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Abstract restricted to each subsef input attributes. This approach

We present a framework in which self-organizing systemsyields the variance-reducing benefits of techniques such as
can be used to perfornthange of representationn stacked generalization [2], but facilitates the use of

. factorial structure (the ability of abstract targets to be
knowledge discovery problems, to learn from very large . Lo
databases. Clustering using self-organizing maps isfactored). This research demonstrates the feasibility of

) e . - learning factorial structure from data (using prior
applied to produce m_uItlplentermedlatetrammg targets knowledge about the problem to partition the input), and of
that are used to define a new supervised learning and '

; T . _ I applying this structure in policy data to build a mixture
mixture estimation problem. The input data is partitioned mpo%é cgomposed of ANNs.p y

using a state space search over subdivisions of attributes,

to which self-organizing maps are applied to the inputdata  Areas of applications include multi-attribute  risk
as restricted to a subset input attributes. This approach assessment (prediction of expected financial loss) using
yields the variance-reducing benefits of techniques such asnsurance policy data, text document categorization, and
stacked generalization, but uses self-organizing systems tanomaly (fraud, intrusion, and crisis) detection. This paper
discover factorial (modular) structure among abstract presents case studies in each area, based on current
learning targets. This research demonstrates theresearch projects.

feasibility of applying such structure in very large

databases to build a mixture of ANNs for data mining and

KDD. Areas of applications include multi-attribute risk Background
assessment using insurance policy data, text document
categorization, and anomaly detection. Decomposition of Learning Tasks by Clustering
Keywords: large-scale data mining, knowledge discovery, Constructive Constructive
very large databases, clustering, self-organizing maps Induction Induction
x,y) x,y)

Introduction Feature Attribute
This paper presents several applications of self-organizing Construction Partitioning
systems to problems of knowledge discovery in very large
databases. The purpose of self-organization in these IS Lo xy)
problems is to performchange of representatiorior
supervised learning, thereby reducing the computational Cluster Cluster
complexity of the learning problem given the transformed Definition Definition
problem. Cluster formation using self-organizing maps is
applied to produce multiplantermediatetraining targets | [
[1] (synthetic attributes) that are used to define a new x t,,) L L
supervised learning and mixture estimation problem. ’ (%2, y1)s o (%02 Y0)

The input data is first partitioned using a state space Figure 1. Role of cluster definition in two alternative
search over subdivisions of attributes (this approach is an constructive induction schemes
extension of existing work on attribute subset selection).
Self-organizing maps are applied to the input data in order
to formulate learning targets based on tldata as

Figure 1 depicts two methods for unsupervised learning
(constructive induction), both of which apply clustering
algorithms to one or more subsets of input attributes (data



channels) to achievehange of representatiof8] for a Role of Neural Clustering in KDD

supervised learning task. In addition to Kohonen’s Self-Organizing Feature Map
(SOFM or SOM, a self-organizing algorithm first
presented in [13] is used to organize each of the training
examples into self-organized equivalence classes (SOECS).
The latter algorithm was chosen to produce only a crude

:!c?r(i)t;g?en; Sw%titlznitgljtr)]r(])ri?]r; ?ﬁ?feéugseé] Oflr:htﬁig'r\gesnea:?ghmmeasure of statistical proximity and intentionally does not
y . . y . . g -, I Hh' h_ ” M M i
subset selection is adapted to the systematic decomposmora]lpp y any "high-powered" clustering technique

of learning problems over heterogeneous time series.
Instead of focusing a single algorithm on a single subset
the set of all input attributes is partitioned, and a
specialized algorithm is focused @achsubset. While
subset selection is designed for refinement of attribute set
for single-model learning, attribute partitioning is designed
specifically for multiple-model learning.  This new
approach adopts the role of feature construction in
constructive induction: to formulate a new input
specification from the original one [7], as depicted on the
right hand side of Figure 1. It uses subset partitioning to
decompose learning task into parts that are individually Subproblem Metric.Based
useful, using aggregation of attributes (thex;). By Attribute Definon ~ Partiion  Model Selection
contrast, attribute subset selection attemptsreéduce Partitioning . o+ Evaluator _
attributes to a single useful group. This permits multiple- g g & Tree e
model methods such asagging [8], boosting [9], and )—({

hierarchical mixture models[10] to be adapted to
multistrategy learning [4].

The following is a brief introduction to learning task
decomposition by attribute partitioning [4]. Attribute
subset selectionis the task of focusing a learning

The cluster definition step in each input vector having
'an assigned target class for training the relevant expert, or
specialist network (each one being an ANN component: a
multilayer perceptron, simple recurrent network, time-
Yelay neural network, or Gamma memory [14, 13]k-
means clustering, Gaussian clustering algorithms, and
structured competitive clustering algorithms such as
hierarchical agglomeration and “neural trees” [15] may
also be used in this cluster definition step, depending on
thepartition evaluation metri¢16].

