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Abstract
We present a framework in which self-organizing systems
can be used to performchange of representationon
knowledge discovery problems, to learn from very large
databases. Clustering using self-organizing maps is
applied to produce multiple,intermediatetraining targets
that are used to define a new supervised learning and
mixture estimation problem. The input data is partitioned
using a state space search over subdivisions of attributes,
to which self-organizing maps are applied to the input data
as restricted to a subsetof input attributes. This approach
yields the variance-reducing benefits of techniques such as
stacked generalization, but uses self-organizing systems to
discover factorial (modular) structure among abstract
learning targets. This research demonstrates the
feasibility of applying such structure in very large
databases to build a mixture of ANNs for data mining and
KDD. Areas of applications include multi-attribute risk
assessment using insurance policy data, text document
categorization, and anomaly detection.
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Introduction

This paper presents several applications of self-organizing
systems to problems of knowledge discovery in very large
databases. The purpose of self-organization in these
problems is to performchange of representationfor
supervised learning, thereby reducing the computational
complexity of the learning problem given the transformed
problem. Cluster formation using self-organizing maps is
applied to produce multiple,intermediatetraining targets
[1] (synthetic attributes) that are used to define a new
supervised learning and mixture estimation problem.

The input data is first partitioned using a state space
search over subdivisions of attributes (this approach is an
extension of existing work on attribute subset selection).
Self-organizing maps are applied to the input data in order
to formulate learning targets based on thedata as

restricted to each subsetof input attributes. This approach
yields the variance-reducing benefits of techniques such as
stacked generalization [2], but facilitates the use of
factorial structure (the ability of abstract targets to be
factored). This research demonstrates the feasibility of
learning factorial structure from data (using prior
knowledge about the problem to partition the input), and of
applying this structure in policy data to build a mixture
model composed of ANNs.

Areas of applications include multi-attribute risk
assessment (prediction of expected financial loss) using
insurance policy data, text document categorization, and
anomaly (fraud, intrusion, and crisis) detection. This paper
presents case studies in each area, based on current
research projects.

Background

Decomposition of Learning Tasks by Clustering
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Figure 1. Role of cluster definition in two alternative
constructive induction schemes

Figure 1 depicts two methods for unsupervised learning
(constructive induction), both of which apply clustering
algorithms to one or more subsets of input attributes (data



channels) to achievechange of representation[3] for a
supervised learning task.

The following is a brief introduction to learning task
decomposition by attribute partitioning [4]. Attribute
subset selectionis the task of focusing a learning
algorithm's attention on some subset of the given input
attributes, while ignoring the rest [5, 6]. In this research,
subset selection is adapted to the systematic decomposition
of learning problems over heterogeneous time series.
Instead of focusing a single algorithm on a single subset,
the set of all input attributes is partitioned, and a
specialized algorithm is focused oneach subset. While
subset selection is designed for refinement of attribute sets
for single-model learning, attribute partitioning is designed
specifically for multiple-model learning. This new
approach adopts the role of feature construction in
constructive induction: to formulate a new input
specification from the original one [7], as depicted on the
right hand side of Figure 1. It uses subset partitioning to
decomposea learning task into parts that are individually
useful, using aggregation of attributes (thexi). By
contrast, attribute subset selection attempts toreduce
attributes to a single useful group. This permits multiple-
model methods such asbagging [8], boosting [9], and
hierarchical mixture models[10] to be adapted to
multistrategy learning [4].

Partitioning permits new intermediate concepts (theyi)
to be formed by unsupervised learning (e.g., conceptual
clustering [11] or cluster formation using self-organizing
algorithms [12, 13]). The newly defined problem or
problems can then be mapped to one or more appropriate
hypothesis languages (model specifications). In our new
system, the subproblem definitions obtained by
partitioning of attributes also specify a mixture estimation
problem (i.e., data fusion step occurs after training of the
models for all the subproblems). [4] describes a metric-
based model selection algorithm for this architecture.

One significant benefit of this abstraction approach is
that it exploits factorial structure in abstract
(decomposable) learning tasks. This results in a reduction
in network complexity compared to non-modular or non-
hierarchical methods,whenever this structure can be
identifiedusing prior knowledge or through clustering and
vector quantization methods, as discussed in this paper. In
addition, the bottom-up construction supports natural
grouping of input attributes based onmodalities of
perception (e.g., the datachannelsor observable attributes
available to each “specialist” via a particular sensor) [13].
Finally, experiments demonstrate that the achievable test
error on decomposable time series learned using a
specialist-moderator network is lower than that for non-
modular feedforward or temporal ANN, when both are
trained to convergence.

Role of Neural Clustering in KDD
In addition to Kohonen’s Self-Organizing Feature Map
(SOFM or SOM, a self-organizing algorithm first
presented in [13] is used to organize each of the training
examples into self-organized equivalence classes (SOECs).
The latter algorithm was chosen to produce only a crude
measure of statistical proximity and intentionally does not
apply any “high-powered” clustering technique.

