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Abstract
We present a new hierarchical network architecture that
integrates the outputs of recurrent ANNs. The purpose of
this architecture is to apply decomposition of time-series
learning tasks (using self-organization on multi-channel
input). Our approach yields the variance-reducing
benefits of techniques such as stacked generalization, but
exploits the ability of abstract targets to be factored based
upon preprocessing, feature extraction, or multimodal
sensor constraints. This research demonstrates how prior
information can be applied to learn factorial structure
from time series, to build a mixture of recurrent ANNs.
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Introduction

This paper presents a new hierarchical network
architecture that integrates the outputs of multiple
classifiers (recurrent ANNs). The purpose of this
architecture is to apply decomposition of learning tasks to
achieve higher classification accuracy over time series.
Decomposition is achieved using self-organization on
multi-channel input, to produce multiple, intermediate
training targets forspecialistsubnetworks in the hierarchy.
This approach yields the variance-reducing benefits of
techniques such as stacked generalization, but facilitates
the use offactorial structure(the ability of abstract targets
to be factored). Accounting for the modular grouping of
inputs is critical to learning for time series classification,
because factorial structure occurs frequently due to time
series preprocessing, feature extraction, or multimodal
sensors. This research demonstrates the feasibility of
learning such structure from data (using prior information
to partition inputs) and applying it in time series to build a
mixture model composed of recurrent ANNs.

Background

Recurrent Mixture Models
Mixture estimation has been extensively studied in
artificial neural network research [1, 2]. Hierarchical

mixture models such as HME [1] have been shown to
greatly reduce convergence time by decomposing learning
tasks through self-organization. Recent research has also
shown how inductive learning algorithms can be
augmented byaggregation mixturessuch as bootstrap
aggregation (or bagging) [3] and stacked generalization
[4], and bypartitioning mixturessuch asboosting[5] and
hierarchical mixture of experts(or HME) [1].

More recently, hierarchical mixture estimation using
temporal models such as multi-time models [6] has been
applied to robot planning. Meanwhile, structural
partitioning through control of mixture hyperparameters
(such as the number of trainable weights in an ANN or
HMM [7]) has recently been applied totime series
learning. [8] describes such approach as applied to
continuous speech recognition using expectation-
maximization (EM) and mixtures of HMMs.

This paper describes a hierarchical mixture model called
a specialist-moderatornetwork [9], which combines
recurrent ANN classifiers in a bottom-up fashion, and
derive an algorithm to construct and train the network.
The primary novel contribution is the model’s ability to
self-organize intermediate training targets (concepts) based
upon a partition of the input channels (attributes presented
to each mixture component). A time series learning
experiment demonstrates how this partitioning may be
known in advance based upon prior processing
specifications (transforms applied to analog data) or sensor
specifications. The construction of this network and its
learning properties are a function of the factorial structure
of the data and the unsupervised learning techniques used
to define the intermediate targets [10]. The benefits of this
mixture model as a supervised learning architecture are
higher classification accuracy, and a faster rate of
convergence to this accuracy, compared to non-modular
mixtures.

Factorial structure in time series is a strongly exhibited
property of multimodal sensor integration problems [11,
12]. The classification accuracy boost yielded by a
hierarchical mixture typically means reduced localization
error, such as in thewhat andwherevision tasks [13, 11].
We demonstrate, for a synthetic audio sequence



recognition task, that recognition accuracy can also be
improved using apartial speficiation of factorial structure
(input partitioning).

A key assumption made in this paper is that predictive
capability is a good indicator of performance
(classification accuracy) for a time series learning
architecture, such as a recurrent ANN. Although the merit
of this assumption varies among time series classification
problems [14, 15], the authors have found it to be reliable
for a variety of problems studied. The design rationale that
follows from this assumption defines metrics for
evaluating problem definitions. Each metric estimates an
intrinsic statistical property: namely, how closely a
particular type of stochastic process fits (i.e., can generate)
observed data.

Our objective is to identify the predominantprocess
type to select an appropriate learning architecture. The
memory form,as defined by Mozer [15], is a property of a
time series learning architecture that characterizes how it
represents a temporal sequence. Memory forms include
limited-depth buffers, exponential traces, gamma
memories [19], and state transition models. In the ideal
case, learning subtasks can be isolated that each exhibit
exactly one process type (i.e., each ishomogeneous), and
these can be matched to known memory forms in the
system’s catalogue.

Recurrent components studied in this research include:
simple recurrent networks (SRNs), time-delay neural
networks (TDNNs) [16], and gamma memories [17].
SRNs used in preliminary experiments are of the Elman
[18], Jordan [15], and input recurrent [19, 10] varieties.
[15] presents the convolutional code interpretation of this
family of autoregressive moving average(ARMA) process
models, and the functional descriptor (kernel function) for
each memory form.