Learning
Method
Node

Metrics

Multiattribute
Data Set

Learning
Architecture

Partitioning permits new intermediate concepts he

to be formed by unsupervised learning (e.g., conceptual

clustering [11] or cluster formation using self-organizing

algorithms [12, 13]). The newly defined problem or overal [DEiE

problems can then be mapped to one or more appropriat Prediction Fusion

hypothesis languages (model specifications). In our new

system, the subproblem definitions obtained by Learning Specification

partitioning of attributes also specify a mixture estimation (Composite )

problem (i.e., data fusion step occurs after _training of t_he Figure 2. A framework for composite learning

models for all the subproblems). [4] describes a metric-

based model selection algorithm for this architecture. Figure 2 depicts a complete learning system [16] for
multi-attribute data sets that exhibit factorial (modular)

One significant benefit of this abstraction approach is Structure, such as heterogenous time series, which arise

that it exploits factorial structure in abstract from multiple data sources. The central elements of this

(decomposable) learning tasks. This results in a reductiorSystem are:attribute partitioning, metric-based model

in network complexity compared to non-modular or non- selection and adata fusionmechanism for integration of

hierarchical methodswhenever this structure can be multiple models. Given a specification for reformulated

identifiedusing prior knowledge or through clustering and (reduced or partitioned) input, the new intermediate

vector quantization methods, as discussed in this paper. Ifonceptsy; can be formed by cluster definition; the newly

addition, the bottom-up construction supports natural defined problem or problems can then be mapped to one or

grouping of input attributes based omodalities of =~ more  appropriate  hypothesis languages (model

perception (e.g., the datdnannelsor observable attributes ~ specifications).  [16] presentSelect-Net a high-level

available to each “specialist” via a particular sensor) [13]. algorithm for generating this specification, which we shall

Finally, experiments demonstrate that the achievable test€fer to as acomposite we refer the reader to [4] two

error on decomposable time series learned using aspecific experiments demonstrating composite learning.

specialist-moderator network is lower than that for non-

modular feedforward or temporal ANN, when both are  The Select-Net algorithm also configures and trains

trained to convergence. subnetworks in a hierarchical mixture (whose components
may include inducers other than ANNs [17, 18]); a data
fusion step occurs after individual training of each model.
The system incorporates attribute partitioning into

Subproblem ( Architecture,
Method )




constructive induction to obtain multiple problem cluster centers is determined by setting a threshold on the
definitions (decomposition of learning tasks); applies number of exemplars (insurance policies, text documents,
metric-based model selection over subtasksearch for  time series observations) that belong to a cluster. Thus,
efficient hypothesis preferengesind integrates these the specification of the number of cluster centers is made
techniques in a data fusion (mixture estimation) in terms of an independent criterion, plus the output of

framework. SOM, instead of by trial and error.

Methodology S
: '..J’.”l
Classification Problems in Large-Scale KDD et
This section presents a short synopsis of the application:
first in order to elucidate the data preparation steps.

Clusters of
Similar Records

Four applications of this research currently employ
SOM and related topology-preserving projection
algorithms. The first is classification of insurance policy
records, a discretized prediction problem over coarse-
grained time series. The second is technical text documen
categorization, a clustering problem that requires a very-
high-dimension projection (for cluster formation) as well
as sophisticated segmentation and labeling algorithms

Segmentation of SOM Output ‘

The third is multisensor integration in order to predict (Nearest-Neighbor)
hazardous and potentially catastrophic conditions from Figure 3. Output of cluster segmentation algorithm
historical (time series) training data and a continuation of (labeled by a nearest-neighbor algorithm)

its observable (input) component. This prediction task is

also known ascrisis monitoring a form of pattern The solid lines connecting cluster centers denote the

recognition that is useful in decision support (or De€launay triangulation, the dual of the Voronoi diagram

recommender [6]) systems for many time-critical (shown \_N|th sollq lines). _Quantlzatlon error is due to

applications. These include crisis control automation [19], @SSumptions of linear regions that can be relaxed using
training [20], and testing and evaluation. The fourth higher order Voronoi diagrams or more regions. ~The
application is inference of hidden change in context to Mixture estimation task is completed usiAgiNs. The

detect fraud and computer network intrusion and to Mixture model, comprising the expert (or “specialist’) and
monitor web transactions. mixture estimation (or “moderator”) subnetworks, is

referred to as aspecialist-moderatornetwork.  An

The supervised learning task is represented as a discret?'gorithm for its construction and training is presented in

classification (concept learning) problem over continuous-
valued input. It can be systematically decomposed bypgtg Preparation
partitioning the input attributes (or fields) based on prior
information such agypingof attributes (e.g., geographical,

automobile-specific demographics, driver-specific

The SOM-based architecture was tested on a classification
problem over a large (350,000-record) database of

m hi tc.). Stat h l u_tqmot_)lle policy _records from se_veral U.S. states. The
demographics, etc.). State space search may be applied lg)rlglnal input consisted of 471 attributes, from which 225

automatically search for partitions even if no such ; k X
information is available [16, 4], but this research focuses Were selected using domain knowledge. The pre-filtered

on how knowledge abougttribute relevancemay be input was further partitioned according to demographic
exploited.  Clustering, or vector quantization, is then attribute type. . .