The cluster definition step in each input vector having
an assigned target class for training the relevant expert, or
specialist network (each one being an ANN component: a
multilayer perceptron, simple recurrent network, time-
delay neural network, or Gamma memory [14, 13]).k-
means clustering, Gaussian clustering algorithms, and
structured competitive clustering algorithms such as
hierarchical agglomeration and “neural trees” [15] may
also be used in this cluster definition step, depending on
thepartition evaluation metric[16].
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Figure 2. A framework for composite learning

Figure 2 depicts a complete learning system [16] for
multi-attribute data sets that exhibit factorial (modular)
structure, such as heterogenous time series, which arise
from multiple data sources. The central elements of this
system are:attribute partitioning, metric-based model
selection, and adata fusionmechanism for integration of
multiple models. Given a specification for reformulated
(reduced or partitioned) input, the new intermediate
concepts '

iy
� can be formed by cluster definition; the newly

defined problem or problems can then be mapped to one or
more appropriate hypothesis languages (model
specifications). [16] presentsSelect-Net, a high-level
algorithm for generating this specification, which we shall
refer to as acomposite; we refer the reader to [4] two
specific experiments demonstrating composite learning.

The Select-Net algorithm also configures and trains
subnetworks in a hierarchical mixture (whose components
may include inducers other than ANNs [17, 18]); a data
fusion step occurs after individual training of each model.
The system incorporates attribute partitioning into



constructive induction to obtain multiple problem
definitions (decomposition of learning tasks); applies
metric-based model selection over subtasks tosearch for
efficient hypothesis preferences; and integrates these
techniques in a data fusion (mixture estimation)
framework.

Methodology

Classification Problems in Large-Scale KDD
This section presents a short synopsis of the applications
first in order to elucidate the data preparation steps.

Four applications of this research currently employ
SOM and related topology-preserving projection
algorithms. The first is classification of insurance policy
records, a discretized prediction problem over coarse-
grained time series. The second is technical text document
categorization, a clustering problem that requires a very-
high-dimension projection (for cluster formation) as well
as sophisticated segmentation and labeling algorithms.
The third is multisensor integration in order to predict
hazardous and potentially catastrophic conditions from
historical (time series) training data and a continuation of
its observable (input) component. This prediction task is
also known ascrisis monitoring, a form of pattern
recognition that is useful in decision support (or
recommender [6]) systems for many time-critical
applications. These include crisis control automation [19],
training [20], and testing and evaluation. The fourth
application is inference of hidden change in context to
detect fraud and computer network intrusion and to
monitor web transactions.

The supervised learning task is represented as a discrete
classification (concept learning) problem over continuous-
valued input. It can be systematically decomposed by
partitioning the input attributes (or fields) based on prior
information such astypingof attributes (e.g., geographical,
automobile-specific demographics, driver-specific
demographics, etc.). State space search may be applied to
automatically search for partitions even if no such
information is available [16, 4], but this research focuses
on how knowledge aboutattribute relevancemay be
exploited. Clustering, or vector quantization, is then
performed on thepartitioned training data – i.e., the
training data is restricted to onesubset of channelsin the
partition on each application of clustering algorithm. This
produces new intermediate training targets [1] and defines
new learningsubtasks(mappings from a subset of the
input channels to an intermediate target, or codebook,
defined by clustering).

For these experiments, nearest-neighbor (Voronoi)
tesselation, regression, and feedforward ANNs are used on
the resultant learning subtasks, as depicted in Figure 3. An
important contribution of this work is that the number of

cluster centers is determined by setting a threshold on the
number of exemplars (insurance policies, text documents,
time series observations) that belong to a cluster. Thus,
the specification of the number of cluster centers is made
in terms of an independent criterion, plus the output of
SOM, instead of by trial and error.

Clusters of
Similar Records

Segmentation of SOM Output
(Nearest-Neighbor)

Figure 3. Output of cluster segmentation algorithm
(labeled by a nearest-neighbor algorithm)

The solid lines connecting cluster centers denote the
Delaunay triangulation, the dual of the Voronoi diagram
(shown with solid lines). Quantization error is due to
assumptions of linear regions that can be relaxed using
higher order Voronoi diagrams or more regions. The
mixture estimation task is completed usingANNs. The
mixture model, comprising the expert (or “specialist”) and
mixture estimation (or “moderator”) subnetworks, is
referred to as aspecialist-moderatornetwork. An
algorithm for its construction and training is presented in
[16].

Data Preparation
The SOM-based architecture was tested on a classification
problem over a large (350,000-record) database of
automobile policy records from several U.S. states. The
original input consisted of 471 attributes, from which 225
were selected using domain knowledge. The pre-filtered
input was further partitioned according to demographic
attribute type.

The clustering algorithm, applied to each subset of
inputs, produced a task decomposition along equivalence
classes of attribute types – yielding a vector quantization
(i.e., codebook) appropriate for each subset of input. A
similar method was used to group overall risk levels into
tiersand the objectives,total loss(in dollars) andloss ratio
(in dollars per normalized unit of premium), intobins.
Two families of experiments were performed: one to
classify individual policies, one to classify a random
sample (of size 1000) by aggregate objective (sum of total
loss or ratio of total loss). All supervised learning



components were trained using error backpropagation with
momentum.

