existence of a candidate citation in a paper. The authors reported 

comparable results using k-nearest neighbor (an instance-based learning method) and support vector 

machines.  A decade later, meta-path selection methods such as the type described by Sun et al. (2013), 

and for which an example is given in Section 3.3, were shown to outperform classification-based 

approaches. (Yu, Gu, Zhou, & Han, 2012) 

5.3.2 KDD Cup 2012: Follow Prediction in Tencent Weibo  



 

One of the more recent P2P prediction tasks is follow prediction, the problem of identifying, for a 

celebrity or other user of interest in a social network, whether a candidate follower will in fact follow 

them.   This is related to the problem of developing a recommender system for suggesting people to 

follow, but such a system is just one possible application; these tasks are not identical.  The acceptance 

rate of suggestions is typically low (less than 10%).  (Wu, Sorathia, & Prasanna, 2012) 

The top-performing system (Chen, et al., 2012) in Track 1 of the KDD Cup 2012 competition, which was 

organized around the Chinese microblogging service Tencent Weibo, used a hybrid approach combining 

matrix factorization with an additive forest.  In related work, the authors relate a technique for applying 

a multifaceted version of the factorization model part to a general recommender system task (Chen, et 

al., 2012). 

Another system that achieves good performance on this task (Wu, Sorathia, & Prasanna, 2012) uses a 

five-term scoring function for ranking:  

1. recommended item category 

2. recommended item popularity 

3. followee acceptance (how many people one follows who in turn follow the recommended item 

or person) 

4. semantic keyword matching score 

5. a normalized additive bonus for information sharing events 
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