Decomposition of Learning Tasks
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Figure 1. A specialist-moderator network

Figure 1 depicts a specialist-moderator (SM) network. An
SM network is constructed from a specification of input
and output attributes for each of several modules (the
leaves of the network). Training data and test input will be
presented to these “specialists” according to this
specification. The construction algorithm simply generates
new input-output specifications formoderatornetworks.
The target output classes of each parent are the Cartesian
product (denoted××××) of its childrens’, and the childrens’
outputsand the concatenation of their inputs (denotedοοοο)
are given as input to the parent. This construction employs
attribute partitioning [20] and a clustering (vector
quantization) step [10] to identify intermediate training
targets (y11 andy12 in Figure 1).

The following is a brief introduction to learning task
decomposition by attribute partitioning [9]. Attribute
subset selectionis the task of focusing a learning
algorithm's attention on some subset of the given input
attributes, while ignoring the rest [21, 22]. In this
research, subset selection is adapted to the systematic
decomposition of learning problems over heterogeneous
time series. Instead of focusing a single algorithm on a
single subset, the set of all input attributes is partitioned,
and a specialized algorithm is focused oneach subset.
While subset selection is designed for refinement of
attribute sets for single-model learning, attribute
partitioning is designed specifically for multiple-model
learning. This new approach adopts the role of feature
construction in constructive induction: to formulate a new
input specification from the original one [23]. It uses
subset partitioning todecomposea learning task into parts
that are individually useful, usingaggregationof attributes
(which, for this time series learning framework, denote the
input channels). By contrast, attribute subset selection
attempts toreduceattributes to a single useful group.

Partitioning permits new intermediate concepts to be
formed by unsupervised learning (e.g., conceptual
clustering [SM86] or cluster formation using self-
organizing algorithms [24, 10]). The newly defined
problem or problems can then be mapped to one or more
appropriate hypothesis languages (model specifications).
In our new system, the subproblem definitions obtained by
partitioning of attributes also specify a mixture estimation
problem (i.e., data fusion step occurs after training of the
models for all the subproblems). [9] describes a metric-
based model selection algorithm for this architecture.

One significant benefit of this abstraction approach is
that it exploits factorial structure in abstract
(decomposable) learning tasks. This results in a reduction
in network complexity compared to non-modular or non-
hierarchical methods,whenever this structure can be
identified (using prior knowledge, or more interestingly,
through vector quantization methods). In addition, the
bottom-up construction supports natural grouping of input
attributes based onmodalitiesof perception (e.g., the data



channels or observable attributes available to each
“specialist” via a particular sensor). Finally, experiments
demonstrate that the achievable test error on decomposable
time series learned using a specialist-moderator network is
lower than that for non-modular feedforward or temporal
ANN, when both are trained to convergence.

It is important to note that prior knowledge of a partition
is not essential to attribute-based decomposition of
learning tasks. Experiments using synthetic (modular
variants on parity, or cumulative XOR, functions) showed
that simple heuristic search (using A/A* andthe modular
mutual informationcriterion [20, 9]) can locate the optimal
partition for small (5-20) attribute sets. This technique is
applicable even when there is absolutely no prior
information regarding the factorial structure of the data set.
[20] documents these experiments fully.

Neural Clustering in Constructive Induction
A self-organizing algorithm first presented in [10] is used
to organize each of the training sets into self-organized
equivalence classes (SOECs). This results in each input
vector having an assigned target class for training the
relevant expert, or specialist network (each one being a
recurrent component: SRN, TDNN, or Gamma memory).

k-means clustering or Gaussian clustering algorithms
would be quite sufficient for this task, as is Kohonen’s
Self-Organizing Feature Map (SOFM or SOM). [25]
documents a “neural tree” algorithm that implements a
form of competitive clustering. However, an even simpler
algorithm was used in the study presented here. This
algorithm intentionally does not apply any “high-powered”
clustering technique. On the contrary, it was chosen to
produce only a crude measure of statistical proximity.

The algorithm for SOEC formation is as follows:

Define:

D = maximum diameter of the training set.
R = the common radius of classes, a fraction of D

jµÿ = exemplar of class j

ijd
ÿ

= distance betweenix
ÿ

and
iµÿ .

Algorithm Find-SOEC:

1. Mark all training vectorsuncommitted.
2. ChooseR as any fraction ofD.
3. j := 1
4. Select any uncommitted training vector,*x

ÿ
. (If none,

stop.)
5. Assign it to *xj

ÿÿ ←µ and mark it committed.

6. Assign all uncommitted ix satisfying Rdij <
ÿ

to classj,

and mark them committed.
7. Incrementj and return to step 4.