Figure 4. A framework for KDD-based anomaly (fraud
and catastrophe) prediction

Figure 4 illustrates our framework forKDD-based
anomaly detection using SOM as an unsupervised learning
component of an interactive rule refinement system. This
system entails elicitation ofprefiltering queriesto be made
against an episodic database (historical database of
transactions), which are used to identify anomalous or
“interesting” transactions. These are labeled through
inspection by a human expert, and are used to train an
inducer [17] on clusters (intermediate concepts) found by
applying SOM to both the original episodic data and
additional demographic data.

Automatic Construction of Hierarchical Mixtures
Clustering, or vector quantization, is then performed on the
partitioned training data – i.e., the training data is
restricted to onesubset of channelsin the partition on each
application of clustering algorithm. This produces new
intermediate training targets and defines new learning
subtasks(mappings from a subset of the input channels to
an intermediate target, or codebook, defined by clustering).
Preliminary experiments used two clustering algorithm:
Kohonen’s Self-Organizing Feature Map (SOFM or SOM)
[12], and the simple algorithm described in [13]. For the
multimodal sensor integration experiment, which involves
time series data, simple recurrent networks (SRNs) of the
Elman, Jordan, andinput recurrent (exponential trace
memory) [14, 13] variety are used on the resultant learning
subtasks. The input recurrent variety was found to yield
the highest mixture estimation accuracy on cross-
validation data.

Applications and Experimental Results

Automobile Insurance Risk Valuation
The new mixture model achieves higher classification
accuracy than non-modular networks and Hierarchical
Mixtures of Experts (HME) on this problem. It also
requires fewer training parameters and converges more
quickly than a stacked network of feedforward ANNs,
while achieving equal classification accuracy with respect
to actual financial loss.

Text Document Categorization
Figure 5 depicts the output of a SOM-based text mining
system as applied to technical documents (repair reports
filed by technicians). The training objective was to
classify a set of reports by theprevalent (and relevant)
keywords as extracted from the text and an accompanying
corpus ofcomments(20-character summaries).

Current research attempts to boost classification
accuracy using attribute partitioning and SOM-based
decomposition. As the objective is to detectemerging
issues (salient reliability issues in a product line), the
problem lends itself naturally to decomposition.

This data is considered to be confidential and proprietary to Caterpillar
and may only be used with prior written consent from Caterpillar.

Figure 5. Output of a SOM-based text mining system

Multisensor Integration in Crisis Monitoring
Our sensor fusion framework is part of a data reduction
and synthesis system that comprises:

1. Model Identification – extraction of a data model in
terms of alarm channels from on-board sensors (in
ground vehicles and possibly avionic systems)

2. Prediction Objective Specification – the capability
for the user to interactively define an analytical
objective (e.g., prediction of a failure modes in
reliability testing using high-volume data buses). This
functionality provides decision support for tesing and
evaluation objectives.



3. Reduction – simplification of the data model by
selection and downsampling of data channels.
Selection criteria are defined in terms ofrelevanceto
an analytical objective, such as online detection
(prediction) of a hazard condition from time-indexed
data.

4. Synthesis– the ability to generate new channels that
improve prediction quality (i.e., reduce classification
and localization error for hazard conditions).

5. Integration - of multiple (time series) models for
nonlinear system identification based on selected,
reduced, and synthesized data channels.

Preliminary experiments show that the efficiency of a
time series analysis tool (in terms of relevance
determination) can be boosted using prior knowledge and
wrappers[6] for partition search [16].

Fraud/Intrusion Detection and Web Monitoring
Knowledge discovery from logs (records of user, client,
server, vendor, or customer transactions) is a highly
desired capability in business technology, as it has
ramifications for electronic commerce and computer
security.

Our framework for monitoring of sales transactions,
depicted in Figure 4, extends to security applications when
the model (e.g., a temporal ANN or HMM) is capable of
capturing hidden changes in context and making
probabilistic inferences (predictions) about the “next
command” or “next transaction”.

Conclusions

Novel Contributions
The novel theoretical contribution of this approach is

its use of newly-formulated intermediate training targets,
discovered using input partitioning and clustering, across
mixture components. For applications exhibiting factorial
structure, it provides a modular decomposition and discrete
quantization (of intermediate training targets) that boosts
classification accuracy. For example, in the automobile
insurance policy classification test bed, this allows tiers
(risk categories) to be reorganized to better predict loss

Current and Future Work
An important topic that this research continues to
investigate is the process of automating task
decomposition for model selection. We hypothesize that
higher generalization quality can be achieved by
broadening the repertoire of ANN classifiers. [16]
describes a metric-based model selection system that is
applied after cluster definition, to identify the “right tool”
for each newly reformulated learning task. A key question
that this line of research addresses is: how does the
synthesis of attributes (as a method of taskdecomposition)

supportrelevance determination[6] in a modular learning
architecture?
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