performed on thepartitioned training data — i.e., the _1ne clustering algorithm, applied to each subset of
training data is restricted to orsubset of channeis the ~ INPuts, produced a task decomposition along equivalence
partition on each application of clustering algorithm. This classes of attribute types — yielding a vector quantization
produces new intermediate training targets [1] and defines(l-€-, codebook) appropriate for each subset of input. A

new learningsubtasks(mappings from a subset of the similar method was used to group overall risk levels into
input channels to an intermediate target, or codebook,li€rsand the objectivesotal loss(in dollars) andoss ratio
defined by clustering) (in dollars per normalized unit of premium), intains

' Two families of experiments were performed: one to

For these experiments, nearest-neighbor (Voronoi)classify individual policies, one to classify a random
tesselation, regression, and feedforward ANNSs are used orf2mPple (of size 1000) by aggregate objective (sum of total
the resultant learning subtasks, as depicted in Figure 3. A{0SS Of ratio of total loss). ~All supervised learning
important contribution of this work is that the number of



components were trained using error backpropagation with Applications and Experimental Results
momentum.

Automobile Insurance Risk Valuation

The new mixture model achieves higher classification
accuracy than non-modular networks and Hierarchical
Mixtures of Experts (HME) on this problem. It also
requires fewer training parameters and converges more
quickly than a stacked network of feedforward ANNS,
while achieving equal classification accuracy with respect
to actual financial loss.
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Text Document Categorization

i—' e Figure 5 depicts the output of a SOM-based text mining
v |aary l system as applied to technical documents (repair reports

filed by technicians). The training objective was to
classify a set of reports by thgrevalent(and relevan)
keywords as extracted from the text and an accompanying
corpus ofcomment$20-character summaries).

Figure 4. A framework for KDD-based anomaly (fraud Current research attempts to boost classification
and catastrophe) prediction accuracy using attribute partitioning and SOM-based

decomposition. As the objective is to detemnerging

issues (salient reliability issues in a product line), the

Figure 4 illustrates our framework foKDD-based doroblem lends itself naturally to decomposition.

anomaly detection using SOM as an unsupervised learnin
component of an interactive rule refinement system. This B
system entails elicitation gdrefiltering querieso be made '
against an episodic database (historical database o
transactions), which are used to identify anomalous or
“interesting” transactions. These are labeled through
inspection by a human expert, and are used to train ar

TERE M.

inducer [17] on clusters (intermediate concepts) found by "”?!w
applying SOM to both the original episodic data and 5':‘ T
additional demographic data. . u.wnnuﬁ*
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Automatic Construction of Hierarchical Mixtures

Clustering, or vector quantization, is then performed on the
partitioned training data — i.e., the training data is
restricted to onsubset of channela the partition on each
application Of CIUStering algorithm' Thls prOduceS new This data is considered to be confidential and proprietary to Caterpillar
intermediate training targets and defines new Iearning and may only be used with prior written consent from Caterpillar.
subtaskgmappings from a subset of the input channels to
an intermediate target, or codebook, defined by clustering).
Preliminary experiments used two clustering algorithm:
Kohonen's Self-Organizing Feature Map (SOFM or SOM)
[12], and the simple algorithm described in [13]. For the Multisensor Integration in Crisis Monitoring
multimodal sensor integration experiment, which involves Our sensor fusion framework is part of a data reduction
time series data, simple recurrent networks (SRNs) of theand synthesis system that comprises:
Elman, Jordan, andnput recurrent (exponential trace
memory) [14, 13] variety are used on the resultant learningl. Model Identification — extraction of a data model in
subtasks. The input recurrent variety was found to yield terms of alarm channels from on-board sensors (in
the_ hi_ghest mixture estimation accuracy on Cross- ground vehicles and possibly avionic systems)
validation data. 2. Prediction Objective Specification — the capability
for the user to interactively define an analytical
objective (e.g., prediction of a failure modes in
reliability testing using high-volume data buses). This
functionality provides decision support for tesing and
evaluation objectives.

Figure 5. Output of a SOM-based text mining system



3. Reduction — simplification of the data model by supportrelevance determinatiof6] in a modular learning
selection and downsampling of data channels. architecture?
Selection criteria are defined in termsrefevanceto
an analytical objective, such as online detection
(prediction) of a hazard condition from time-indexed Acknowledgements
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