The number of SOECs will be j-1 when the algorithm
terminates, a condition that will, of course, depend on R.
A similar algorithm was recently published in [26] as the
APC-III algorithm. [20] reports another similar union-
find-based algorithm for detection of SOECs.

Methodology

Time Series Classification Problems
Time series learning tasks are represented as discrete
classification (concept learning) problems over
continuous-valued input. They can be systematically
decomposed by partitioning the input channels (or
attributes) based on prior information such as sensor
modality. State space search may be applied to
automatically search for partitions even if no such
information is available [20].

Attribute Partitioning
Figure 2 depicts the factorial structure of a learning
problem defined over a musical tune classification
database. The input data was generated as follows. First,
digital audio was recorded of the tunes being played by
one of the authors. These samples were preprocessed
using a simple autocorrelation technique to find a coarse
estimate of thefundamental frequency[27]. This signal
was used to produce thefrequency component, an
exponential trace of a tune over 7 input channels
(essentially, a 7-note scale). The other group of input
attributes is therhythm component, containing 2 channels:
the position in the tune (i.e., a time parameter ranging from
1 to 11) and a binary sound-gap indicator.
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Figure 2. The musical tune classification problem

Non-modular and specialist-moderator architectures
for this problem, whose performance is reported in the
next section, are shown in Figure 2. Each contains
approximately 1200 trainable weights.



Construction of Recurrent Mixtures
Clustering, or vector quantization, is then performed on the
partitioned training data – i.e., the training data is
restricted to onesubset of channelsin the partition on each
application of clustering algorithm. This produces new
intermediate training targets and defines new learning
subtasks(mappings from a subset of the input channels to
an intermediate target, or codebook, defined by clustering).
Preliminary experiments used two clustering algorithm:
Kohonen’s Self-Organizing Feature Map (SOFM or SOM)
[24], and Find-SOEC. For these experiments, simple
recurrent networks (SRNs) of the Elman [18], Jordan [15],
and input recurrent(exponential trace memory) [19, 10]
variety are used on the resultant learning subtasks. The
input recurrent variety was found to yield the highest
mixture estimation accuracy on cross-validation data.

Experimental Results

Musical Tune Classification
The non-modular network shown in Figure 2 receives all 9
channels of input and is trained using the overall concept
class. The first-level (leaf) networks in the specialist-
moderator network receivespecialized inputs: the
frequency component only or the rhythm component only.
The concatenation of frequency and rhythm components
(i.e., the entire input) is given as input to the moderator
network, and the target of the moderator network is the
Cartesian product of its children's targets. The targets are
intermediate attributesIF = { F1, F2, F3, F4 } and IR = { R1,
R2, R3, R4 }. This 4-by-4 factorization was discovered
using the clustering algorithmFind-SOEC presented in
the second section. In this experiment, the frequency and
rhythm partitioning ofinput is self-evident in the signal
processing construction, so thesubdivision of inputis
known (note, however, that the intermediate targets arenot
known in advance). When the input subdivision is also
unknown, attribute partitioning methods can be used to
automatically determine which inputs arerelevant to a
particular specialist [20].

Boosting Prediction Accuracy
Table 1 shows the performance of the non-modular
(simple feedforward and input recurrent) ANNs compared
to their specialist-moderator counterparts. Each tune is
coded using between 5 and 11 exemplars, for a total of 589
training and 128 cross validation exemplars (73 training
and 16 cross validation tunes). The italicized networks
have 16 targets; the specialists, 4 each. Significant
overtraining was detected only in the frequency specialists.
This did not, however, affect classification accuracy for
our data set. The results illustrate that input recurrent
networks (simple, specialist, and moderator) are more
capable of generalizing over the temporally coded music
data than are feedforward ANNs. Table 2 lists

performance statistics (mean, extrema, and standard
deviations of classification accuracy) using atemporal
inducers such asID3, C5.0, Naïve Bayes,IBL, andPEBLS
on the the musical tune classification problem (S4 data set)
described in this section. The non-ANN inducers are all
part of the MLC++ package [28].

MSE Prediction AccuracyNetwork
Type Train CV Train CV

Feedfwd.
Simple

0.0575 0.0728 344/589
(58.40%)

67/128
(52.44)

Feedfwd.
Rhythm

0.0716 0.1530 534/589
(90.66%)

104/128
(81.25%)

Feedfwd.
Frequency

0.0001 0.0033 589/589
(100.0%)

128/128
(100.0%)

Feedfwd.
Moderator

0.0323 0.0554 441/589
(74.87%)

77/128
(60.16%)

Input Rec.
Simple

0.0167 0.0717 566/589
(96.10%)

83/128
(64.84%)

Input Rec.
Rhythm

0.0653 0.1912 565/589
(95.93%)

107/128
(83.59%)

Input Rec.
Frequency

0.0015 0.0031 589/589
(100.0%)

128/128
(100.0%)

Input Rec.
Moderator

0.0013 0.0425 589/589
(100.0%)

104/128
(81.25%)

Table 1. Performance of non-modular versus SM
networks.

Classification Accuracy (%),
Musical Tune Classification

Cross Validation
Inducer Min Mean StdDev Max
ID3 46.6 63.4 5.67 73.2
ID3, bagged 48.6 63.4 5.55 74.0
ID3, boosted 53.4 66.6 4.85 83.6
C5.0 67.1 77.1 3.41 84.9
C5.0, boosted 57.5 77.5 5.57 89
IBL 41.1 52.7 4.88 62.3
Discrete
Naïve-Bayes

41.1 59.6 4.79 67.1

DNB, bagged 47.9 60.8 4.19 67.1
DNB, boosted 45.2 58.3 5.34 69.2
PEBLS 30.8 42.5 4.71 56.8
SM net, FF – – – 60.2
SM net, IR – – – 81.3

Table 2. SM network versus MLC++ inducers (CV)

Improving Learning Speed
Time to convergence, based on a stopping criterion (i.e.,
stop training when cross-validation MSE increases), in at
most 4000 epochs for both SM networks and non-modular



networks. When run to convergence under a threshold
criterion (i.e., stop training when training MSE changes by
less than 0.0001), the SM and non-modular networks
achieve the same accuracy as reported above.

Applications

Multisensor Integration
The novel contribution of this architecture is that it uses
newly-formulated intermediate training targets, which are
discovered using input partitioning and clustering, in all
mixture components. It extends traditional HME by
making subtask specialization an explicit, unsupervised
learning step, rather than an effect of interleaved training
of gating (mixture estimation) and expert subnetworks.
The experiments above focus upon factorial structure in
time series and recurrent network mixtures. The new
architecture can reduce variance more efficiently than
mixtures of atemporal and non-modular inducers,
including feedforward ANNs (using the same input
channels to each mixture component and the same target
concepts). We hypothesize that this is true when the
supervised learning task can be factored: additional
experiments reported in [20] support this hypothesis.

Supervised Learning using Multiple Models
[9] presents a multistrategy learning framework that
employs the recurrent mixture (SM networks) presented
here. Information theoretic criterion can be used to
empirically determine when it is more appropriate to use
SM networks versus recurrent HME-type mixtures.

Scalable Data Mining
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Figure 3. Role of recurrent mixtures in data mining

The synthesis of a new group of attributes (also known
as thefeature constructionproblem) in inductive concept
learning is an optimization problem. Its control parameters
include the attributes selected as relevant [22, 20], how

they are grouped (with respect to multiple targets), and
how new attributes are defined in terms ofground
(original) attributes. This synthesis and selection problem
is a key initial step inconstructive induction[23] – the
reformulation of a learning problem in terms of its inputs
(attributes) and outputs (concept class descriptors).

Figure 3 illustrates the role of attribute selection and
partitioning in a generic data mining process. In this
framework, the input consists ofheterogeneousdata (that
originating from multiple sources). Supervised learning is
to acquire the performance element (time series
classification [20] and other forms of pattern recognition
that are important for decision support). Our applications
include insurance risk valuation, precision agriculture, and
record and document clustering for information retrieval.

Conclusions

Novel Contributions
The novel contribution of this architecture is that it uses
newly-formulated intermediate training targets, which are
discovered using input partitioning and clustering, in all
mixture components. It extends traditional HME by
making subtask specialization an explicit, unsupervised
learning step, rather than an effect of interleaved training
of gating (mixture estimation) and expert subnetworks.

Current and Future Work
The experiment described in this paper illustrates the “best
case scenario” in terms of learning task factorization. It is
important, however, to note that no knowledge about
problem structure (i.e., the intermediate targets) has been
hardwired into the modular network. This structure is
discovered using constructive induction, based on the input
specification. Examples of knowledge-free algorithms that
have been used to generate intermediate attributes in this
fashion are Fu and Buchanan's hierarchical approach [29]
and self-organizing feature maps [24]. Clustering and
vector quantization algorithms such ask-means clustering
[30], learning vector quantization (LVQ), radial basis
functions (RBFs), and principal components analysis
(PCA) are also applicable [30, 31]. Continuing research
compares the performance of SM networks to that of other
mixture models, especially EM-based ones. Future
experiments are planned using variants of HME [1] and
mixtures of factor analyzers [32, 33] and Gaussian
processes [34]. Statistical learning theoretic properties
(particularly generalization quality) of SM networks are
also under investigation.
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